Chemical Authentication of Extra Virgin Olive Oil Varieties by Supervised Chemometric Procedures
This work has focused on discriminating extra virgin olive oils from Sabina (Lazio, Italy) by olive fruit variety (cultivar). A set of oils from five of the most widespread cultivars (Carboncella, Frantoio, Leccino, Moraiolo, and Pendolino) in this geographical area was analyzed for chemical composi...
Saved in:
Published in: | Journal of agricultural and food chemistry Vol. 50; no. 3; pp. 413 - 418 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Washington, DC
American Chemical Society
30-01-2002
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | This work has focused on discriminating extra virgin olive oils from Sabina (Lazio, Italy) by olive fruit variety (cultivar). A set of oils from five of the most widespread cultivars (Carboncella, Frantoio, Leccino, Moraiolo, and Pendolino) in this geographical area was analyzed for chemical composition using only the Official Analytical Methods, recognized for the quality control and commercial classification of this product. The obtained data set was converted into a computer-compatible format, and principal component analysis (PCA) and a method based on the Fisher F ratio were used to reduce the number of variables without a significant loss of chemical information. Then, to differentiate these samples, two supervised chemometric procedures were applied to process the experimental data: linear discriminant analysis (LDA) and artificial neural network (ANN) using the back-propagation algorithm. It was found that both of these techniques were able to generalize and correctly predict all of the samples in the test set. However, these results were obtained using 10 variables for LDA and 6 (the major fatty acid percentages, determined by a single gas chromatogram) for ANN, which, in this case, appears to provide a better prediction ability and a simpler chemical analysis. Finally, it is pointed out that, to achieve the correct authentication of all samples, the selected training set must be representative of the whole data set. Keywords: Olive oil; pattern recognition; linear discriminant analysis; artificial neural network |
---|---|
AbstractList | This work has focused on discriminating extra virgin olive oils from Sabina (Lazio, Italy) by olive fruit variety (cultivar). A set of oils from five of the most widespread cultivars (Carboncella, Frantoio, Leccino, Moraiolo, and Pendolino) in this geographical area was analyzed for chemical composition using only the Official Analytical Methods, recognized for the quality control and commercial classification of this product. The obtained data set was converted into a computer-compatible format, and principal component analysis (PCA) and a method based on the Fisher F ratio were used to reduce the number of variables without a significant loss of chemical information. Then, to differentiate these samples, two supervised chemometric procedures were applied to process the experimental data: linear discriminant analysis (LDA) and artificial neural network (ANN) using the back-propagation algorithm. It was found that both of these techniques were able to generalize and correctly predict all of the samples in the test set. However, these results were obtained using 10 variables for LDA and 6 (the major fatty acid percentages, determined by a single gas chromatogram) for ANN, which, in this case, appears to provide a better prediction ability and a simpler chemical analysis. Finally, it is pointed out that, to achieve the correct authentication of all samples, the selected training set must be representative of the whole data set. This work has focused on discriminating extra virgin olive oils from Sabina (Lazio, Italy) by olive fruit variety (cultivar). A set of oils from five of the most widespread cultivars (Carboncella, Frantoio, Leccino, Moraiolo, and Pendolino) in this geographical area was analyzed for chemical composition using only the Official Analytical Methods, recognized for the quality control and commercial classification of this product. The obtained data set was converted into a computer-compatible format, and principal component analysis (PCA) and a method based on the Fisher F ratio were used to reduce the number of variables without a significant loss of chemical information. Then, to differentiate these samples, two supervised chemometric procedures were applied to process the experimental data: linear discriminant analysis (LDA) and artificial neural network (ANN) using the back-propagation algorithm. It was found that both of these techniques were able to generalize and correctly predict all of the samples in the test set. However, these results were obtained using 10 variables for LDA and 6 (the major fatty acid percentages, determined by a single gas chromatogram) for ANN, which, in this case, appears to provide a better prediction ability and a simpler chemical analysis. Finally, it is pointed out that, to achieve the correct authentication of all samples, the selected training set must be representative of the whole data set. Keywords: Olive oil; pattern recognition; linear discriminant analysis; artificial neural network |
Author | Bucci, Remo Marini, Federico Magrí, Andrea D Magrí, Antonio L Marini, Domenico |
Author_xml | – sequence: 1 givenname: Remo surname: Bucci fullname: Bucci, Remo – sequence: 2 givenname: Andrea D surname: Magrí fullname: Magrí, Andrea D – sequence: 3 givenname: Antonio L surname: Magrí fullname: Magrí, Antonio L – sequence: 4 givenname: Domenico surname: Marini fullname: Marini, Domenico – sequence: 5 givenname: Federico surname: Marini fullname: Marini, Federico |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13443136$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/11804505$$D View this record in MEDLINE/PubMed |
BookMark | eNptkMFu1DAQhi1URLeFAy-AfAGJQ2BmHSfxsV2VgrR0K7X0ahxnQr0k8WInq_bt62pX3QunGen_5tfoO2FHgx-IsfcIXxDm-HXdAkKhiu0rNkM5h0wiVkdsBinMKlngMTuJcQ0AlSzhDTtOMeQS5Iz9XtxT76zp-Nk03tMwpn10fuC-5RcPYzD8zoU_buCrzm2Jr1zH70xwNDqKvH7kN9OGwtZFavhzk-9pDM7y6-AtNVOg-Ja9bk0X6d1-nrJf3y5uF9-z5eryx-JsmRlRqjErhACJuTJKkaJS2RYoDaC6rfNqDqrJ6wZAVlWjQEgo0tUcgWxTqFqKUpyyT7veTfD_Joqj7l201HVmID9FXWKOCIgJ_LwDbfAxBmr1JrjehEeNoJ916hedif2wL53qnpoDufeXgI97wMQksQ1msC4eOJHnAkWRuGzHuTjSw0tuwl9dlKKU-vb6Rlcozn9eySu9PPQaG_XaT2FI7v7z4BM4lpjx |
CODEN | JAFCAU |
CitedBy_id | crossref_primary_10_1002_jsfa_6015 crossref_primary_10_1016_j_chemolab_2006_07_004 crossref_primary_10_1016_j_snb_2018_10_014 crossref_primary_10_1002_ejlt_201500230 crossref_primary_10_1007_s13197_022_05371_x crossref_primary_10_1051_ocl_2010_0330 crossref_primary_10_1007_s11694_018_9746_z crossref_primary_10_1016_j_foodchem_2018_01_081 crossref_primary_10_1016_j_talanta_2015_06_042 crossref_primary_10_3389_fnut_2019_00094 crossref_primary_10_3390_foods5040077 crossref_primary_10_3390_foods9020155 crossref_primary_10_1016_j_lwt_2020_110715 crossref_primary_10_1007_s00216_004_2935_0 crossref_primary_10_1016_j_foodchem_2007_11_065 crossref_primary_10_1080_10826070802603153 crossref_primary_10_1002_jms_1791 crossref_primary_10_1002_ejlt_201400622 crossref_primary_10_1016_j_chemolab_2005_05_002 crossref_primary_10_1080_10408390701558175 crossref_primary_10_1016_j_foodchem_2011_05_122 crossref_primary_10_1007_s11746_009_1419_y crossref_primary_10_1016_j_foodchem_2016_09_041 crossref_primary_10_1016_j_foodchem_2008_02_012 crossref_primary_10_1108_BFJ_08_2021_0924 crossref_primary_10_3390_molecules24050826 crossref_primary_10_1590_1678_4324_2018170767 crossref_primary_10_1016_j_aca_2004_12_026 crossref_primary_10_1007_s00217_008_0845_7 crossref_primary_10_1016_S0003_2670_02_01422_8 crossref_primary_10_1016_j_chemolab_2009_02_010 crossref_primary_10_1002_ejlt_201100054 crossref_primary_10_1016_j_tifs_2006_09_003 crossref_primary_10_1016_j_jfca_2022_104531 crossref_primary_10_1016_j_aca_2011_12_035 crossref_primary_10_1007_s11746_011_1862_4 crossref_primary_10_1007_s11746_011_1922_9 crossref_primary_10_53879_id_53_09_10277 crossref_primary_10_1016_j_chroma_2011_07_081 crossref_primary_10_1080_10942912_2016_1208225 crossref_primary_10_1016_j_jpba_2009_05_012 crossref_primary_10_1007_s00217_019_03310_3 crossref_primary_10_1007_s11746_014_2528_9 crossref_primary_10_1016_S0925_4005_03_00101_1 crossref_primary_10_1002_pca_620 crossref_primary_10_1016_j_foodchem_2003_09_021 crossref_primary_10_1016_j_foodchem_2016_01_137 crossref_primary_10_1016_j_foodchem_2016_03_087 crossref_primary_10_3390_foods9060834 crossref_primary_10_1016_j_chemolab_2003_12_007 crossref_primary_10_1007_s00217_011_1511_z crossref_primary_10_1016_j_foodchem_2012_03_122 crossref_primary_10_3989_gya_125110 crossref_primary_10_1016_j_foodchem_2021_129630 crossref_primary_10_1002_ejlt_200300797 crossref_primary_10_1021_jf051716m crossref_primary_10_1111_j_1745_4557_2008_00240_x crossref_primary_10_1016_j_foodchem_2015_04_139 crossref_primary_10_1016_S0308_8146_03_00275_9 crossref_primary_10_1002_ejlt_200900095 crossref_primary_10_1021_jf030232s crossref_primary_10_3390_foods8100426 crossref_primary_10_1021_jf070523r crossref_primary_10_1021_jf500571n crossref_primary_10_1016_j_aca_2007_08_006 crossref_primary_10_1016_j_crvi_2010_05_001 crossref_primary_10_1016_j_foodchem_2014_10_002 crossref_primary_10_1021_jf902619z crossref_primary_10_1016_S0026_265X_03_00028_6 crossref_primary_10_1080_00032719_2012_655656 crossref_primary_10_1016_j_aca_2004_01_013 crossref_primary_10_1016_S0308_8146_03_00037_2 crossref_primary_10_1016_j_chroma_2005_05_008 crossref_primary_10_1002_jssc_200700303 crossref_primary_10_1108_BFJ_Sep_2011_0235 crossref_primary_10_1080_10408398_2018_1433628 crossref_primary_10_1016_j_lwt_2018_01_045 crossref_primary_10_1016_j_foodchem_2011_09_130 crossref_primary_10_1016_j_aca_2009_01_009 crossref_primary_10_1016_j_aca_2004_01_009 crossref_primary_10_1016_j_aca_2016_01_025 crossref_primary_10_1016_j_aca_2010_03_034 crossref_primary_10_2174_1573401314666181018125358 crossref_primary_10_3390_app10196733 crossref_primary_10_1016_j_foodchem_2011_06_045 crossref_primary_10_1016_j_bse_2018_04_005 crossref_primary_10_1021_jf034365p crossref_primary_10_3923_jpt_2014_90_96 crossref_primary_10_1016_j_aca_2005_06_033 crossref_primary_10_1002_elps_200900675 crossref_primary_10_1080_10408390600846325 crossref_primary_10_1007_s00216_010_4408_y crossref_primary_10_1016_j_aca_2005_01_014 crossref_primary_10_1016_j_chroma_2012_04_023 crossref_primary_10_1016_j_foodchem_2012_02_135 crossref_primary_10_1155_2008_262501 crossref_primary_10_1111_j_1745_459X_2009_00214_x crossref_primary_10_1002_mas_20020 crossref_primary_10_1016_j_chroma_2014_12_052 crossref_primary_10_1016_j_foodchem_2012_01_059 |
Cites_doi | 10.7551/mitpress/5236.001.0001 10.1007/s11746-999-0098-z 10.1016/S0003-2670(01)83513-3 10.1016/0169-7439(93)E0065-C 10.1002/0471725293 10.1093/oso/9780198538493.001.0001 10.1016/0003-2670(94)00085-9 10.1002/(SICI)1097-0231(19980227)12:4<188::AID-RCM137>3.0.CO;2-7 10.1016/0003-2670(93)80430-S 10.1007/978-1-4757-1904-8 10.1016/S0003-2670(00)80865-X |
ContentType | Journal Article |
Copyright | Copyright © 2002 American Chemical Society 2002 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2002 American Chemical Society – notice: 2002 INIST-CNRS |
DBID | BSCLL IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
DOI | 10.1021/jf010696v |
DatabaseName | Istex Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1520-5118 |
EndPage | 418 |
ExternalDocumentID | 10_1021_jf010696v 11804505 13443136 ark_67375_TPS_813BMN5N_L b433033257 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Italy |
GeographicLocations_xml | – name: Italy |
GroupedDBID | - 53G 55A 5GY 5VS 7~N 85S AABXI AAYJJ ABFLS ABMVS ABUCX ACGFS ACJ ACS AEESW AENEX AFEFF AFFNX ALMA_UNASSIGNED_HOLDINGS ANTXH AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F5P GJ GNL GX1 IH9 IHE JG JG~ LG6 NHB OHT P2P ROL TWZ UI2 VF5 VG9 W1F WH7 X ZCG --- -~X .GJ .K2 AAHBH ABJNI ABQRX ACGFO ADHLV AGXLV AHGAQ BSCLL CUPRZ GGK .55 1WB 4.4 ABFRP ABHMW ACKIV AHPSJ G8K IQODW MVM RNS X7M XFK CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-a379t-63305149a99e9e79cf0ee790ebfb48209d4bd00588d903506379210ecd69b5373 |
IEDL.DBID | ACS |
ISSN | 0021-8561 |
IngestDate | Sat Aug 17 01:41:52 EDT 2024 Fri Aug 23 03:00:02 EDT 2024 Sat Sep 28 08:34:47 EDT 2024 Thu Feb 29 06:16:55 EST 2024 Wed Oct 30 09:20:14 EDT 2024 Thu Aug 27 13:42:47 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Discriminant analysis Oleaceae Olea europaea Chemical method Olive oil Pattern recognition Neural network Fatty acids Gas chromatography Dicotyledones Authentication Angiospermae Quality control Analytical method Spermatophyta Chemical composition Intraspecific comparison Oil plant (vegetal) Cultivar |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a379t-63305149a99e9e79cf0ee790ebfb48209d4bd00588d903506379210ecd69b5373 |
Notes | istex:12023F270B3B650B1415EF305F6CF7F018DE7414 ark:/67375/TPS-813BMN5N-L ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 11804505 |
PQID | 71411011 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_71411011 crossref_primary_10_1021_jf010696v pubmed_primary_11804505 pascalfrancis_primary_13443136 istex_primary_ark_67375_TPS_813BMN5N_L acs_journals_10_1021_jf010696v |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ANTXH ACS AEESW AFEFF ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 2002-01-30 |
PublicationDateYYYYMMDD | 2002-01-30 |
PublicationDate_xml | – month: 01 year: 2002 text: 2002-01-30 day: 30 |
PublicationDecade | 2000 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States |
PublicationTitle | Journal of agricultural and food chemistry |
PublicationTitleAlternate | J. Agric. Food Chem |
PublicationYear | 2002 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Marini D. (jf010696vb00010/jf010696vb00010_1) 1997; 74 Fukunaga K. (jf010696vb00028/jf010696vb00028_1) 1990 Fisher R (jf010696vb00030/jf010696vb00030_1) 1936; 7 jf010696vb00015/jf010696vb00015_1 Massart D. L. (jf010696vb00016/jf010696vb00016_1) 1988 Balestrieri F. (jf010696vb00011/jf010696vb00011_1) 1993; 70 Zupan J. (jf010696vb00038/jf010696vb00038_1) 1993 Seasholtz M. B. (jf010696vb00022/jf010696vb00022_1) 1993; 277 Lee P. M. (jf010696vb00029/jf010696vb00029_1) 1989 Malinowski E. R. (jf010696vb00026/jf010696vb00026_1) 1991 Shaw A. D. (jf010696vb00005/jf010696vb00005_1) 1997; 348 Horst (jf010696vb00024/jf010696vb00024_1) 1965 Leardi R. (jf010696vb00014/jf010696vb00014_1) 1987; 64 Jollife I. T. (jf010696vb00027/jf010696vb00027_1) 1986 Marini D. (jf010696vb00008/jf010696vb00008_1) 1994; 23 Brereton R. G. (jf010696vb00017/jf010696vb00017_1) 1990 Bishop C. M. (jf010696vb00035/jf010696vb00035_1) 1995 Rumelheart D. E. (jf010696vb00041/jf010696vb00041_1) 1986; 1 Lai Y. W. (jf010696vb00002/jf010696vb00002_1) 1994; 42 Balestrieri F. (jf010696vb00009/jf010696vb00009_1) 1995; 24 Cacoullos T. (jf010696vb00031/jf010696vb00031_1) 1973 McLachlan G. (jf010696vb00032/jf010696vb00032_1) 1992 Rummel R. J. (jf010696vb00025/jf010696vb00025_1) 1970 Bridle J. S. (jf010696vb00040/jf010696vb00040_1) 1989 Brereton R. G. (jf010696vb00018/jf010696vb00018_1) 1992 Vlahov G. (jf010696vb00007/jf010696vb00007_1) 1999; 76 Coomans D. (jf010696vb00033/jf010696vb00033_1) 1979; 112 Freeman J. A. (jf010696vb00036/jf010696vb00036_1) 1991 Kröse B. (jf010696vb00039/jf010696vb00039_1) 1996 Angerosa F. (jf010696vb00003/jf010696vb00003_1) 1996; 44 Brown P. J. (jf010696vb00020/jf010696vb00020_1) 1993 The (jf010696vb00019/jf010696vb00019_1) 1991; 248 Marini D. (jf010696vb00012/jf010696vb00012_1) 1998; 75 Zupan J. (jf010696vb00001/jf010696vb00001_1) 1994; 292 Sreerama N. (jf010696vb00021/jf010696vb00021_1) 1994; 242 De Noord O. E (jf010696vb00023/jf010696vb00023_1) 1994; 23 Cherkassky V. (jf010696vb00034/jf010696vb00034_1) 1994 jf010696vb00042/jf010696vb00042_1 Zupan J. (jf010696vb00037/jf010696vb00037_1) 1991; 248 Bréas O. (jf010696vb00006/jf010696vb00006_1) 1998; 12 Forina M. (jf010696vb00013/jf010696vb00013_1) 1982; 72 Bianchi G. (jf010696vb00004/jf010696vb00004_1) 1996; 19 |
References_xml | – volume: 42 start-page: 1159 year: 1994 ident: jf010696vb00002/jf010696vb00002_1 publication-title: J. Agric. Food Chem. contributor: fullname: Lai Y. W. – volume: 19 start-page: 48 year: 1996 ident: jf010696vb00004/jf010696vb00004_1 publication-title: Inf. Agric. contributor: fullname: Bianchi G. – ident: jf010696vb00015/jf010696vb00015_1 – volume: 1 start-page: 362 volume-title: Parallel Distributed Processing: Exploration in the Microstructure of Cognition year: 1986 ident: jf010696vb00041/jf010696vb00041_1 doi: 10.7551/mitpress/5236.001.0001 contributor: fullname: Rumelheart D. E. – volume: 76 start-page: 1231 year: 1999 ident: jf010696vb00007/jf010696vb00007_1 publication-title: J. Am. Oil Chem. Soc. doi: 10.1007/s11746-999-0098-z contributor: fullname: Vlahov G. – volume: 75 start-page: 252 year: 1998 ident: jf010696vb00012/jf010696vb00012_1 publication-title: Riv. Ital. Sostanze Grasse contributor: fullname: Marini D. – volume-title: Introduction to Statistical Pattern Recognition year: 1990 ident: jf010696vb00028/jf010696vb00028_1 contributor: fullname: Fukunaga K. – volume: 74 start-page: 520 year: 1997 ident: jf010696vb00010/jf010696vb00010_1 publication-title: Riv. Ital. Sostanze Grasse contributor: fullname: Marini D. – volume-title: Applied Factor Analysis year: 1970 ident: jf010696vb00025/jf010696vb00025_1 contributor: fullname: Rummel R. J. – volume: 112 start-page: 122 year: 1979 ident: jf010696vb00033/jf010696vb00033_1 publication-title: Anal. Chim. Acta doi: 10.1016/S0003-2670(01)83513-3 contributor: fullname: Coomans D. – volume: 64 start-page: 136 year: 1987 ident: jf010696vb00014/jf010696vb00014_1 publication-title: Riv. Ital. Sostanze Grasse contributor: fullname: Leardi R. – volume-title: Regression and Calibration year: 1993 ident: jf010696vb00020/jf010696vb00020_1 contributor: fullname: Brown P. J. – volume-title: An Introduction to Neural Networks year: 1996 ident: jf010696vb00039/jf010696vb00039_1 contributor: fullname: Kröse B. – ident: jf010696vb00042/jf010696vb00042_1 – volume: 23 start-page: 70 year: 1994 ident: jf010696vb00023/jf010696vb00023_1 publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/0169-7439(93)E0065-C contributor: fullname: De Noord O. E – volume-title: Discriminant Analysis and Statistical Pattern Recognition year: 1992 ident: jf010696vb00032/jf010696vb00032_1 doi: 10.1002/0471725293 contributor: fullname: McLachlan G. – volume-title: Multivariate Pattern Recognition in Chemometrics year: 1992 ident: jf010696vb00018/jf010696vb00018_1 contributor: fullname: Brereton R. G. – volume-title: Discriminant Analysis and Application year: 1973 ident: jf010696vb00031/jf010696vb00031_1 contributor: fullname: Cacoullos T. – volume-title: From Statistics to Neural NetworksTheory and Pattern Recognition Applications year: 1994 ident: jf010696vb00034/jf010696vb00034_1 contributor: fullname: Cherkassky V. – volume: 72 start-page: 155 year: 1982 ident: jf010696vb00013/jf010696vb00013_1 publication-title: Ann. Chim. contributor: fullname: Forina M. – volume: 242 start-page: 507 year: 1994 ident: jf010696vb00021/jf010696vb00021_1 publication-title: J. Mol. Biol. contributor: fullname: Sreerama N. – volume-title: Neural Networks for Pattern Recognition year: 1995 ident: jf010696vb00035/jf010696vb00035_1 doi: 10.1093/oso/9780198538493.001.0001 contributor: fullname: Bishop C. M. – volume: 44 start-page: 328 year: 1996 ident: jf010696vb00003/jf010696vb00003_1 publication-title: J. Agric. Food Chem. contributor: fullname: Angerosa F. – volume: 292 start-page: 234 year: 1994 ident: jf010696vb00001/jf010696vb00001_1 publication-title: Anal. Chim. Acta doi: 10.1016/0003-2670(94)00085-9 contributor: fullname: Zupan J. – volume: 7 start-page: 188 year: 1936 ident: jf010696vb00030/jf010696vb00030_1 publication-title: Ann. Eugen. contributor: fullname: Fisher R – volume: 12 start-page: 192 year: 1998 ident: jf010696vb00006/jf010696vb00006_1 publication-title: Rapid Commun. Mass. Spectrosc. doi: 10.1002/(SICI)1097-0231(19980227)12:4<188::AID-RCM137>3.0.CO;2-7 contributor: fullname: Bréas O. – volume: 348 start-page: 374 year: 1997 ident: jf010696vb00005/jf010696vb00005_1 publication-title: Anal. Chim. Acta contributor: fullname: Shaw A. D. – volume: 70 start-page: 20 year: 1993 ident: jf010696vb00011/jf010696vb00011_1 publication-title: Riv. Ital. Sostanze Grasse contributor: fullname: Balestrieri F. – volume-title: Bayesian Statistics: An Introduction year: 1989 ident: jf010696vb00029/jf010696vb00029_1 contributor: fullname: Lee P. M. – volume: 23 start-page: 366 year: 1994 ident: jf010696vb00008/jf010696vb00008_1 publication-title: Riv. Ital. Sci. Aliment. contributor: fullname: Marini D. – volume: 24 start-page: 22 year: 1995 ident: jf010696vb00009/jf010696vb00009_1 publication-title: Riv. Ital. Sci. Aliment. contributor: fullname: Balestrieri F. – volume-title: Neural Networks for Chemists: an Introduction year: 1993 ident: jf010696vb00038/jf010696vb00038_1 contributor: fullname: Zupan J. – volume-title: Factor Analysis of Data Matrices year: 1965 ident: jf010696vb00024/jf010696vb00024_1 contributor: fullname: Horst – volume: 277 start-page: 177 year: 1993 ident: jf010696vb00022/jf010696vb00022_1 publication-title: Anal. Chim. Acta doi: 10.1016/0003-2670(93)80430-S contributor: fullname: Seasholtz M. B. – volume-title: ChemometricsApplication of Mathematics and Statistics to Laboratory Systems year: 1990 ident: jf010696vb00017/jf010696vb00017_1 contributor: fullname: Brereton R. G. – volume-title: Neural Networks: Algorithms, Applications and Programming Techniques year: 1991 ident: jf010696vb00036/jf010696vb00036_1 contributor: fullname: Freeman J. A. – volume-title: Chemometrics: A Textbook year: 1988 ident: jf010696vb00016/jf010696vb00016_1 contributor: fullname: Massart D. L. – volume-title: Factor Analysis in Chemistry year: 1991 ident: jf010696vb00026/jf010696vb00026_1 contributor: fullname: Malinowski E. R. – volume-title: Principal Component Analysis year: 1986 ident: jf010696vb00027/jf010696vb00027_1 doi: 10.1007/978-1-4757-1904-8 contributor: fullname: Jollife I. T. – volume: 248 start-page: 83 year: 1991 ident: jf010696vb00019/jf010696vb00019_1 publication-title: Off. J. Commission Eur. Communities contributor: fullname: The – volume: 248 start-page: 30 year: 1991 ident: jf010696vb00037/jf010696vb00037_1 publication-title: Anal. Chim. Acta doi: 10.1016/S0003-2670(00)80865-X contributor: fullname: Zupan J. – start-page: 236 volume-title: Neuro-computing: Algorithms, Architectures and Applications year: 1989 ident: jf010696vb00040/jf010696vb00040_1 contributor: fullname: Bridle J. S. |
SSID | ssj0008570 |
Score | 2.1137223 |
Snippet | This work has focused on discriminating extra virgin olive oils from Sabina (Lazio, Italy) by olive fruit variety (cultivar). A set of oils from five of the... |
SourceID | proquest crossref pubmed pascalfrancis istex acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 413 |
SubjectTerms | Biological and medical sciences Discriminant Analysis Fat industries Food industries Fundamental and applied biological sciences. Psychology Italy Neural Networks (Computer) Oleaceae - classification Olive Oil Plant Oils - analysis Quality Control Topography, Medical |
Title | Chemical Authentication of Extra Virgin Olive Oil Varieties by Supervised Chemometric Procedures |
URI | http://dx.doi.org/10.1021/jf010696v https://api.istex.fr/ark:/67375/TPS-813BMN5N-L/fulltext.pdf https://www.ncbi.nlm.nih.gov/pubmed/11804505 https://search.proquest.com/docview/71411011 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7B7qU9FOiDLq9abdVb1DjOwz4uyyIOdKkUinpL4xdaHlmUbND239eTbHhIoHLKxY9kJh7P5xl_A_A1NBHWeZMegg8vDCz3uNXGU6ENYhlxX1O873yUJpPf_GCMNDlfnongB_T7hUXYIuLbVegHic8RYQ1H6Z25RYb2No-Detx5Ax190MOuuPWo6tHW00cpLjAVMq-cNGxbxuJ5P7PZbw7XXvSm6_Bm6U6SYav_DVgxxVt4PTwvl5Qa5h386TgBCB6HYXJQe0pHZpaMF_MyJ2fT8nxakJMrZ_nIyfSKnCGARqZVIv-StL5Be1IZTXCk2TXW4FKkuWGg3QzVe_h1OD4dHXnLugpezhIx92LGkPVc5EIYYRKhrG_cwzfSytB5BEKHUmO9Qa4FBh5j18shQ6N0LGTEEvYBesWsMB-BRMrZBKtMLpVAohnJOLeCSZXHFJHJAPac4LPluqiyJuQdOMjRiWoAnzudZDctv8ZTjb412rprkZeXmJCWRNnpzzTjlO3_mEST7NhN90id90Oy0HlKLB7Ap06_mVtHGBzJCzOrqyyhofOEKB3AZqv2-76UO7_Xj7b-9y3b8KqpFePjid4O9OZlbXZhtdL1XvPL_gMjMOHi |
link.rule.ids | 315,782,786,2771,27087,27935,27936,56750,56800 |
linkProvider | American Chemical Society |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB7R9gAceBfCo7UQ4rZiHe_DPoaSKog0RUqouC3rVxUom2qdoPLvmdnNJlQCIU578Wtn7PE39vgbgFeJSynPm47I-YiSvpeR9NZFJvH9TKcytpzeO4-m-eSzfDfc0OTQWxgcRMCWQnOJv2UX4G--evJeVPZjB_ZSRLmUpmFwNN1YXSJqb8M5eCQRFHQsQr9XpR3IhGs70B4J84oiIsuAQvFtNou_w81m2zm--z8Dvgd31uCSDdrZcB9uuOoB3B6c12uCDfcQvnQMAYwOxyhUqD2zYwvPhlfLumRn8_p8XrHTC7SD7HR-wc7InSbeVaZ_sunqkqxLcJZRS4vvlJHLsOa9gcUewiP4dDycHY2idZaFqBS5WkaZEMSBrkqlnHK5Mj52-Imd9jpBfKBsoi1lH5RW0TVkhrXQT3TGZkqnIhf7sFstKvcEWGrQQnjjSm0U0c5oIaVXQpsy4-Sn9OAAJVWsV0komgvwPjognah68LJTTXHZsm38qdDrRmmbEmX9jcLT8rSYfZwWkou3J5N0Uoyxu2ta3TYpEsRNIuvBYafmAlcVXZWUlVusQpHzBHER5z143Gp_W5dLRMFx-vRf_3IIN0ezk3Exfj_58AxuNVlkYjrrew67y3rlXsBOsKuDZhb_AhN46kc |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZbxMxEB7RVkLwwH2Eo7UQ4m3pOt7DfixtoiJKWiml4s2sryq03US7CSr_npk9WiqBEE_74mtn7PE3HvsbgLeJTynPm4nI-YiSYZCRDM5HNgnDzKQydpzeO-9P88lXuTcimpz3_VsYHESNLdVNEJ9W9cKFjmGAb38P5MGo7McabKQZQh2CQrvTK8tLZO3tlQ4eSQQGPZPQ71VpF7L1jV1ogwR6SbciixoFE9qMFn-HnM3WM77_v4N-APc6kMl22lnxEG758hHc3TmtOqIN_xi-9UwBjA7J6MpQe3bH5oGNLpdVwU5m1emsZIfnaA_Z4eycnZBbTfyrzPxk09WCrEztHaOW5heUmcuy5t2Bwx7qJ_BlPDre3Y-6bAtRIXK1jDIhiAtdFUp55XNlQ-zxE3sTTII4QbnEOMpCKJ2icGSGtdBf9NZlyqQiF09hvZyX_jmw1KKlCNYXxiqinzFCyqCEsUXGyV8ZwCZKS3erpdZNIHyIjkgvqgG86dWjFy3rxp8KvWsUd1WiqM7omlqe6uOjqZZcfPg8SSf6ALu7odnrJkWC-ElkA9jqVa1xdVHIpCj9fFXrnCeIjzgfwLN2BlzX5RLRcJy--Ne_bMHto72xPvg4-fQS7jTJZGI68nsF68tq5V_DWu1Wm81E_gXAcezB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chemical+authentication+of+extra+virgin+olive+oil+varieties+by+supervised+chemometric+procedures&rft.jtitle=Journal+of+agricultural+and+food+chemistry&rft.au=Bucci%2C+Remo&rft.au=Magr%C3%AD%2C+Andrea+D&rft.au=Magr%C3%AD%2C+Antonio+L&rft.au=Marini%2C+Domenico&rft.date=2002-01-30&rft.issn=0021-8561&rft.volume=50&rft.issue=3&rft.spage=413&rft.epage=418&rft_id=info:doi/10.1021%2Fjf010696v&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8561&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8561&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8561&client=summon |