Ediacaran‐Ordovician Magmatism and REE Mineralization in the Wet Mountains, Colorado, USA: Implications for Failed Continental Rifting

Structures associated with Ediacaran‐Ordovician alkaline magmatism and the timing of rare earth element (REE) mineralization in the Wet Mountains, CO, were analyzed using field, geophysical, and U‐Th‐Pb isotope methods to interpret their tectonic setting in the context of previously proposed rift mo...

Full description

Saved in:
Bibliographic Details
Published in:Tectonics (Washington, D.C.) Vol. 42; no. 4
Main Authors: Magnin, Benjamin P., Kuiper, Yvette D., Anderson, Eric D.
Format: Journal Article
Language:English
Published: Washington Blackwell Publishing Ltd 01-04-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Structures associated with Ediacaran‐Ordovician alkaline magmatism and the timing of rare earth element (REE) mineralization in the Wet Mountains, CO, were analyzed using field, geophysical, and U‐Th‐Pb isotope methods to interpret their tectonic setting in the context of previously proposed rift models. The Wet Mountains are known for thorium and REE mineralization associated with failed rift‐related, Ediacaran‐Ordovician alkaline intrusions and veins. Structural field data indicate that alkaline dikes and mineralized veins are controlled by a system of northwest‐striking, high‐angle faults and tension fractures formed in a 040°‐directed extensional regime. Magnetic and surface expressions of Democrat Creek and McClure Mountain complexes show tectonic elongation toward ∼045°, consistent with NE‐directed extension. Magnetic data also suggest the existence of a fourth, previously unrecognized mafic‐ultramafic complex of inferred Cambrian age with a similar elongated orientation. Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA‐ICP‐MS) 208Pb/232Th analysis of low‐uranium zircon from carbonatite dikes and in situ 206Pb/238U LA‐ICP‐MS analysis of monazite in mineralized dikes yielded 465 ± 18 Ma and 489 ± 33 Ma ages, respectively. These ages are consistent with the expected age based on slightly older, cross‐cut syenite dikes and the hypothesized Ordovician end to failed rift‐related magmatism. The Ediacaran‐Ordovician age of alkaline magmatic rocks and the associated northeast‐directed extension direction are similar to those of the along‐strike, Ediacaran‐Cambrian Southern Oklahoma Aulacogen. Therefore, the failed rift system in the Wet Mountains is interpreted to be a northwestern continuation of the Southern Oklahoma Aulacogen with carbonatite magmatism and thorium/REE mineralization representing late intrusive phases. Plain Language Summary The Wet Mountains of south‐central Colorado contain elements and minerals important to modern electronics and green energy technology. These minerals formed along an ancient tectonic system where the Earth's crust pulled apart, which was associated with uprise of magma from greater depths. The orientation of the system was previously unknown. This study used field and geophysical data to analyze the faults and fractures that controlled the migration of magma and emplacement of associated mineralization in order to understand the direction in which the Earth's crust pulled apart. Results of this study reveal that mineralization occurred along northwest‐striking faults and fractures, and that large magma bodies were elongated to the northeast during emplacement. This information suggests that the crust pulled apart by northeast‐directed extension along a northwest‐trending system. Additionally, isotopic analyses of mineralized features indicate that mineralization occurred at the end of this tectonic event. The orientation and age of the system is similar to a comparable system in southern Oklahoma, suggesting that the two are related. Based on this information, it is possible that additional mineral deposits formed between southern Colorado and southern Oklahoma. Key Points Ediacaran‐Ordovician failed rift‐related magmatism in the Wet Mountains formed along a northwest‐trending extensional regime The failed‐rift system is likely related to the northwest‐trending, Ediacaran‐Cambrian Southern Oklahoma Aulacogen Rare earth element mineralization occurred near the end of failed rifting
