Garnet-Type Fast Li-Ion Conductors with High Ionic Conductivities for All-Solid-State Batteries
All-solid-state Li-ion batteries with metallic Li anodes and solid electrolytes could offer superior energy density and safety over conventional Li-ion batteries. However, compared with organic liquid electrolytes, the low conductivity of solid electrolytes and large electrolyte/electrode interfacia...
Saved in:
Published in: | ACS applied materials & interfaces Vol. 9; no. 14; pp. 12461 - 12468 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
American Chemical Society
12-04-2017
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | All-solid-state Li-ion batteries with metallic Li anodes and solid electrolytes could offer superior energy density and safety over conventional Li-ion batteries. However, compared with organic liquid electrolytes, the low conductivity of solid electrolytes and large electrolyte/electrode interfacial resistance impede their practical application. Garnet-type Li-ion conducting oxides are among the most promising electrolytes for all-solid-state Li-ion batteries. In this work, the large-radius Rb is doped at the La site of cubic Li6.10Ga0.30La3Zr2O12 to enhance the Li-ion conductivity for the first time. The Li6.20Ga0.30La2.95Rb0.05Zr2O12 electrolyte exhibits a Li-ion conductivity of 1.62 mS cm–1 at room temperature, which is the highest conductivity reported until now. All-solid-state Li-ion batteries are constructed from the electrolyte, metallic Li anode, and LiFePO4 active cathode. The addition of Li(CF3SO2)2N electrolytic salt in the cathode effectively reduces the interfacial resistance, allowing for a high initial discharge capacity of 152 mAh g–1 and good cycling stability with 110 mAh g–1 retained after 20 cycles at a charge/discharge rate of 0.05 C at 60 °C. |
---|---|
AbstractList | All-solid-state Li-ion batteries with metallic Li anodes and solid electrolytes could offer superior energy density and safety over conventional Li-ion batteries. However, compared with organic liquid electrolytes, the low conductivity of solid electrolytes and large electrolyte/electrode interfacial resistance impede their practical application. Garnet-type Li-ion conducting oxides are among the most promising electrolytes for all-solid-state Li-ion batteries. In this work, the large-radius Rb is doped at the La site of cubic Li
Ga
La
Zr
O
to enhance the Li-ion conductivity for the first time. The Li
Ga
La
Rb
Zr
O
electrolyte exhibits a Li-ion conductivity of 1.62 mS cm
at room temperature, which is the highest conductivity reported until now. All-solid-state Li-ion batteries are constructed from the electrolyte, metallic Li anode, and LiFePO
active cathode. The addition of Li(CF
SO
)
N electrolytic salt in the cathode effectively reduces the interfacial resistance, allowing for a high initial discharge capacity of 152 mAh g
and good cycling stability with 110 mAh g
retained after 20 cycles at a charge/discharge rate of 0.05 C at 60 °C. All-solid-state Li-ion batteries with metallic Li anodes and solid electrolytes could offer superior energy density and safety over conventional Li-ion batteries. However, compared with organic liquid electrolytes, the low conductivity of solid electrolytes and large electrolyte/electrode interfacial resistance impede their practical application. Garnet-type Li-ion conducting oxides are among the most promising electrolytes for all-solid-state Li-ion batteries. In this work, the large-radius Rb is doped at the La site of cubic Li6.10Ga0.30La3Zr2O12 to enhance the Li-ion conductivity for the first time. The Li6.20Ga0.30La2.95Rb0.05Zr2O12 electrolyte exhibits a Li-ion conductivity of 1.62 mS cm-1 at room temperature, which is the highest conductivity reported until now. All-solid-state Li-ion batteries are constructed from the electrolyte, metallic Li anode, and LiFePO4 active cathode. The addition of Li(CF3SO2)2N electrolytic salt in the cathode effectively reduces the interfacial resistance, allowing for a high initial discharge capacity of 152 mAh g-1 and good cycling stability with 110 mAh g-1 retained after 20 cycles at a charge/discharge rate of 0.05 C at 60 °C. All-solid-state Li-ion batteries with metallic Li anodes and solid electrolytes could offer superior energy density and safety over conventional Li-ion batteries. However, compared with organic liquid electrolytes, the low conductivity of solid electrolytes and large electrolyte/electrode interfacial resistance impede their practical application. Garnet-type Li-ion conducting oxides are among the most promising electrolytes for all-solid-state Li-ion batteries. In this work, the large-radius Rb is doped at the La site of cubic Li6.10Ga0.30La3Zr2O12 to enhance the Li-ion conductivity for the first time. The Li6.20Ga0.30La2.95Rb0.05Zr2O12 electrolyte exhibits a Li-ion conductivity of 1.62 mS cm–1 at room temperature, which is the highest conductivity reported until now. All-solid-state Li-ion batteries are constructed from the electrolyte, metallic Li anode, and LiFePO4 active cathode. The addition of Li(CF3SO2)2N electrolytic salt in the cathode effectively reduces the interfacial resistance, allowing for a high initial discharge capacity of 152 mAh g–1 and good cycling stability with 110 mAh g–1 retained after 20 cycles at a charge/discharge rate of 0.05 C at 60 °C. |
Author | Pang, Wei Kong Guo, Xin Peterson, Vanessa K Wei, Lu Wu, Jian-Fang |
AuthorAffiliation | Australian Centre for Neutron Scattering Australian Nuclear Science and Technology Organisation Laboratory of Solid State Ionics, School of Materials Science and Engineering University of Wollongong Institute for Superconducting & Electronic Materials, Faculty of Engineering |
AuthorAffiliation_xml | – name: Institute for Superconducting & Electronic Materials, Faculty of Engineering – name: University of Wollongong – name: Laboratory of Solid State Ionics, School of Materials Science and Engineering – name: Australian Nuclear Science and Technology Organisation – name: Australian Centre for Neutron Scattering |
Author_xml | – sequence: 1 givenname: Jian-Fang surname: Wu fullname: Wu, Jian-Fang organization: Laboratory of Solid State Ionics, School of Materials Science and Engineering – sequence: 2 givenname: Wei Kong orcidid: 0000-0002-5118-3885 surname: Pang fullname: Pang, Wei Kong organization: University of Wollongong – sequence: 3 givenname: Vanessa K surname: Peterson fullname: Peterson, Vanessa K organization: University of Wollongong – sequence: 4 givenname: Lu surname: Wei fullname: Wei, Lu email: lwei@hust.edu.cn organization: Laboratory of Solid State Ionics, School of Materials Science and Engineering – sequence: 5 givenname: Xin orcidid: 0000-0003-1546-8119 surname: Guo fullname: Guo, Xin email: xguo@hust.edu.cn organization: Laboratory of Solid State Ionics, School of Materials Science and Engineering |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28332828$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kEtLAzEURoNU7EO3LiVLEVLzmnRmWYt9QMFF6zpkMhmbMp3UJKP03zsytTtX98J37gf3DEGvdrUB4J7gMcGUPCsd1MGOJznGgvArMCAZ5yilCe1dds77YBjCvkUYxckN6NOUMZrSdADkQvnaRLQ9HQ2cqxDh2qKVq-HM1UWjo_MBftu4g0v7sYNtYPVfZL9stCbA0nk4rSq0cZUt0CaqaOCLitH4Nr0F16Wqgrk7zxF4n79uZ0u0flusZtM1UmyCI1I5ZYJnKs8ShrVQKdOclxktEsaYEdqIhKiMCVzw0hCRE5GVhNOsYJopUjA2Ao9d79G7z8aEKA82aFNVqjauCZKkKeYiYzxp0XGHau9C8KaUR28Pyp8kwfJXquykyrPU9uDh3N3kB1Nc8D-LLfDUAe2h3LvG1-2r_7X9AMdIgow |
CitedBy_id | crossref_primary_10_1039_D3TA00921A crossref_primary_10_1149_1945_7111_ab6dd7 crossref_primary_10_1016_j_nanoen_2018_04_076 crossref_primary_10_3390_app122412692 crossref_primary_10_1149_1945_7111_ac0944 crossref_primary_10_12677_CMP_2022_111001 crossref_primary_10_1021_acsami_3c06304 crossref_primary_10_1021_acsami_1c15115 crossref_primary_10_1016_j_electacta_2022_141226 crossref_primary_10_1002_aenm_202000904 crossref_primary_10_1007_s12598_023_02323_y crossref_primary_10_1021_acsaem_0c01872 crossref_primary_10_3390_electrochem2030026 crossref_primary_10_1016_j_jiec_2024_01_065 crossref_primary_10_1016_j_jpowsour_2023_233446 crossref_primary_10_1007_s11581_022_04787_x crossref_primary_10_1016_j_ceramint_2023_04_136 crossref_primary_10_1016_j_jechem_2019_01_013 crossref_primary_10_1016_j_jpowsour_2017_11_074 crossref_primary_10_1021_acsaem_2c00046 crossref_primary_10_7498_aps_69_20201552 crossref_primary_10_1021_acsenergylett_2c01936 crossref_primary_10_1002_aenm_202303128 crossref_primary_10_3390_mi12020134 crossref_primary_10_1016_j_scriptamat_2020_08_037 crossref_primary_10_3390_ma13030560 crossref_primary_10_1016_j_jpowsour_2021_229919 crossref_primary_10_1021_acsomega_2c06544 crossref_primary_10_1021_acs_nanolett_8b01295 crossref_primary_10_1080_10667857_2020_1746539 crossref_primary_10_1016_j_apmt_2020_100750 crossref_primary_10_1007_s11581_019_03320_x crossref_primary_10_1039_D2TA07747G crossref_primary_10_1016_j_jpcs_2019_109080 crossref_primary_10_1002_ente_202100211 crossref_primary_10_1016_j_electacta_2020_136955 crossref_primary_10_1016_j_chempr_2018_11_013 crossref_primary_10_1021_acsaem_2c01487 crossref_primary_10_1149_1945_7111_acadb3 crossref_primary_10_35848_1347_4065_abdd4c crossref_primary_10_1021_acsami_3c05954 crossref_primary_10_1021_acs_chemmater_8b01713 crossref_primary_10_1002_aenm_202303539 crossref_primary_10_1021_acs_energyfuels_3c01821 crossref_primary_10_1149_2_0641903jes crossref_primary_10_1007_s10008_019_04225_5 crossref_primary_10_1016_j_ceramint_2023_08_094 crossref_primary_10_1007_s00339_022_05788_3 crossref_primary_10_3390_ma16062510 crossref_primary_10_1149_1945_7111_aca6a3 crossref_primary_10_1039_D0RA03433A crossref_primary_10_1016_j_ssi_2019_05_027 crossref_primary_10_1002_anie_201708637 crossref_primary_10_1002_cssc_202301268 crossref_primary_10_1016_j_est_2024_111481 crossref_primary_10_1016_j_ensm_2022_11_054 crossref_primary_10_1016_j_ensm_2022_11_055 crossref_primary_10_1039_C9TA00417C crossref_primary_10_1002_celc_201801898 crossref_primary_10_1016_j_ensm_2022_04_026 crossref_primary_10_1021_acs_chemrev_9b00427 crossref_primary_10_1007_s40242_020_0116_0 crossref_primary_10_1007_s41918_020_00076_1 crossref_primary_10_1016_j_jeurceramsoc_2023_12_093 crossref_primary_10_1016_j_jpowsour_2018_04_022 crossref_primary_10_1016_j_ceramint_2018_05_211 crossref_primary_10_1039_D2TA09250F crossref_primary_10_1016_j_ssi_2020_115427 crossref_primary_10_1021_acsami_2c06700 crossref_primary_10_1007_s40145_021_0489_7 crossref_primary_10_1016_j_ensm_2019_06_024 crossref_primary_10_3390_ma12233892 crossref_primary_10_1039_D2TA02085H crossref_primary_10_1021_acsenergylett_1c00401 crossref_primary_10_1002_batt_202100357 crossref_primary_10_1002_smll_202402035 crossref_primary_10_1016_j_cap_2022_06_004 crossref_primary_10_1039_D0EE01435D crossref_primary_10_1016_j_jpowsour_2018_04_019 crossref_primary_10_1039_D1DT02606B crossref_primary_10_1016_j_jpowsour_2022_231278 crossref_primary_10_1002_advs_202308530 crossref_primary_10_1016_j_ssi_2023_116293 crossref_primary_10_1021_acsaem_2c00452 crossref_primary_10_1007_s12613_020_2239_1 crossref_primary_10_1039_D2RA03303H crossref_primary_10_1016_j_electacta_2020_137348 crossref_primary_10_1088_2515_7655_ab83e1 crossref_primary_10_1360_nso_20220036 crossref_primary_10_1002_batt_202100162 crossref_primary_10_1016_j_electacta_2017_08_130 crossref_primary_10_1016_j_mtener_2021_100804 crossref_primary_10_1039_D0TA10523F crossref_primary_10_1002_ange_201708637 crossref_primary_10_1021_acs_chemmater_2c01475 crossref_primary_10_1039_C9EE01548E crossref_primary_10_1007_s10854_023_10404_y crossref_primary_10_1039_D1TA00467K crossref_primary_10_1021_acs_inorgchem_8b02391 crossref_primary_10_1007_s11581_022_04761_7 crossref_primary_10_1016_j_nanoen_2021_106337 crossref_primary_10_3390_polym14153101 crossref_primary_10_1007_s11665_024_09637_7 crossref_primary_10_20964_2020_12_65 crossref_primary_10_1016_j_est_2024_112110 crossref_primary_10_1021_acs_inorgchem_1c01300 crossref_primary_10_1016_j_est_2020_102157 crossref_primary_10_1002_admi_202000425 crossref_primary_10_1021_acsaem_9b02101 crossref_primary_10_1021_acsami_0c04850 crossref_primary_10_1088_1742_6596_2079_1_012017 crossref_primary_10_1016_j_mtchem_2020_100368 crossref_primary_10_1016_j_electacta_2018_08_008 crossref_primary_10_1021_acsenergylett_1c01352 crossref_primary_10_1039_C9TA09969G crossref_primary_10_1038_s41467_022_29531_x crossref_primary_10_1039_C9TA03263K crossref_primary_10_1002_celc_202400136 crossref_primary_10_1016_j_mtsust_2023_100614 crossref_primary_10_1149_1945_7111_ad377d crossref_primary_10_1016_j_jallcom_2023_172318 crossref_primary_10_1088_1674_1056_acc05d crossref_primary_10_1021_acsami_9b01326 crossref_primary_10_3389_fchem_2019_00522 crossref_primary_10_1002_smtd_202301162 crossref_primary_10_1126_sciadv_abc8641 crossref_primary_10_1002_chem_201705466 crossref_primary_10_1002_sstr_202200200 crossref_primary_10_1039_D1EE01494C crossref_primary_10_1016_j_ceramint_2019_10_046 crossref_primary_10_1016_j_cej_2018_03_151 crossref_primary_10_1007_s00339_021_04729_w crossref_primary_10_1016_j_rinp_2023_106989 crossref_primary_10_1016_j_ssi_2018_12_008 crossref_primary_10_1016_j_esci_2022_02_008 crossref_primary_10_1016_j_jallcom_2023_172282 crossref_primary_10_1016_j_ceramint_2018_09_245 crossref_primary_10_1039_D1TA10431D crossref_primary_10_1002_aenm_202303850 crossref_primary_10_1002_adma_201900376 crossref_primary_10_1016_j_jallcom_2021_160420 crossref_primary_10_1007_s00339_023_06796_7 crossref_primary_10_1149_2_1371814jes crossref_primary_10_1016_j_jpowsour_2018_05_028 crossref_primary_10_1007_s11581_022_04674_5 crossref_primary_10_1007_s11664_024_10942_z crossref_primary_10_1021_acs_jpclett_7b02267 crossref_primary_10_3389_fchem_2020_00468 crossref_primary_10_1016_j_ssi_2023_116244 crossref_primary_10_1016_j_ssi_2023_116364 crossref_primary_10_1016_j_electacta_2018_12_092 crossref_primary_10_1016_j_heliyon_2024_e28097 crossref_primary_10_1016_j_jallcom_2022_168380 crossref_primary_10_1038_s41598_017_17697_0 crossref_primary_10_1007_s10854_021_06943_x crossref_primary_10_1021_acsaem_8b00976 crossref_primary_10_1021_acsami_2c12444 crossref_primary_10_1038_s41578_020_00261_0 crossref_primary_10_1016_j_jallcom_2018_10_226 crossref_primary_10_1016_j_ceramint_2023_08_068 crossref_primary_10_1016_j_jpowsour_2018_07_005 crossref_primary_10_1021_acsami_2c04962 crossref_primary_10_1088_1361_6528_ab5be7 crossref_primary_10_1007_s11581_017_2353_x crossref_primary_10_1016_j_mtcomm_2020_101497 crossref_primary_10_4191_kcers_2019_56_2_01 crossref_primary_10_1016_j_ssi_2020_115466 crossref_primary_10_1007_s12034_021_02501_7 crossref_primary_10_1007_s11664_021_09331_7 crossref_primary_10_1016_j_jeurceramsoc_2021_02_054 crossref_primary_10_1021_acsami_8b18356 crossref_primary_10_1016_j_nanoen_2018_05_062 crossref_primary_10_1039_C9CP06090A crossref_primary_10_1016_j_est_2023_107693 crossref_primary_10_1039_D3TA07036K crossref_primary_10_1021_acsaem_2c01343 crossref_primary_10_1139_cjc_2021_0319 |
Cites_doi | 10.1016/j.jpowsour.2012.09.111 10.1021/acsami.6b13902 10.1021/nn305648j 10.1021/acs.chemrev.5b00563 10.1021/cm5008069 10.1016/j.physb.2006.05.322 10.1021/ic500803h 10.1038/nmat4821 10.1039/C4TA03591G 10.1002/adfm.201200104 10.1016/j.jpowsour.2014.03.070 10.1021/acs.chemmater.5b02521 10.1039/C3EE41655K 10.1016/j.jpowsour.2015.09.061 10.1038/451652a 10.1002/anie.200701144 10.1039/C5TA05432J 10.1021/cm020609u 10.1021/cm5045122 10.1021/nl5035896 10.1021/cm901452z 10.1107/S0021889813003531 10.1016/j.jpowsour.2013.03.166 10.1038/nenergy.2016.30 10.1021/acs.jpclett.5b02352 10.1016/j.elecom.2015.05.001 10.1021/cm401232r 10.1021/acs.chemmater.5b02429 10.1021/acs.chemmater.6b00579 10.1103/PhysRevLett.109.205702 10.1039/c4cp00418c 10.1021/acs.chemmater.5b04082 10.1016/j.electacta.2012.11.059 10.1073/pnas.1600422113 10.1002/adma.201002584 10.1016/j.jpowsour.2013.05.039 10.1016/j.jpowsour.2013.02.073 10.1016/0038-1098(93)90841-A 10.1016/j.jpowsour.2014.02.102 10.1016/j.ssi.2015.05.025 10.1016/j.nanoen.2016.09.002 10.1016/j.ssi.2014.05.001 10.1016/j.jpowsour.2014.04.065 10.1016/j.jpowsour.2016.05.111 10.1038/nmat3066 10.1016/j.electacta.2015.08.046 10.1021/acs.chemmater.5b00684 10.1016/j.jpowsour.2013.10.089 10.1021/acsami.5b07636 10.1002/adma.201500180 10.1021/ic101914e 10.1002/aenm.201600736 10.1039/c2jm31413d 10.1039/C5TA03239C |
ContentType | Journal Article |
Copyright | Copyright © 2017 American
Chemical Society |
Copyright_xml | – notice: Copyright © 2017 American Chemical Society |
DBID | NPM AAYXX CITATION 7X8 |
DOI | 10.1021/acsami.7b00614 |
DatabaseName | PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1944-8252 |
EndPage | 12468 |
ExternalDocumentID | 10_1021_acsami_7b00614 28332828 e19459576 |
Genre | Journal Article |
GroupedDBID | - 23M 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ --- .K2 4.4 5VS 5ZA 6J9 AAHBH ABJNI ABQRX ADHLV AHGAQ BAANH CUPRZ GGK NPM AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-a370t-ab23649ab9530c6a83c44f92d5333e6ce651a9360d4fe16b169f1429d3c3a1d33 |
IEDL.DBID | ACS |
ISSN | 1944-8244 |
IngestDate | Fri Aug 16 23:01:02 EDT 2024 Fri Aug 23 00:53:40 EDT 2024 Sat Sep 28 08:50:53 EDT 2024 Thu Aug 27 13:42:07 EDT 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | lithium-ion conductivity garnet solid electrolyte all-solid-state lithium batteries LLZO |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a370t-ab23649ab9530c6a83c44f92d5333e6ce651a9360d4fe16b169f1429d3c3a1d33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1546-8119 0000-0002-5118-3885 |
OpenAccessLink | https://ro.uow.edu.au/cgi/viewcontent.cgi?article=3505&context=aiimpapers |
PMID | 28332828 |
PQID | 1880469345 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1880469345 crossref_primary_10_1021_acsami_7b00614 pubmed_primary_28332828 acs_journals_10_1021_acsami_7b00614 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 20170412 2017-Apr-12 2017-04-12 |
PublicationDateYYYYMMDD | 2017-04-12 |
PublicationDate_xml | – month: 04 year: 2017 text: 20170412 day: 12 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS applied materials & interfaces |
PublicationTitleAlternate | ACS Appl. Mater. Interfaces |
PublicationYear | 2017 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref24/cit24 doi: 10.1016/j.jpowsour.2012.09.111 – ident: ref29/cit29 doi: 10.1021/acsami.6b13902 – ident: ref33/cit33 doi: 10.1021/nn305648j – ident: ref6/cit6 doi: 10.1021/acs.chemrev.5b00563 – ident: ref26/cit26 doi: 10.1021/cm5008069 – ident: ref38/cit38 doi: 10.1016/j.physb.2006.05.322 – ident: ref27/cit27 doi: 10.1021/ic500803h – ident: ref35/cit35 doi: 10.1038/nmat4821 – ident: ref21/cit21 doi: 10.1039/C4TA03591G – ident: ref32/cit32 doi: 10.1002/adfm.201200104 – ident: ref20/cit20 doi: 10.1016/j.jpowsour.2014.03.070 – ident: ref41/cit41 doi: 10.1021/acs.chemmater.5b02521 – ident: ref11/cit11 doi: 10.1039/C3EE41655K – ident: ref36/cit36 doi: 10.1016/j.jpowsour.2015.09.061 – ident: ref1/cit1 doi: 10.1038/451652a – ident: ref13/cit13 doi: 10.1002/anie.200701144 – ident: ref12/cit12 doi: 10.1039/C5TA05432J – ident: ref30/cit30 doi: 10.1021/cm020609u – ident: ref25/cit25 doi: 10.1021/cm5045122 – ident: ref34/cit34 doi: 10.1021/nl5035896 – ident: ref2/cit2 doi: 10.1021/cm901452z – ident: ref39/cit39 doi: 10.1107/S0021889813003531 – ident: ref46/cit46 doi: 10.1016/j.jpowsour.2013.03.166 – ident: ref10/cit10 doi: 10.1038/nenergy.2016.30 – ident: ref8/cit8 doi: 10.1021/acs.jpclett.5b02352 – ident: ref47/cit47 doi: 10.1016/j.elecom.2015.05.001 – ident: ref42/cit42 doi: 10.1021/cm401232r – ident: ref40/cit40 doi: 10.1021/acs.chemmater.5b02429 – ident: ref44/cit44 doi: 10.1021/acs.chemmater.6b00579 – ident: ref18/cit18 doi: 10.1103/PhysRevLett.109.205702 – ident: ref45/cit45 doi: 10.1039/c4cp00418c – ident: ref7/cit7 doi: 10.1021/acs.chemmater.5b04082 – ident: ref52/cit52 doi: 10.1016/j.electacta.2012.11.059 – ident: ref5/cit5 doi: 10.1073/pnas.1600422113 – ident: ref37/cit37 doi: 10.1002/adma.201002584 – ident: ref15/cit15 doi: 10.1016/j.jpowsour.2013.05.039 – ident: ref53/cit53 doi: 10.1016/j.jpowsour.2013.02.073 – ident: ref14/cit14 doi: 10.1016/0038-1098(93)90841-A – ident: ref51/cit51 doi: 10.1016/j.jpowsour.2014.02.102 – ident: ref54/cit54 doi: 10.1016/j.ssi.2015.05.025 – ident: ref4/cit4 doi: 10.1016/j.nanoen.2016.09.002 – ident: ref31/cit31 doi: 10.1016/j.ssi.2014.05.001 – ident: ref50/cit50 doi: 10.1016/j.jpowsour.2014.04.065 – ident: ref49/cit49 doi: 10.1016/j.jpowsour.2016.05.111 – ident: ref9/cit9 doi: 10.1038/nmat3066 – ident: ref22/cit22 doi: 10.1016/j.electacta.2015.08.046 – ident: ref28/cit28 doi: 10.1021/acs.chemmater.5b00684 – ident: ref43/cit43 doi: 10.1016/j.jpowsour.2013.10.089 – ident: ref3/cit3 doi: 10.1021/acsami.5b07636 – ident: ref16/cit16 doi: 10.1002/adma.201500180 – ident: ref17/cit17 doi: 10.1021/ic101914e – ident: ref48/cit48 doi: 10.1002/aenm.201600736 – ident: ref19/cit19 doi: 10.1039/c2jm31413d – ident: ref23/cit23 doi: 10.1039/C5TA03239C |
SSID | ssj0063205 |
Score | 2.6203015 |
Snippet | All-solid-state Li-ion batteries with metallic Li anodes and solid electrolytes could offer superior energy density and safety over conventional Li-ion... |
SourceID | proquest crossref pubmed acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 12461 |
Title | Garnet-Type Fast Li-Ion Conductors with High Ionic Conductivities for All-Solid-State Batteries |
URI | http://dx.doi.org/10.1021/acsami.7b00614 https://www.ncbi.nlm.nih.gov/pubmed/28332828 https://search.proquest.com/docview/1880469345 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5aL3rw_agvIgp6CTaP3W2Opba2IF6q4G3JJlkolF3pbv-_M_sQRQqesxvCzGzm-zLZbwi5A07BfaJS5oAkMxVIxbSPUmCtiXDCJFZU_8JMZtHrR_9phDI5D2sq-II_GltgK5wI4wM7Vm-JCGACgqDhrN1zQymqy4rAyBXrQ8Zq5Rn_vI9JyBa_k9AaZFllmPHe_9e2T3YbFEkHtdsPyIbPDsnOD23BIxI_m2XmS4ZEk45NUdKXOZvmGR3mGWq85suC4iEsxZsedIoKue0Q9pMAAk0Bz9LBYsFm-WLuWAVLaa3HCaPH5H08ehtOWNNNgRkZ9UpmEtSK1ybRgezZ0PSlVSrVwgHgkz60Pgy40TLsOZV6HiY81CmHbOWklYY7KU9IJ8szf0YoKlr7CP3ojdLWAcEGoCmswFMt3ZddcguWiZuvoYirQrfgcW2uuDFXl9y3Tog_a2mNtU_etD6KIfqxpGEyn69gZth-gOBLFXTJae2877kAOEkklOf_Ws0F2RaYsSsZx0vSKZcrf0U2C7e6rkLtC2DWy7A |
link.rule.ids | 315,782,786,2769,27085,27933,27934,56747,56797 |
linkProvider | American Chemical Society |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgHIAD-1JWI5A4Wa2XJM0RlZZWlF5aJG6REztSpSpBTfr_zGRhEaoE1zi2LI_tec9jvyHkDjgFt6GKmQGSzJQjFfOtFwNrDYUROoxE8RZmMPHGb53HHsrktOq3MNCJDFrKiiD-l7oAb8E3zIjj4TTBxNUbjgtIGLFQd1Jvva4UxZ1FIOaKdcBx1SqNv-qjL4qyn75oBcAsHE1_999d3CM7FaakD-Uk2CdrNjkg29-UBg9J8KQXic0Z0k7a11lORzM2TBPaTRNUfE0XGcUjWYr3PugQ9XLrIswuAXSaArqlD_M5m6TzmWEFSKWlOieUHpHXfm_aHbAqtwLT0mvnTIeoHO_r0HdkO3J1R0ZKxb4wAP-kdSPrOlz70m0bFVvuhtz1Yw6-y8hIam6kPCaNJE3sKaGob209tKrVyo8M0G2AnSISeMbld2ST3MLIBNXayIIi7C14UA5XUA1Xk9zXtgjeS6GNlX_e1KYKYC1ggEMnNl1Cy7AZAd2XymmSk9KGn20BjJJIL8_-1JtrsjmYvoyC0XD8fE62BPryQuDxgjTyxdJekvXMLK-K2fcB8vrUHQ |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA46QfTB-2VeIwo-BdckbZfHsYsbjiFMwbeSNikMRjvW7v97Ti-iyEB8bZoQcpKc78tJvkPIA3AKx4YyZgZIMpOukExZPwbWGnLDdRjx4i3McOpPPtq9PsrkiPotDHQig5ayIoiPq3ph4kphwHmC75gVx8epgsmrt1zPV8i4Ot1pvf16ghf3FoGcS9YG51UrNf6qj_4oyn76ozUgs3A2g_1_dfOA7FXYknbKyXBINmxyRHa_KQ4ek-BZLxObM6SfdKCznI5nbJQmtJsmqPyaLjOKR7MU73_QEerm1kWYZQJoNQWUSzvzOZum85lhBVilpUonlJ6Q90H_rTtkVY4FpoXfypkOUUFe6VC5ohV5ui0iKWPFDcBAYb3Ieq6jlfBaRsbW8ULHU7EDPsyISGjHCHFKGkma2HNCUefa-mhdq6WKDNBugJ884njWpdqiSe5hZIJqjWRBEf7mTlAOV1ANV5M81vYIFqXgxto_72pzBbAmMNChE5uuoGXYlID2C-k2yVlpx6-2AE4JpJkXf-rNLdl-7Q2C8Wjyckl2OLr0QufxijTy5cpek83MrG6KCfgJEbXWoA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Garnet-Type+Fast+Li-Ion+Conductors+with+High+Ionic+Conductivities+for+All-Solid-State+Batteries&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Wu%2C+Jian-Fang&rft.au=Pang%2C+Wei+Kong&rft.au=Peterson%2C+Vanessa+K&rft.au=Wei%2C+Lu&rft.date=2017-04-12&rft.eissn=1944-8252&rft.volume=9&rft.issue=14&rft.spage=12461&rft.epage=12468&rft_id=info:doi/10.1021%2Facsami.7b00614&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |