Garnet-Type Fast Li-Ion Conductors with High Ionic Conductivities for All-Solid-State Batteries

All-solid-state Li-ion batteries with metallic Li anodes and solid electrolytes could offer superior energy density and safety over conventional Li-ion batteries. However, compared with organic liquid electrolytes, the low conductivity of solid electrolytes and large electrolyte/electrode interfacia...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces Vol. 9; no. 14; pp. 12461 - 12468
Main Authors: Wu, Jian-Fang, Pang, Wei Kong, Peterson, Vanessa K, Wei, Lu, Guo, Xin
Format: Journal Article
Language:English
Published: United States American Chemical Society 12-04-2017
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract All-solid-state Li-ion batteries with metallic Li anodes and solid electrolytes could offer superior energy density and safety over conventional Li-ion batteries. However, compared with organic liquid electrolytes, the low conductivity of solid electrolytes and large electrolyte/electrode interfacial resistance impede their practical application. Garnet-type Li-ion conducting oxides are among the most promising electrolytes for all-solid-state Li-ion batteries. In this work, the large-radius Rb is doped at the La site of cubic Li6.10Ga0.30La3Zr2O12 to enhance the Li-ion conductivity for the first time. The Li6.20Ga0.30La2.95Rb0.05Zr2O12 electrolyte exhibits a Li-ion conductivity of 1.62 mS cm–1 at room temperature, which is the highest conductivity reported until now. All-solid-state Li-ion batteries are constructed from the electrolyte, metallic Li anode, and LiFePO4 active cathode. The addition of Li­(CF3SO2)2N electrolytic salt in the cathode effectively reduces the interfacial resistance, allowing for a high initial discharge capacity of 152 mAh g–1 and good cycling stability with 110 mAh g–1 retained after 20 cycles at a charge/discharge rate of 0.05 C at 60 °C.
AbstractList All-solid-state Li-ion batteries with metallic Li anodes and solid electrolytes could offer superior energy density and safety over conventional Li-ion batteries. However, compared with organic liquid electrolytes, the low conductivity of solid electrolytes and large electrolyte/electrode interfacial resistance impede their practical application. Garnet-type Li-ion conducting oxides are among the most promising electrolytes for all-solid-state Li-ion batteries. In this work, the large-radius Rb is doped at the La site of cubic Li Ga La Zr O to enhance the Li-ion conductivity for the first time. The Li Ga La Rb Zr O electrolyte exhibits a Li-ion conductivity of 1.62 mS cm at room temperature, which is the highest conductivity reported until now. All-solid-state Li-ion batteries are constructed from the electrolyte, metallic Li anode, and LiFePO active cathode. The addition of Li(CF SO ) N electrolytic salt in the cathode effectively reduces the interfacial resistance, allowing for a high initial discharge capacity of 152 mAh g and good cycling stability with 110 mAh g retained after 20 cycles at a charge/discharge rate of 0.05 C at 60 °C.
All-solid-state Li-ion batteries with metallic Li anodes and solid electrolytes could offer superior energy density and safety over conventional Li-ion batteries. However, compared with organic liquid electrolytes, the low conductivity of solid electrolytes and large electrolyte/electrode interfacial resistance impede their practical application. Garnet-type Li-ion conducting oxides are among the most promising electrolytes for all-solid-state Li-ion batteries. In this work, the large-radius Rb is doped at the La site of cubic Li6.10Ga0.30La3Zr2O12 to enhance the Li-ion conductivity for the first time. The Li6.20Ga0.30La2.95Rb0.05Zr2O12 electrolyte exhibits a Li-ion conductivity of 1.62 mS cm-1 at room temperature, which is the highest conductivity reported until now. All-solid-state Li-ion batteries are constructed from the electrolyte, metallic Li anode, and LiFePO4 active cathode. The addition of Li(CF3SO2)2N electrolytic salt in the cathode effectively reduces the interfacial resistance, allowing for a high initial discharge capacity of 152 mAh g-1 and good cycling stability with 110 mAh g-1 retained after 20 cycles at a charge/discharge rate of 0.05 C at 60 °C.
All-solid-state Li-ion batteries with metallic Li anodes and solid electrolytes could offer superior energy density and safety over conventional Li-ion batteries. However, compared with organic liquid electrolytes, the low conductivity of solid electrolytes and large electrolyte/electrode interfacial resistance impede their practical application. Garnet-type Li-ion conducting oxides are among the most promising electrolytes for all-solid-state Li-ion batteries. In this work, the large-radius Rb is doped at the La site of cubic Li6.10Ga0.30La3Zr2O12 to enhance the Li-ion conductivity for the first time. The Li6.20Ga0.30La2.95Rb0.05Zr2O12 electrolyte exhibits a Li-ion conductivity of 1.62 mS cm–1 at room temperature, which is the highest conductivity reported until now. All-solid-state Li-ion batteries are constructed from the electrolyte, metallic Li anode, and LiFePO4 active cathode. The addition of Li­(CF3SO2)2N electrolytic salt in the cathode effectively reduces the interfacial resistance, allowing for a high initial discharge capacity of 152 mAh g–1 and good cycling stability with 110 mAh g–1 retained after 20 cycles at a charge/discharge rate of 0.05 C at 60 °C.
Author Pang, Wei Kong
Guo, Xin
Peterson, Vanessa K
Wei, Lu
Wu, Jian-Fang
AuthorAffiliation Australian Centre for Neutron Scattering
Australian Nuclear Science and Technology Organisation
Laboratory of Solid State Ionics, School of Materials Science and Engineering
University of Wollongong
Institute for Superconducting & Electronic Materials, Faculty of Engineering
AuthorAffiliation_xml – name: Institute for Superconducting & Electronic Materials, Faculty of Engineering
– name: University of Wollongong
– name: Laboratory of Solid State Ionics, School of Materials Science and Engineering
– name: Australian Nuclear Science and Technology Organisation
– name: Australian Centre for Neutron Scattering
Author_xml – sequence: 1
  givenname: Jian-Fang
  surname: Wu
  fullname: Wu, Jian-Fang
  organization: Laboratory of Solid State Ionics, School of Materials Science and Engineering
– sequence: 2
  givenname: Wei Kong
  orcidid: 0000-0002-5118-3885
  surname: Pang
  fullname: Pang, Wei Kong
  organization: University of Wollongong
– sequence: 3
  givenname: Vanessa K
  surname: Peterson
  fullname: Peterson, Vanessa K
  organization: University of Wollongong
– sequence: 4
  givenname: Lu
  surname: Wei
  fullname: Wei, Lu
  email: lwei@hust.edu.cn
  organization: Laboratory of Solid State Ionics, School of Materials Science and Engineering
– sequence: 5
  givenname: Xin
  orcidid: 0000-0003-1546-8119
  surname: Guo
  fullname: Guo, Xin
  email: xguo@hust.edu.cn
  organization: Laboratory of Solid State Ionics, School of Materials Science and Engineering
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28332828$$D View this record in MEDLINE/PubMed
BookMark eNp1kEtLAzEURoNU7EO3LiVLEVLzmnRmWYt9QMFF6zpkMhmbMp3UJKP03zsytTtX98J37gf3DEGvdrUB4J7gMcGUPCsd1MGOJznGgvArMCAZ5yilCe1dds77YBjCvkUYxckN6NOUMZrSdADkQvnaRLQ9HQ2cqxDh2qKVq-HM1UWjo_MBftu4g0v7sYNtYPVfZL9stCbA0nk4rSq0cZUt0CaqaOCLitH4Nr0F16Wqgrk7zxF4n79uZ0u0flusZtM1UmyCI1I5ZYJnKs8ShrVQKdOclxktEsaYEdqIhKiMCVzw0hCRE5GVhNOsYJopUjA2Ao9d79G7z8aEKA82aFNVqjauCZKkKeYiYzxp0XGHau9C8KaUR28Pyp8kwfJXquykyrPU9uDh3N3kB1Nc8D-LLfDUAe2h3LvG1-2r_7X9AMdIgow
CitedBy_id crossref_primary_10_1039_D3TA00921A
crossref_primary_10_1149_1945_7111_ab6dd7
crossref_primary_10_1016_j_nanoen_2018_04_076
crossref_primary_10_3390_app122412692
crossref_primary_10_1149_1945_7111_ac0944
crossref_primary_10_12677_CMP_2022_111001
crossref_primary_10_1021_acsami_3c06304
crossref_primary_10_1021_acsami_1c15115
crossref_primary_10_1016_j_electacta_2022_141226
crossref_primary_10_1002_aenm_202000904
crossref_primary_10_1007_s12598_023_02323_y
crossref_primary_10_1021_acsaem_0c01872
crossref_primary_10_3390_electrochem2030026
crossref_primary_10_1016_j_jiec_2024_01_065
crossref_primary_10_1016_j_jpowsour_2023_233446
crossref_primary_10_1007_s11581_022_04787_x
crossref_primary_10_1016_j_ceramint_2023_04_136
crossref_primary_10_1016_j_jechem_2019_01_013
crossref_primary_10_1016_j_jpowsour_2017_11_074
crossref_primary_10_1021_acsaem_2c00046
crossref_primary_10_7498_aps_69_20201552
crossref_primary_10_1021_acsenergylett_2c01936
crossref_primary_10_1002_aenm_202303128
crossref_primary_10_3390_mi12020134
crossref_primary_10_1016_j_scriptamat_2020_08_037
crossref_primary_10_3390_ma13030560
crossref_primary_10_1016_j_jpowsour_2021_229919
crossref_primary_10_1021_acsomega_2c06544
crossref_primary_10_1021_acs_nanolett_8b01295
crossref_primary_10_1080_10667857_2020_1746539
crossref_primary_10_1016_j_apmt_2020_100750
crossref_primary_10_1007_s11581_019_03320_x
crossref_primary_10_1039_D2TA07747G
crossref_primary_10_1016_j_jpcs_2019_109080
crossref_primary_10_1002_ente_202100211
crossref_primary_10_1016_j_electacta_2020_136955
crossref_primary_10_1016_j_chempr_2018_11_013
crossref_primary_10_1021_acsaem_2c01487
crossref_primary_10_1149_1945_7111_acadb3
crossref_primary_10_35848_1347_4065_abdd4c
crossref_primary_10_1021_acsami_3c05954
crossref_primary_10_1021_acs_chemmater_8b01713
crossref_primary_10_1002_aenm_202303539
crossref_primary_10_1021_acs_energyfuels_3c01821
crossref_primary_10_1149_2_0641903jes
crossref_primary_10_1007_s10008_019_04225_5
crossref_primary_10_1016_j_ceramint_2023_08_094
crossref_primary_10_1007_s00339_022_05788_3
crossref_primary_10_3390_ma16062510
crossref_primary_10_1149_1945_7111_aca6a3
crossref_primary_10_1039_D0RA03433A
crossref_primary_10_1016_j_ssi_2019_05_027
crossref_primary_10_1002_anie_201708637
crossref_primary_10_1002_cssc_202301268
crossref_primary_10_1016_j_est_2024_111481
crossref_primary_10_1016_j_ensm_2022_11_054
crossref_primary_10_1016_j_ensm_2022_11_055
crossref_primary_10_1039_C9TA00417C
crossref_primary_10_1002_celc_201801898
crossref_primary_10_1016_j_ensm_2022_04_026
crossref_primary_10_1021_acs_chemrev_9b00427
crossref_primary_10_1007_s40242_020_0116_0
crossref_primary_10_1007_s41918_020_00076_1
crossref_primary_10_1016_j_jeurceramsoc_2023_12_093
crossref_primary_10_1016_j_jpowsour_2018_04_022
crossref_primary_10_1016_j_ceramint_2018_05_211
crossref_primary_10_1039_D2TA09250F
crossref_primary_10_1016_j_ssi_2020_115427
crossref_primary_10_1021_acsami_2c06700
crossref_primary_10_1007_s40145_021_0489_7
crossref_primary_10_1016_j_ensm_2019_06_024
crossref_primary_10_3390_ma12233892
crossref_primary_10_1039_D2TA02085H
crossref_primary_10_1021_acsenergylett_1c00401
crossref_primary_10_1002_batt_202100357
crossref_primary_10_1002_smll_202402035
crossref_primary_10_1016_j_cap_2022_06_004
crossref_primary_10_1039_D0EE01435D
crossref_primary_10_1016_j_jpowsour_2018_04_019
crossref_primary_10_1039_D1DT02606B
crossref_primary_10_1016_j_jpowsour_2022_231278
crossref_primary_10_1002_advs_202308530
crossref_primary_10_1016_j_ssi_2023_116293
crossref_primary_10_1021_acsaem_2c00452
crossref_primary_10_1007_s12613_020_2239_1
crossref_primary_10_1039_D2RA03303H
crossref_primary_10_1016_j_electacta_2020_137348
crossref_primary_10_1088_2515_7655_ab83e1
crossref_primary_10_1360_nso_20220036
crossref_primary_10_1002_batt_202100162
crossref_primary_10_1016_j_electacta_2017_08_130
crossref_primary_10_1016_j_mtener_2021_100804
crossref_primary_10_1039_D0TA10523F
crossref_primary_10_1002_ange_201708637
crossref_primary_10_1021_acs_chemmater_2c01475
crossref_primary_10_1039_C9EE01548E
crossref_primary_10_1007_s10854_023_10404_y
crossref_primary_10_1039_D1TA00467K
crossref_primary_10_1021_acs_inorgchem_8b02391
crossref_primary_10_1007_s11581_022_04761_7
crossref_primary_10_1016_j_nanoen_2021_106337
crossref_primary_10_3390_polym14153101
crossref_primary_10_1007_s11665_024_09637_7
crossref_primary_10_20964_2020_12_65
crossref_primary_10_1016_j_est_2024_112110
crossref_primary_10_1021_acs_inorgchem_1c01300
crossref_primary_10_1016_j_est_2020_102157
crossref_primary_10_1002_admi_202000425
crossref_primary_10_1021_acsaem_9b02101
crossref_primary_10_1021_acsami_0c04850
crossref_primary_10_1088_1742_6596_2079_1_012017
crossref_primary_10_1016_j_mtchem_2020_100368
crossref_primary_10_1016_j_electacta_2018_08_008
crossref_primary_10_1021_acsenergylett_1c01352
crossref_primary_10_1039_C9TA09969G
crossref_primary_10_1038_s41467_022_29531_x
crossref_primary_10_1039_C9TA03263K
crossref_primary_10_1002_celc_202400136
crossref_primary_10_1016_j_mtsust_2023_100614
crossref_primary_10_1149_1945_7111_ad377d
crossref_primary_10_1016_j_jallcom_2023_172318
crossref_primary_10_1088_1674_1056_acc05d
crossref_primary_10_1021_acsami_9b01326
crossref_primary_10_3389_fchem_2019_00522
crossref_primary_10_1002_smtd_202301162
crossref_primary_10_1126_sciadv_abc8641
crossref_primary_10_1002_chem_201705466
crossref_primary_10_1002_sstr_202200200
crossref_primary_10_1039_D1EE01494C
crossref_primary_10_1016_j_ceramint_2019_10_046
crossref_primary_10_1016_j_cej_2018_03_151
crossref_primary_10_1007_s00339_021_04729_w
crossref_primary_10_1016_j_rinp_2023_106989
crossref_primary_10_1016_j_ssi_2018_12_008
crossref_primary_10_1016_j_esci_2022_02_008
crossref_primary_10_1016_j_jallcom_2023_172282
crossref_primary_10_1016_j_ceramint_2018_09_245
crossref_primary_10_1039_D1TA10431D
crossref_primary_10_1002_aenm_202303850
crossref_primary_10_1002_adma_201900376
crossref_primary_10_1016_j_jallcom_2021_160420
crossref_primary_10_1007_s00339_023_06796_7
crossref_primary_10_1149_2_1371814jes
crossref_primary_10_1016_j_jpowsour_2018_05_028
crossref_primary_10_1007_s11581_022_04674_5
crossref_primary_10_1007_s11664_024_10942_z
crossref_primary_10_1021_acs_jpclett_7b02267
crossref_primary_10_3389_fchem_2020_00468
crossref_primary_10_1016_j_ssi_2023_116244
crossref_primary_10_1016_j_ssi_2023_116364
crossref_primary_10_1016_j_electacta_2018_12_092
crossref_primary_10_1016_j_heliyon_2024_e28097
crossref_primary_10_1016_j_jallcom_2022_168380
crossref_primary_10_1038_s41598_017_17697_0
crossref_primary_10_1007_s10854_021_06943_x
crossref_primary_10_1021_acsaem_8b00976
crossref_primary_10_1021_acsami_2c12444
crossref_primary_10_1038_s41578_020_00261_0
crossref_primary_10_1016_j_jallcom_2018_10_226
crossref_primary_10_1016_j_ceramint_2023_08_068
crossref_primary_10_1016_j_jpowsour_2018_07_005
crossref_primary_10_1021_acsami_2c04962
crossref_primary_10_1088_1361_6528_ab5be7
crossref_primary_10_1007_s11581_017_2353_x
crossref_primary_10_1016_j_mtcomm_2020_101497
crossref_primary_10_4191_kcers_2019_56_2_01
crossref_primary_10_1016_j_ssi_2020_115466
crossref_primary_10_1007_s12034_021_02501_7
crossref_primary_10_1007_s11664_021_09331_7
crossref_primary_10_1016_j_jeurceramsoc_2021_02_054
crossref_primary_10_1021_acsami_8b18356
crossref_primary_10_1016_j_nanoen_2018_05_062
crossref_primary_10_1039_C9CP06090A
crossref_primary_10_1016_j_est_2023_107693
crossref_primary_10_1039_D3TA07036K
crossref_primary_10_1021_acsaem_2c01343
crossref_primary_10_1139_cjc_2021_0319
Cites_doi 10.1016/j.jpowsour.2012.09.111
10.1021/acsami.6b13902
10.1021/nn305648j
10.1021/acs.chemrev.5b00563
10.1021/cm5008069
10.1016/j.physb.2006.05.322
10.1021/ic500803h
10.1038/nmat4821
10.1039/C4TA03591G
10.1002/adfm.201200104
10.1016/j.jpowsour.2014.03.070
10.1021/acs.chemmater.5b02521
10.1039/C3EE41655K
10.1016/j.jpowsour.2015.09.061
10.1038/451652a
10.1002/anie.200701144
10.1039/C5TA05432J
10.1021/cm020609u
10.1021/cm5045122
10.1021/nl5035896
10.1021/cm901452z
10.1107/S0021889813003531
10.1016/j.jpowsour.2013.03.166
10.1038/nenergy.2016.30
10.1021/acs.jpclett.5b02352
10.1016/j.elecom.2015.05.001
10.1021/cm401232r
10.1021/acs.chemmater.5b02429
10.1021/acs.chemmater.6b00579
10.1103/PhysRevLett.109.205702
10.1039/c4cp00418c
10.1021/acs.chemmater.5b04082
10.1016/j.electacta.2012.11.059
10.1073/pnas.1600422113
10.1002/adma.201002584
10.1016/j.jpowsour.2013.05.039
10.1016/j.jpowsour.2013.02.073
10.1016/0038-1098(93)90841-A
10.1016/j.jpowsour.2014.02.102
10.1016/j.ssi.2015.05.025
10.1016/j.nanoen.2016.09.002
10.1016/j.ssi.2014.05.001
10.1016/j.jpowsour.2014.04.065
10.1016/j.jpowsour.2016.05.111
10.1038/nmat3066
10.1016/j.electacta.2015.08.046
10.1021/acs.chemmater.5b00684
10.1016/j.jpowsour.2013.10.089
10.1021/acsami.5b07636
10.1002/adma.201500180
10.1021/ic101914e
10.1002/aenm.201600736
10.1039/c2jm31413d
10.1039/C5TA03239C
ContentType Journal Article
Copyright Copyright © 2017 American Chemical Society
Copyright_xml – notice: Copyright © 2017 American Chemical Society
DBID NPM
AAYXX
CITATION
7X8
DOI 10.1021/acsami.7b00614
DatabaseName PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 12468
ExternalDocumentID 10_1021_acsami_7b00614
28332828
e19459576
Genre Journal Article
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
---
.K2
4.4
5VS
5ZA
6J9
AAHBH
ABJNI
ABQRX
ADHLV
AHGAQ
BAANH
CUPRZ
GGK
NPM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-a370t-ab23649ab9530c6a83c44f92d5333e6ce651a9360d4fe16b169f1429d3c3a1d33
IEDL.DBID ACS
ISSN 1944-8244
IngestDate Fri Aug 16 23:01:02 EDT 2024
Fri Aug 23 00:53:40 EDT 2024
Sat Sep 28 08:50:53 EDT 2024
Thu Aug 27 13:42:07 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords lithium-ion conductivity
garnet
solid electrolyte
all-solid-state lithium batteries
LLZO
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a370t-ab23649ab9530c6a83c44f92d5333e6ce651a9360d4fe16b169f1429d3c3a1d33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1546-8119
0000-0002-5118-3885
OpenAccessLink https://ro.uow.edu.au/cgi/viewcontent.cgi?article=3505&context=aiimpapers
PMID 28332828
PQID 1880469345
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_1880469345
crossref_primary_10_1021_acsami_7b00614
pubmed_primary_28332828
acs_journals_10_1021_acsami_7b00614
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 20170412
2017-Apr-12
2017-04-12
PublicationDateYYYYMMDD 2017-04-12
PublicationDate_xml – month: 04
  year: 2017
  text: 20170412
  day: 12
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2017
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref24/cit24
  doi: 10.1016/j.jpowsour.2012.09.111
– ident: ref29/cit29
  doi: 10.1021/acsami.6b13902
– ident: ref33/cit33
  doi: 10.1021/nn305648j
– ident: ref6/cit6
  doi: 10.1021/acs.chemrev.5b00563
– ident: ref26/cit26
  doi: 10.1021/cm5008069
– ident: ref38/cit38
  doi: 10.1016/j.physb.2006.05.322
– ident: ref27/cit27
  doi: 10.1021/ic500803h
– ident: ref35/cit35
  doi: 10.1038/nmat4821
– ident: ref21/cit21
  doi: 10.1039/C4TA03591G
– ident: ref32/cit32
  doi: 10.1002/adfm.201200104
– ident: ref20/cit20
  doi: 10.1016/j.jpowsour.2014.03.070
– ident: ref41/cit41
  doi: 10.1021/acs.chemmater.5b02521
– ident: ref11/cit11
  doi: 10.1039/C3EE41655K
– ident: ref36/cit36
  doi: 10.1016/j.jpowsour.2015.09.061
– ident: ref1/cit1
  doi: 10.1038/451652a
– ident: ref13/cit13
  doi: 10.1002/anie.200701144
– ident: ref12/cit12
  doi: 10.1039/C5TA05432J
– ident: ref30/cit30
  doi: 10.1021/cm020609u
– ident: ref25/cit25
  doi: 10.1021/cm5045122
– ident: ref34/cit34
  doi: 10.1021/nl5035896
– ident: ref2/cit2
  doi: 10.1021/cm901452z
– ident: ref39/cit39
  doi: 10.1107/S0021889813003531
– ident: ref46/cit46
  doi: 10.1016/j.jpowsour.2013.03.166
– ident: ref10/cit10
  doi: 10.1038/nenergy.2016.30
– ident: ref8/cit8
  doi: 10.1021/acs.jpclett.5b02352
– ident: ref47/cit47
  doi: 10.1016/j.elecom.2015.05.001
– ident: ref42/cit42
  doi: 10.1021/cm401232r
– ident: ref40/cit40
  doi: 10.1021/acs.chemmater.5b02429
– ident: ref44/cit44
  doi: 10.1021/acs.chemmater.6b00579
– ident: ref18/cit18
  doi: 10.1103/PhysRevLett.109.205702
– ident: ref45/cit45
  doi: 10.1039/c4cp00418c
– ident: ref7/cit7
  doi: 10.1021/acs.chemmater.5b04082
– ident: ref52/cit52
  doi: 10.1016/j.electacta.2012.11.059
– ident: ref5/cit5
  doi: 10.1073/pnas.1600422113
– ident: ref37/cit37
  doi: 10.1002/adma.201002584
– ident: ref15/cit15
  doi: 10.1016/j.jpowsour.2013.05.039
– ident: ref53/cit53
  doi: 10.1016/j.jpowsour.2013.02.073
– ident: ref14/cit14
  doi: 10.1016/0038-1098(93)90841-A
– ident: ref51/cit51
  doi: 10.1016/j.jpowsour.2014.02.102
– ident: ref54/cit54
  doi: 10.1016/j.ssi.2015.05.025
– ident: ref4/cit4
  doi: 10.1016/j.nanoen.2016.09.002
– ident: ref31/cit31
  doi: 10.1016/j.ssi.2014.05.001
– ident: ref50/cit50
  doi: 10.1016/j.jpowsour.2014.04.065
– ident: ref49/cit49
  doi: 10.1016/j.jpowsour.2016.05.111
– ident: ref9/cit9
  doi: 10.1038/nmat3066
– ident: ref22/cit22
  doi: 10.1016/j.electacta.2015.08.046
– ident: ref28/cit28
  doi: 10.1021/acs.chemmater.5b00684
– ident: ref43/cit43
  doi: 10.1016/j.jpowsour.2013.10.089
– ident: ref3/cit3
  doi: 10.1021/acsami.5b07636
– ident: ref16/cit16
  doi: 10.1002/adma.201500180
– ident: ref17/cit17
  doi: 10.1021/ic101914e
– ident: ref48/cit48
  doi: 10.1002/aenm.201600736
– ident: ref19/cit19
  doi: 10.1039/c2jm31413d
– ident: ref23/cit23
  doi: 10.1039/C5TA03239C
SSID ssj0063205
Score 2.6203015
Snippet All-solid-state Li-ion batteries with metallic Li anodes and solid electrolytes could offer superior energy density and safety over conventional Li-ion...
SourceID proquest
crossref
pubmed
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 12461
Title Garnet-Type Fast Li-Ion Conductors with High Ionic Conductivities for All-Solid-State Batteries
URI http://dx.doi.org/10.1021/acsami.7b00614
https://www.ncbi.nlm.nih.gov/pubmed/28332828
https://search.proquest.com/docview/1880469345
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5aL3rw_agvIgp6CTaP3W2Opba2IF6q4G3JJlkolF3pbv-_M_sQRQqesxvCzGzm-zLZbwi5A07BfaJS5oAkMxVIxbSPUmCtiXDCJFZU_8JMZtHrR_9phDI5D2sq-II_GltgK5wI4wM7Vm-JCGACgqDhrN1zQymqy4rAyBXrQ8Zq5Rn_vI9JyBa_k9AaZFllmPHe_9e2T3YbFEkHtdsPyIbPDsnOD23BIxI_m2XmS4ZEk45NUdKXOZvmGR3mGWq85suC4iEsxZsedIoKue0Q9pMAAk0Bz9LBYsFm-WLuWAVLaa3HCaPH5H08ehtOWNNNgRkZ9UpmEtSK1ybRgezZ0PSlVSrVwgHgkz60Pgy40TLsOZV6HiY81CmHbOWklYY7KU9IJ8szf0YoKlr7CP3ojdLWAcEGoCmswFMt3ZddcguWiZuvoYirQrfgcW2uuDFXl9y3Tog_a2mNtU_etD6KIfqxpGEyn69gZth-gOBLFXTJae2877kAOEkklOf_Ws0F2RaYsSsZx0vSKZcrf0U2C7e6rkLtC2DWy7A
link.rule.ids 315,782,786,2769,27085,27933,27934,56747,56797
linkProvider American Chemical Society
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgHIAD-1JWI5A4Wa2XJM0RlZZWlF5aJG6REztSpSpBTfr_zGRhEaoE1zi2LI_tec9jvyHkDjgFt6GKmQGSzJQjFfOtFwNrDYUROoxE8RZmMPHGb53HHsrktOq3MNCJDFrKiiD-l7oAb8E3zIjj4TTBxNUbjgtIGLFQd1Jvva4UxZ1FIOaKdcBx1SqNv-qjL4qyn75oBcAsHE1_999d3CM7FaakD-Uk2CdrNjkg29-UBg9J8KQXic0Z0k7a11lORzM2TBPaTRNUfE0XGcUjWYr3PugQ9XLrIswuAXSaArqlD_M5m6TzmWEFSKWlOieUHpHXfm_aHbAqtwLT0mvnTIeoHO_r0HdkO3J1R0ZKxb4wAP-kdSPrOlz70m0bFVvuhtz1Yw6-y8hIam6kPCaNJE3sKaGob209tKrVyo8M0G2AnSISeMbld2ST3MLIBNXayIIi7C14UA5XUA1Xk9zXtgjeS6GNlX_e1KYKYC1ggEMnNl1Cy7AZAd2XymmSk9KGn20BjJJIL8_-1JtrsjmYvoyC0XD8fE62BPryQuDxgjTyxdJekvXMLK-K2fcB8vrUHQ
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA46QfTB-2VeIwo-BdckbZfHsYsbjiFMwbeSNikMRjvW7v97Ti-iyEB8bZoQcpKc78tJvkPIA3AKx4YyZgZIMpOukExZPwbWGnLDdRjx4i3McOpPPtq9PsrkiPotDHQig5ayIoiPq3ph4kphwHmC75gVx8epgsmrt1zPV8i4Ot1pvf16ghf3FoGcS9YG51UrNf6qj_4oyn76ozUgs3A2g_1_dfOA7FXYknbKyXBINmxyRHa_KQ4ek-BZLxObM6SfdKCznI5nbJQmtJsmqPyaLjOKR7MU73_QEerm1kWYZQJoNQWUSzvzOZum85lhBVilpUonlJ6Q90H_rTtkVY4FpoXfypkOUUFe6VC5ohV5ui0iKWPFDcBAYb3Ieq6jlfBaRsbW8ULHU7EDPsyISGjHCHFKGkma2HNCUefa-mhdq6WKDNBugJ884njWpdqiSe5hZIJqjWRBEf7mTlAOV1ANV5M81vYIFqXgxto_72pzBbAmMNChE5uuoGXYlID2C-k2yVlpx6-2AE4JpJkXf-rNLdl-7Q2C8Wjyckl2OLr0QufxijTy5cpek83MrG6KCfgJEbXWoA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Garnet-Type+Fast+Li-Ion+Conductors+with+High+Ionic+Conductivities+for+All-Solid-State+Batteries&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Wu%2C+Jian-Fang&rft.au=Pang%2C+Wei+Kong&rft.au=Peterson%2C+Vanessa+K&rft.au=Wei%2C+Lu&rft.date=2017-04-12&rft.eissn=1944-8252&rft.volume=9&rft.issue=14&rft.spage=12461&rft.epage=12468&rft_id=info:doi/10.1021%2Facsami.7b00614&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon