Expanding the Synthetic Toolbox through Metal–Enzyme Cascade Reactions

The combination of metal-, photo-, enzyme-, and/or organocatalysis provides multiple synthetic solutions, especially when the creation of chiral centers is involved. Historically, enzymes and transition metal species have been exploited simultaneously through dynamic kinetic resolutions of racemates...

Full description

Saved in:
Bibliographic Details
Published in:Chemical reviews Vol. 123; no. 9; pp. 5297 - 5346
Main Authors: González-Granda, Sergio, Albarrán-Velo, Jesús, Lavandera, Iván, Gotor-Fernández, Vicente
Format: Journal Article
Language:English
Published: United States American Chemical Society 10-05-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The combination of metal-, photo-, enzyme-, and/or organocatalysis provides multiple synthetic solutions, especially when the creation of chiral centers is involved. Historically, enzymes and transition metal species have been exploited simultaneously through dynamic kinetic resolutions of racemates. However, more recently, linear cascades have appeared as elegant solutions for the preparation of valuable organic molecules combining multiple bioprocesses and metal-catalyzed transformations. Many advantages are derived from this symbiosis, although there are still bottlenecks to be addressed including the successful coexistence of both catalyst types, the need for compatible reaction media and mild conditions, or the minimization of cross-reactivities. Therefore, solutions are here also provided by means of catalyst coimmobilization, compartmentalization strategies, flow chemistry, etc. A comprehensive review is presented focusing on the period 2015 to early 2022, which has been divided into two main sections that comprise first the use of metals and enzymes as independent catalysts but working in an orchestral or sequential manner, and later their application as bionanohybrid materials through their coimmobilization in adequate supports. Each part has been classified into different subheadings, the first part based on the reaction catalyzed by the metal catalyst, while the development of nonasymmetric or stereoselective processes was considered for the bionanohybrid section.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ISSN:0009-2665
1520-6890
DOI:10.1021/acs.chemrev.2c00454