Identifying Membrane Protein–Lipid Interactions with Lipidomic Lipid Exchange-Mass Spectrometry

Lipids can play important roles in modulating membrane protein structure and function. However, it is challenging to identify natural lipids bound to membrane proteins in complex bilayers. Here, we developed lipidomic lipid exchange-mass spectrometry (LX-MS) to study the lipid affinity for membrane...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society Vol. 145; no. 38; pp. 20859 - 20867
Main Authors: Zhang, Guozhi, Odenkirk, Melanie T., Janczak, Colleen M., Lee, Ray, Richardson, Kevin, Wang, Zhihan, Aspinwall, Craig A., Marty, Michael T.
Format: Journal Article
Language:English
Published: United States American Chemical Society 27-09-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Lipids can play important roles in modulating membrane protein structure and function. However, it is challenging to identify natural lipids bound to membrane proteins in complex bilayers. Here, we developed lipidomic lipid exchange-mass spectrometry (LX-MS) to study the lipid affinity for membrane proteins on a lipidomic scale. We first mix membrane protein nanodiscs with empty nanodiscs that have no embedded membrane proteins. After allowing lipids to passively exchange between the two populations, we separate the two types of nanodiscs and perform lipidomic analysis on each with liquid chromatography and MS. Enrichment of lipids in the membrane protein nanodiscs reveals the affinity of individual lipids for binding the target membrane protein. We apply this approach to study three membrane proteins. With the Escherichia coli ammonium transporter AmtB and aquaporin AqpZ in nanodiscs with E. coli polar lipid extracts, we detected binding of cardiolipin and phosphatidyl-glycerol lipids to the proteins. With the acetylcholine receptor in nanodiscs with brain polar lipid extracts, we discovered a complex set of lipid interactions that depended on the head group and tail composition. Overall, lipidomic LX-MS provides a detailed understanding of the lipid-binding affinity and thermodynamics for membrane proteins in complex bilayers and provides a unique perspective on the chemical environment surrounding membrane proteins.
AbstractList Lipids can play important roles in modulating membrane protein structure and function. However, it is challenging to identify natural lipids bound to membrane proteins in complex bilayers. Here, we developed lipidomic lipid exchange-mass spectrometry (LX-MS) to study the lipid affinity for membrane proteins on a lipidomic scale. We first mix membrane protein nanodiscs with empty nanodiscs that have no embedded membrane proteins. After allowing lipids to passively exchange between the two populations, we separate the two types of nanodiscs and perform lipidomic analysis on each with liquid chromatography and MS. Enrichment of lipids in the membrane protein nanodiscs reveals the affinity of individual lipids for binding the target membrane protein. We apply this approach to study three membrane proteins. With the Escherichia coli ammonium transporter AmtB and aquaporin AqpZ in nanodiscs with E. coli polar lipid extracts, we detected binding of cardiolipin and phosphatidyl-glycerol lipids to the proteins. With the acetylcholine receptor in nanodiscs with brain polar lipid extracts, we discovered a complex set of lipid interactions that depended on the head group and tail composition. Overall, lipidomic LX-MS provides a detailed understanding of the lipid-binding affinity and thermodynamics for membrane proteins in complex bilayers and provides a unique perspective on the chemical environment surrounding membrane proteins.Lipids can play important roles in modulating membrane protein structure and function. However, it is challenging to identify natural lipids bound to membrane proteins in complex bilayers. Here, we developed lipidomic lipid exchange-mass spectrometry (LX-MS) to study the lipid affinity for membrane proteins on a lipidomic scale. We first mix membrane protein nanodiscs with empty nanodiscs that have no embedded membrane proteins. After allowing lipids to passively exchange between the two populations, we separate the two types of nanodiscs and perform lipidomic analysis on each with liquid chromatography and MS. Enrichment of lipids in the membrane protein nanodiscs reveals the affinity of individual lipids for binding the target membrane protein. We apply this approach to study three membrane proteins. With the Escherichia coli ammonium transporter AmtB and aquaporin AqpZ in nanodiscs with E. coli polar lipid extracts, we detected binding of cardiolipin and phosphatidyl-glycerol lipids to the proteins. With the acetylcholine receptor in nanodiscs with brain polar lipid extracts, we discovered a complex set of lipid interactions that depended on the head group and tail composition. Overall, lipidomic LX-MS provides a detailed understanding of the lipid-binding affinity and thermodynamics for membrane proteins in complex bilayers and provides a unique perspective on the chemical environment surrounding membrane proteins.
Lipids can play important roles in modulating membrane protein structure and function. However, it is challenging to identify natural lipids bound to membrane proteins in complex bilayers. Here, we developed lipidomic lipid exchange-mass spectrometry (LX-MS) to study the lipid affinity for membrane proteins on a lipidomic scale. We first mix membrane protein nanodiscs with empty nanodiscs that have no embedded membrane proteins. After allowing lipids to passively exchange between the two populations, we separate the two types of nanodiscs and perform lipidomic analysis on each with liquid chromatography and mass spectrometry. Enrichment of lipids in the membrane protein nanodiscs reveals the affinity of individual lipids for binding the target membrane protein. We apply this approach to study three membrane proteins. With the E. coli ammonium transporter AmtB and aquaporin AqpZ in nanodiscs with E. coli polar lipid extract, we detected binding of cardiolipin and phosphatidyl-glycerol lipids to the proteins. With the acetylcholine receptor in nanodiscs with brain polar lipid extract, we discovered a complex set of lipid interactions that depended on the head group and tail composition. Overall, lipidomic LX-MS provides a detailed understanding of the lipid binding affinity and thermodynamics for membrane proteins in complex bilayers and provides a unique perspective on the chemical environment surrounding membrane proteins.
Lipids can play important roles in modulating membrane protein structure and function. However, it is challenging to identify natural lipids bound to membrane proteins in complex bilayers. Here, we developed lipidomic lipid exchange-mass spectrometry (LX-MS) to study the lipid affinity for membrane proteins on a lipidomic scale. We first mix membrane protein nanodiscs with empty nanodiscs that have no embedded membrane proteins. After allowing lipids to passively exchange between the two populations, we separate the two types of nanodiscs and perform lipidomic analysis on each with liquid chromatography and MS. Enrichment of lipids in the membrane protein nanodiscs reveals the affinity of individual lipids for binding the target membrane protein. We apply this approach to study three membrane proteins. With the Escherichia coli ammonium transporter AmtB and aquaporin AqpZ in nanodiscs with E. coli polar lipid extracts, we detected binding of cardiolipin and phosphatidyl-glycerol lipids to the proteins. With the acetylcholine receptor in nanodiscs with brain polar lipid extracts, we discovered a complex set of lipid interactions that depended on the head group and tail composition. Overall, lipidomic LX-MS provides a detailed understanding of the lipid-binding affinity and thermodynamics for membrane proteins in complex bilayers and provides a unique perspective on the chemical environment surrounding membrane proteins.
Lipids can play important roles in modulating membrane protein structure and function. However, it is challenging to identify natural lipids bound to membrane proteins in complex bilayers. Here, we developed lipidomic lipid exchange-mass spectrometry (LX-MS) to study the lipid affinity for membrane proteins on a lipidomic scale. We first mix membrane protein nanodiscs with empty nanodiscs that have no embedded membrane proteins. After allowing lipids to passively exchange between the two populations, we separate the two types of nanodiscs and perform lipidomic analysis on each with liquid chromatography and MS. Enrichment of lipids in the membrane protein nanodiscs reveals the affinity of individual lipids for binding the target membrane protein. We apply this approach to study three membrane proteins. With the ammonium transporter AmtB and aquaporin AqpZ in nanodiscs with polar lipid extracts, we detected binding of cardiolipin and phosphatidyl-glycerol lipids to the proteins. With the acetylcholine receptor in nanodiscs with brain polar lipid extracts, we discovered a complex set of lipid interactions that depended on the head group and tail composition. Overall, lipidomic LX-MS provides a detailed understanding of the lipid-binding affinity and thermodynamics for membrane proteins in complex bilayers and provides a unique perspective on the chemical environment surrounding membrane proteins.
Author Marty, Michael T.
Odenkirk, Melanie T.
Janczak, Colleen M.
Richardson, Kevin
Zhang, Guozhi
Lee, Ray
Wang, Zhihan
Aspinwall, Craig A.
AuthorAffiliation Department of Chemistry and Biochemistry
Scintillation Nanotechnologies, Inc
Bio5 Institute
AuthorAffiliation_xml – name: Scintillation Nanotechnologies, Inc
– name: Bio5 Institute
– name: Department of Chemistry and Biochemistry
– name: 2 Bio5 Institute, University of Arizona, Tucson, AZ, 85721, USA
– name: 3 Scintillation Nanotechnologies, Inc., Tucson, AZ, 85721, USA
– name: 1 Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA
Author_xml – sequence: 1
  givenname: Guozhi
  surname: Zhang
  fullname: Zhang, Guozhi
  organization: Department of Chemistry and Biochemistry
– sequence: 2
  givenname: Melanie T.
  surname: Odenkirk
  fullname: Odenkirk, Melanie T.
  organization: Bio5 Institute
– sequence: 3
  givenname: Colleen M.
  surname: Janczak
  fullname: Janczak, Colleen M.
  organization: Scintillation Nanotechnologies, Inc
– sequence: 4
  givenname: Ray
  surname: Lee
  fullname: Lee, Ray
  organization: Scintillation Nanotechnologies, Inc
– sequence: 5
  givenname: Kevin
  surname: Richardson
  fullname: Richardson, Kevin
  organization: Scintillation Nanotechnologies, Inc
– sequence: 6
  givenname: Zhihan
  surname: Wang
  fullname: Wang, Zhihan
  organization: Department of Chemistry and Biochemistry
– sequence: 7
  givenname: Craig A.
  orcidid: 0000-0002-4359-5812
  surname: Aspinwall
  fullname: Aspinwall, Craig A.
  organization: Bio5 Institute
– sequence: 8
  givenname: Michael T.
  orcidid: 0000-0001-8115-1772
  surname: Marty
  fullname: Marty, Michael T.
  email: mtmarty@arizona.edu
  organization: Bio5 Institute
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37700579$$D View this record in MEDLINE/PubMed
BookMark eNptUctuEzEUtVARTVt2rNEsWTDttT1-zAqhqrSRUoEEXVse25M4ytjBdoDs-If-IV_CpEkLSKzu69xzH-cEHYUYHEKvMJxjIPhiqU0-pwaYlPQZmmBGoGaY8CM0AQBSC8npMTrJeTmGDZH4BTqmQgAw0U6QnloXiu-3PsyrWzd0SQdXfUqxOB9-_byf-bW31TQUl7QpPoZcffdlUT3k4-DN3quufpiFDnNX3-qcq89rZ0qKgytpe4ae93qV3cuDPUV3H66-XN7Us4_X08v3s1pTCaU2LWmbxljeUyq6VgDRlrYMrNZWgiXONlwwy3ELnaG9lIy1pBEd6Tjn2ll6it7tedebbnDWjGclvVLr5Aedtipqr_6tBL9Q8_hNYWANNAJGhjcHhhS_blwuavDZuNVqfEncZEUkbziWROAR-nYPNSnmnFz_NAeD2smidrKogywj_PXfuz2BH3X4M3rXtYybFMZX_Z_rN7tLmwM
CitedBy_id crossref_primary_10_1016_j_sbi_2024_102844
crossref_primary_10_1038_s41467_023_44366_w
crossref_primary_10_1002_cplu_202300678
crossref_primary_10_1016_j_bbamcr_2024_119784
crossref_primary_10_1016_j_isci_2024_109382
Cites_doi 10.1016/j.jmb.2021.167105
10.1021/nn103098m
10.1016/j.bbamem.2008.01.015
10.1021/acs.analchem.0c00786
10.1038/nsmb.3195
10.1021/acsanm.8b02136
10.1073/pnas.94.15.8202
10.1038/s41467-017-02397-0
10.1016/j.bbamem.2018.10.017
10.1085/jgp.201711875
10.1021/jacs.8b11529
10.1021/ja9017013
10.1021/bi00521a026
10.1038/nchem.2172
10.1016/S0005-2736(03)00056-7
10.26434/chemrxiv-22023-vd26432d26432
10.1021/acs.chemrev.8b00451
10.1146/annurev-biophys-070816-033620
10.1038/nrm2330
10.1038/s42003-021-01711-3
10.1002/anie.201713167
10.1016/j.bbamem.2015.03.010
10.1021/acs.analchem.2c01488
10.1093/glycob/cwab046
10.1016/0014-5793(90)81288-Y
10.1146/annurev-biophys-070816-033843
10.1016/j.chembiol.2018.03.011
10.1016/S0896-6273(02)00725-0
10.1038/nature13419
10.1073/pnas.1719813115
10.1523/JNEUROSCI.21-02-00504.2001
10.1038/s41580-022-00524-4
10.1016/j.bbamem.2007.10.019
10.1039/C8CC02003E
10.1111/j.1471-4159.2007.04561.x
10.3389/fphys.2021.798102
10.1016/bs.mie.2020.12.003
10.1021/bi00293a012
10.1007/s13361-019-02174-x
10.1002/anie.201709657
10.1021/jacs.6b01771
10.1021/acs.analchem.1c03181
ContentType Journal Article
Copyright 2023 American Chemical Society
Copyright_xml – notice: 2023 American Chemical Society
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1021/jacs.3c05883
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 20867
ExternalDocumentID 10_1021_jacs_3c05883
37700579
a478448719
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R35 GM128624
GroupedDBID ---
-DZ
-ET
-~X
.DC
.K2
4.4
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFRP
ABHMW
ABMVS
ABPPZ
ABPTK
ABQRX
ABUCX
ACGFO
ACGFS
ACJ
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AGHSJ
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
EBS
ED~
F5P
GGK
GNL
IH2
IH9
JG~
LG6
P2P
ROL
RXW
TAE
TAF
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
XSW
YQT
YZZ
ZCA
~02
53G
AAHBH
ABJNI
ACBEA
CGR
CUPRZ
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-a380t-c92944cd6f337b9702ad3950daad80d2ed4675d6190bc3f88559247b2b666aed3
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Sat Sep 28 05:38:36 EDT 2024
Sat Oct 26 02:03:21 EDT 2024
Fri Aug 23 01:00:29 EDT 2024
Sat Nov 02 12:32:10 EDT 2024
Thu Sep 28 04:37:39 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 38
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a380t-c92944cd6f337b9702ad3950daad80d2ed4675d6190bc3f88559247b2b666aed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Authors GZ and MTO contributed equally to this work.
Author Contributions
ORCID 0000-0002-4359-5812
0000-0001-8115-1772
PMID 37700579
PQID 2864618271
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10540470
proquest_miscellaneous_2864618271
crossref_primary_10_1021_jacs_3c05883
pubmed_primary_37700579
acs_journals_10_1021_jacs_3c05883
PublicationCentury 2000
PublicationDate 2023-09-27
PublicationDateYYYYMMDD 2023-09-27
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-27
  day: 27
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2023
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – ident: ref7/cit7
  doi: 10.1016/j.jmb.2021.167105
– ident: ref35/cit35
  doi: 10.1021/nn103098m
– ident: ref9/cit9
  doi: 10.1016/j.bbamem.2008.01.015
– ident: ref8/cit8
  doi: 10.1021/acs.analchem.0c00786
– ident: ref11/cit11
  doi: 10.1038/nsmb.3195
– ident: ref29/cit29
  doi: 10.1021/acsanm.8b02136
– ident: ref30/cit30
  doi: 10.1073/pnas.94.15.8202
– ident: ref21/cit21
  doi: 10.1038/s41467-017-02397-0
– ident: ref16/cit16
  doi: 10.1016/j.bbamem.2018.10.017
– ident: ref2/cit2
  doi: 10.1085/jgp.201711875
– ident: ref23/cit23
  doi: 10.1021/jacs.8b11529
– ident: ref26/cit26
  doi: 10.1021/ja9017013
– ident: ref39/cit39
  doi: 10.1021/bi00521a026
– ident: ref14/cit14
  doi: 10.1038/nchem.2172
– ident: ref37/cit37
  doi: 10.1016/S0005-2736(03)00056-7
– ident: ref20/cit20
  doi: 10.26434/chemrxiv-22023-vd26432d26432
– ident: ref5/cit5
  doi: 10.1021/acs.chemrev.8b00451
– ident: ref10/cit10
  doi: 10.1146/annurev-biophys-070816-033620
– ident: ref1/cit1
  doi: 10.1038/nrm2330
– ident: ref19/cit19
  doi: 10.1038/s42003-021-01711-3
– ident: ref13/cit13
  doi: 10.1002/anie.201713167
– ident: ref27/cit27
  doi: 10.1016/j.bbamem.2015.03.010
– ident: ref18/cit18
  doi: 10.1021/acs.analchem.2c01488
– ident: ref34/cit34
  doi: 10.1093/glycob/cwab046
– ident: ref38/cit38
  doi: 10.1016/0014-5793(90)81288-Y
– ident: ref3/cit3
  doi: 10.1146/annurev-biophys-070816-033843
– ident: ref15/cit15
  doi: 10.1016/j.chembiol.2018.03.011
– ident: ref6/cit6
  doi: 10.1016/S0896-6273(02)00725-0
– ident: ref22/cit22
  doi: 10.1038/nature13419
– ident: ref41/cit41
  doi: 10.1073/pnas.1719813115
– ident: ref33/cit33
  doi: 10.1523/JNEUROSCI.21-02-00504.2001
– ident: ref4/cit4
  doi: 10.1038/s41580-022-00524-4
– ident: ref32/cit32
  doi: 10.1016/j.bbamem.2007.10.019
– ident: ref12/cit12
  doi: 10.1039/C8CC02003E
– ident: ref31/cit31
  doi: 10.1111/j.1471-4159.2007.04561.x
– ident: ref28/cit28
  doi: 10.3389/fphys.2021.798102
– ident: ref24/cit24
  doi: 10.1016/bs.mie.2020.12.003
– ident: ref42/cit42
  doi: 10.1021/bi00293a012
– ident: ref36/cit36
  doi: 10.1007/s13361-019-02174-x
– ident: ref17/cit17
  doi: 10.1002/anie.201709657
– ident: ref40/cit40
  doi: 10.1021/jacs.6b01771
– ident: ref25/cit25
  doi: 10.1021/acs.analchem.1c03181
SSID ssj0004281
Score 2.5117955
Snippet Lipids can play important roles in modulating membrane protein structure and function. However, it is challenging to identify natural lipids bound to membrane...
SourceID pubmedcentral
proquest
crossref
pubmed
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 20859
SubjectTerms Cation Transport Proteins
Escherichia coli
Escherichia coli Proteins
Lipidomics
Mass Spectrometry
Membrane Lipids
Membrane Proteins
Title Identifying Membrane Protein–Lipid Interactions with Lipidomic Lipid Exchange-Mass Spectrometry
URI http://dx.doi.org/10.1021/jacs.3c05883
https://www.ncbi.nlm.nih.gov/pubmed/37700579
https://www.proquest.com/docview/2864618271
https://pubmed.ncbi.nlm.nih.gov/PMC10540470
Volume 145
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB1ROMCFfSmbjATcghzbjd0jKq16ASEBErcosR3RAykircSRf-AP-RJmkhRoUSVukeMkzowTv7H93gCcKht57V0YCI_wTWXtMECc7AOpSMybe5kkxHfu3-mbR3PVJZmc8zkr-IL0gWxxIS1vGSMbsCQ0ggSCQJ27H_6jMOEE5moTyXqD--zVNADZYnoA-oMqZzdH_hptemv_bec6rNZ4kl1WHWADFny-CcudSRq3LUgqKm5JZ2LX_hmj49yzW5JnGOSf7x-UvNqxcmKw4jgUjOZmWVlOlOXqiHXfKo5wcI1wm1Ha-hEpHeAztuGh173v9IM6r0KQSMNHgUVIpJR1USalTtuai8TJdos79IvhTniHf8-Ww9CKp1ZmxmDUIZRORYqxTuKd3IHFfJj7PWCRFpkiLitPlXKqZZxHwChsxlWStZ1twgmaJa6_iyIul7wFhhxUWhurCWcTh8QvlcTGnHonE2_FaENa2ECDDcdFLEykIgyUdNiE3cp733eS2DYi3DbBTPn1uwLpa0-fyQdPpc52SHBWab7_j5c4gBVKRE87SYQ-hMXR69gfQaNw4-Oyr34BjRHlkA
link.rule.ids 230,315,782,786,887,2769,27085,27933,27934,56747,56797
linkProvider American Chemical Society
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xHODCvpTVSHCM5NhO7B5RKSqiRUiAxC1KYkdwICDSShz5B_6QL2EmC6UgJLhFjpM4M078xvZ7A3Co0tBpZ31POIRvKmv7HuJk50lFYt7cyTgmvnPvSl_cmpMuyeR4DRcGG1HgnYpyEX-sLkAyQVgoUx4YI6dhNggRBxMS6lyNaZDC-A3a1SaU9T7371fTOJQWk-PQD3D5fY_kl0HndPGfzV2ChRpdsuOqOyzDlMtXYK7TJHVbhbgi5pbkJjZwDxgr545dkljDff7--kaprC0rpwkrxkPBaKaWleVEYK6OWPelYgx7AwTfjJLYD0n3AJ-xBjen3etOz6uzLHixNHzopQiQlEptmEmpk7bmIrayHXCLXjLcCmfxXxpYDLR4ksrMGIxBhNKJSDDyiZ2V6zCTP-ZuE1ioRaaI2coTpawKjHUIH0WacRVnbZu24ADNEtVfSRGVC-ACAxAqrY3VgqPGL9FTJbjxS72DxmkR2pCWOdBgj6MiEiZUIYZN2m_BRuXEzztJbBvRb1tgJtz7WYHUtifP5Pd3peq2T-BWab71h5fYh7ne9aAf9c8uzrdhnlLU0x4ToXdgZvg8crswXdjRXtl9PwCseO39
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSsQwFL34AHXj-zE-I-iykCZpky5lnEHxgaCCu9I2Kbqwip0Bl_6Df-iXeG8f6iiCuCtpmqa5SXNuknMuwJ7KQqed9T3hEL6pPPI9xMnOk4rEvLmTSUJ856NLfX5jDnskk-O3XBisRIklldUmPo3qR5s3CgMkFYQ3ZMYDY-Q4TAahjsjfOuheflIhhfFbxKtNKJuz7t-fprkoK0fnoh8A8_s5yS8TT3_uH1Weh9kGZbKDulsswJgrFmG62wZ3W4KkJuhWJCd25u7RZy4cuyDRhrvi7eWVQlpbVi0X1syHktGKLavSichcX7Hec80c9s4QhDMKZj8g_QN8xzJc93tX3SOvibbgJdLwgZchUFIqs2EupU4jzUViZRRwi9Yy3Apn8Z8aWHS4eJrJ3Bj0RYTSqUjRA0qclSswUTwUbg1YqEWuiOHKU6WsCox1CCNFlnOV5JHNOrCLzRI3o6WMq41wgY4IpTaN1YH91jbxYy288Uu-3dZwMbYhbXdggz0My1iYUIXoPmm_A6u1IT9Kklg3ouF2wIyY-CMDqW6P3inubiv1bZ9ArtJ8_Q8fsQNTF4f9-PT4_GQDZihSPR01EXoTJgZPQ7cF46Udblc9-B1lfvCA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+Membrane+Protein-Lipid+Interactions+with+Lipidomic+Lipid+Exchange-Mass+Spectrometry&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Zhang%2C+Guozhi&rft.au=Odenkirk%2C+Melanie+T&rft.au=Janczak%2C+Colleen+M&rft.au=Lee%2C+Ray&rft.date=2023-09-27&rft.issn=1520-5126&rft.eissn=1520-5126&rft.volume=145&rft.issue=38&rft.spage=20859&rft_id=info:doi/10.1021%2Fjacs.3c05883&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon