Structure of the O-Antigen of the Main Lipopolysaccharide Isolated from Sinorhizobium fredii SMH12
The lipopolysaccharide of Sinorhizobium fredii SMH12, a wide-range host bacterium isolated from nodulated soybean plants growing in Vietnam, has been studied. Isolation of lipopolysaccharide by the phenol−water method leads to a mixture of two polysaccharides; polyacrylamide gel electrophoresis indi...
Saved in:
Published in: | Biomacromolecules Vol. 9; no. 2; pp. 678 - 685 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Washington, DC
American Chemical Society
01-02-2008
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The lipopolysaccharide of Sinorhizobium fredii SMH12, a wide-range host bacterium isolated from nodulated soybean plants growing in Vietnam, has been studied. Isolation of lipopolysaccharide by the phenol−water method leads to a mixture of two polysaccharides; polyacrylamide gel electrophoresis indicates that both are possibly lipopolysaccharides. The structures of the O-antigen of the main lipopolysaccharide and its deacetylated form are determined by sugar and methylation analysis, partial hydrolysis, lithium degradation, ESI-MS/MS, and NMR studies. Here we show that the fast-growing S. fredii SMH12 produces a lipopolysaccharide whose O-antigen has a repeating unit consisting of the trisaccharide →4)-α-d-GalpA-(1→3)-2-O-Ac-α-l-Rhap-(1→3)-2-O-Ac-α-d-Manp-(1→. The position O-6 of the mannose residue in the repeating unit is unsubstituted, acetylated, or methylated in an approximate ratio 1:1:2. The tandem mass spectrometry studies rule out both an alternating and a random distribution of methyl groups and suggest the existence of zones in the polysaccharide rich in methyl groups interspersed with zones without methyl groups. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1525-7797 1526-4602 |
DOI: | 10.1021/bm701011d |