AbstractList Structures associated with Ediacaran‐Ordovician alkaline magmatism and the timing of rare earth element (REE) mineralization in the Wet Mountains, CO, were analyzed using field, geophysical, and U‐Th‐Pb isotope methods to interpret their tectonic setting in the context of previously proposed rift models. The Wet Mountains are known for thorium and REE mineralization associated with failed rift‐related, Ediacaran‐Ordovician alkaline intrusions and veins. Structural field data indicate that alkaline dikes and mineralized veins are controlled by a system of northwest‐striking, high‐angle faults and tension fractures formed in a 040°‐directed extensional regime. Magnetic and surface expressions of Democrat Creek and McClure Mountain complexes show tectonic elongation toward ∼045°, consistent with NE‐directed extension. Magnetic data also suggest the existence of a fourth, previously unrecognized mafic‐ultramafic complex of inferred Cambrian age with a similar elongated orientation. Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA‐ICP‐MS) 208Pb/232Th analysis of low‐uranium zircon from carbonatite dikes and in situ 206Pb/238U LA‐ICP‐MS analysis of monazite in mineralized dikes yielded 465 ± 18 Ma and 489 ± 33 Ma ages, respectively. These ages are consistent with the expected age based on slightly older, cross‐cut syenite dikes and the hypothesized Ordovician end to failed rift‐related magmatism. The Ediacaran‐Ordovician age of alkaline magmatic rocks and the associated northeast‐directed extension direction are similar to those of the along‐strike, Ediacaran‐Cambrian Southern Oklahoma Aulacogen. Therefore, the failed rift system in the Wet Mountains is interpreted to be a northwestern continuation of the Southern Oklahoma Aulacogen with carbonatite magmatism and thorium/REE mineralization representing late intrusive phases.
Structures associated with Ediacaran‐Ordovician alkaline magmatism and the timing of rare earth element (REE) mineralization in the Wet Mountains, CO, were analyzed using field, geophysical, and U‐Th‐Pb isotope methods to interpret their tectonic setting in the context of previously proposed rift models. The Wet Mountains are known for thorium and REE mineralization associated with failed rift‐related, Ediacaran‐Ordovician alkaline intrusions and veins. Structural field data indicate that alkaline dikes and mineralized veins are controlled by a system of northwest‐striking, high‐angle faults and tension fractures formed in a 040°‐directed extensional regime. Magnetic and surface expressions of Democrat Creek and McClure Mountain complexes show tectonic elongation toward ∼045°, consistent with NE‐directed extension. Magnetic data also suggest the existence of a fourth, previously unrecognized mafic‐ultramafic complex of inferred Cambrian age with a similar elongated orientation. Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA‐ICP‐MS) 208 Pb/ 232 Th analysis of low‐uranium zircon from carbonatite dikes and in situ 206 Pb/ 238 U LA‐ICP‐MS analysis of monazite in mineralized dikes yielded 465 ± 18 Ma and 489 ± 33 Ma ages, respectively. These ages are consistent with the expected age based on slightly older, cross‐cut syenite dikes and the hypothesized Ordovician end to failed rift‐related magmatism. The Ediacaran‐Ordovician age of alkaline magmatic rocks and the associated northeast‐directed extension direction are similar to those of the along‐strike, Ediacaran‐Cambrian Southern Oklahoma Aulacogen. Therefore, the failed rift system in the Wet Mountains is interpreted to be a northwestern continuation of the Southern Oklahoma Aulacogen with carbonatite magmatism and thorium/REE mineralization representing late intrusive phases. The Wet Mountains of south‐central Colorado contain elements and minerals important to modern electronics and green energy technology. These minerals formed along an ancient tectonic system where the Earth's crust pulled apart, which was associated with uprise of magma from greater depths. The orientation of the system was previously unknown. This study used field and geophysical data to analyze the faults and fractures that controlled the migration of magma and emplacement of associated mineralization in order to understand the direction in which the Earth's crust pulled apart. Results of this study reveal that mineralization occurred along northwest‐striking faults and fractures, and that large magma bodies were elongated to the northeast during emplacement. This information suggests that the crust pulled apart by northeast‐directed extension along a northwest‐trending system. Additionally, isotopic analyses of mineralized features indicate that mineralization occurred at the end of this tectonic event. The orientation and age of the system is similar to a comparable system in southern Oklahoma, suggesting that the two are related. Based on this information, it is possible that additional mineral deposits formed between southern Colorado and southern Oklahoma. Ediacaran‐Ordovician failed rift‐related magmatism in the Wet Mountains formed along a northwest‐trending extensional regime The failed‐rift system is likely related to the northwest‐trending, Ediacaran‐Cambrian Southern Oklahoma Aulacogen Rare earth element mineralization occurred near the end of failed rifting
Structures associated with Ediacaran‐Ordovician alkaline magmatism and the timing of rare earth element (REE) mineralization in the Wet Mountains, CO, were analyzed using field, geophysical, and U‐Th‐Pb isotope methods to interpret their tectonic setting in the context of previously proposed rift models. The Wet Mountains are known for thorium and REE mineralization associated with failed rift‐related, Ediacaran‐Ordovician alkaline intrusions and veins. Structural field data indicate that alkaline dikes and mineralized veins are controlled by a system of northwest‐striking, high‐angle faults and tension fractures formed in a 040°‐directed extensional regime. Magnetic and surface expressions of Democrat Creek and McClure Mountain complexes show tectonic elongation toward ∼045°, consistent with NE‐directed extension. Magnetic data also suggest the existence of a fourth, previously unrecognized mafic‐ultramafic complex of inferred Cambrian age with a similar elongated orientation. Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA‐ICP‐MS) 208Pb/232Th analysis of low‐uranium zircon from carbonatite dikes and in situ 206Pb/238U LA‐ICP‐MS analysis of monazite in mineralized dikes yielded 465 ± 18 Ma and 489 ± 33 Ma ages, respectively. These ages are consistent with the expected age based on slightly older, cross‐cut syenite dikes and the hypothesized Ordovician end to failed rift‐related magmatism. The Ediacaran‐Ordovician age of alkaline magmatic rocks and the associated northeast‐directed extension direction are similar to those of the along‐strike, Ediacaran‐Cambrian Southern Oklahoma Aulacogen. Therefore, the failed rift system in the Wet Mountains is interpreted to be a northwestern continuation of the Southern Oklahoma Aulacogen with carbonatite magmatism and thorium/REE mineralization representing late intrusive phases. Plain Language Summary The Wet Mountains of south‐central Colorado contain elements and minerals important to modern electronics and green energy technology. These minerals formed along an ancient tectonic system where the Earth's crust pulled apart, which was associated with uprise of magma from greater depths. The orientation of the system was previously unknown. This study used field and geophysical data to analyze the faults and fractures that controlled the migration of magma and emplacement of associated mineralization in order to understand the direction in which the Earth's crust pulled apart. Results of this study reveal that mineralization occurred along northwest‐striking faults and fractures, and that large magma bodies were elongated to the northeast during emplacement. This information suggests that the crust pulled apart by northeast‐directed extension along a northwest‐trending system. Additionally, isotopic analyses of mineralized features indicate that mineralization occurred at the end of this tectonic event. The orientation and age of the system is similar to a comparable system in southern Oklahoma, suggesting that the two are related. Based on this information, it is possible that additional mineral deposits formed between southern Colorado and southern Oklahoma. Key Points Ediacaran‐Ordovician failed rift‐related magmatism in the Wet Mountains formed along a northwest‐trending extensional regime The failed‐rift system is likely related to the northwest‐trending, Ediacaran‐Cambrian Southern Oklahoma Aulacogen Rare earth element mineralization occurred near the end of failed rifting
Author Magnin, Benjamin P.
Kuiper, Yvette D.
Anderson, Eric D.
Author_xml – sequence: 1
  givenname: Benjamin P.
  orcidid: 0000-0001-9951-4404
  surname: Magnin
  fullname: Magnin, Benjamin P.
  email: bmagnin@usgs.gov
  organization: Colorado School of Mines
– sequence: 2
  givenname: Yvette D.
  orcidid: 0000-0002-8506-8180
  surname: Kuiper
  fullname: Kuiper, Yvette D.
  organization: Colorado School of Mines
– sequence: 3
  givenname: Eric D.
  surname: Anderson
  fullname: Anderson, Eric D.
  organization: U.S. Geological Survey, Geology, Geochemistry, and Geophysics Science Center
BookMark eNp9kE1PGzEQhi0UJBLKjR9gqdds66_4o7dotVAkIiQI4ria3fVSRxs7tTcgeuqxx_7G_pK6hENPzGFmNHredzQzQxMfvEXonJJPlDDzmRHG1iUhSipxhKbUCFGYnCdoSpjShRJEnaBZShtCqFhIOUW_qs5BCxH8n5-_b2IXnlzrwOMVPG5hdGmLwXf4tqrwynkbYXA_8jh47Dwev1n8YEe8Cns_gvNpjsswhAhdmOP7u-UXfLXdDa59FSTch4gvwA22y5gfs11WDfjW9bl__ICOexiSPXurp-j-olqXX4vrm8urcnldAJdaFAvVGlAL2i6aRuhG95JraURjFNOWNyAN73pqWJPDdiCMahiVvdXaZnnP-Sn6ePDdxfB9b9NYb8I--ryyZppIqrgxMlPzA9XGkFK0fb2Lbgvxpaak_vfr-v9fZ5wf8Od83su7bL2uyjWjWgr-F5Rlg4s
CitedBy_id crossref_primary_10_1111_ter_12692
Cites_doi 10.1130/L1062.1
10.1130/DNAG-GNA-C2
10.1016/j.oregeorev.2015.09.019
10.1130/L78.1
10.1130/0016-7606(1991)103<0415:TAORMO>2.3.CO;2
10.1130/0016-7606(1987)99<674:PCHOTW>2.0.CO;2
10.1130/0091-7613(1981)9<10:PTOTAR>2.0.CO;2
10.5802/crgeos.63
10.1144/gsjgs.138.1.0069
10.1130/ges02039.1
10.1130/G48140.1
10.1029/2002TC001369
10.1130/0091-7613(2000)28<735:IOPEFA>2.0.CO;2
10.1016/j.cageo.2018.03.006
10.1007/s00410-006-0077-4
10.1017/CBO9780511549816
10.3133/ofr0042
10.1130/g47513.1
10.1186/s40623-020-01288-x
10.1039/c1ja10172b
10.2113/34.1.37
10.1007/BF01132072
10.1130/0091-7613(1980)8<344:Csonmp>2.0.Co;2
10.1130/ges00681.1
10.1111/j.1751-908X.1995.tb00147.x
10.5066/P9XJ7FMM
10.5066/P9PISI0X
10.5066/P99YBJLX
10.1130/B26200.1
10.1130/B25659.1
10.1130/0016-7606(2001)113<0163:PMCAGE>2.0.CO;2
10.1130/GES00055.1
10.1130/0016-7606(1962)73[1047:PASOTS]2.0.CO;2
10.1130/0016-7606(1988)100<1846:PPASEO>2.3.CO;2
10.1130/B26565.1
10.1130/0016-7606(1985)96<1364:PPASEO>2.0.CO;2
10.3809/jvirtex.2000.00008
10.5066/P96YTJ5F
10.1130/GSATG518A.1
10.1130/L287.1
10.1130/GES00574.1
10.1016/j.lithos.2012.06.003
10.1007/BF02596759
10.1190/1.1439334
10.1016/S0009-2541(03)00005-6
10.1016/j.earscirev.2020.103219
10.1130/2022.1220(19)
10.1130/2021.2554(05)
10.25676/11124/16066
10.1016/j.chemgeo.2007.11.005
10.1130/SPE235-p49
10.2113/35.1.91
10.1016/S0009-2541(00)00239-4
10.1016/S0419-0254(06)80020-0
ContentType Journal Article
Copyright 2023 The Authors. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
– notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
AAYXX
CITATION
7TG
7TN
F1W
H96
KL.
L.G
DOI 10.1029/2022TC007674
DatabaseName Wiley Online Library (Open Access Collection)
Wiley-Blackwell Backfiles (Open access)
CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1944-9194
EndPage n/a
ExternalDocumentID 10_1029_2022TC007674
TECT21864
Genre researchArticle
GeographicLocations United States--US
Oklahoma
Colorado
Wet Mountains
GeographicLocations_xml – name: Oklahoma
– name: Wet Mountains
– name: Colorado
– name: United States--US
GrantInformation_xml – fundername: U.S. Geological Survey
  funderid: Earth Mapping Resources Initiative
– fundername: Society of Economic Geologists Foundation
  funderid: SRG_21‐27
– fundername: Colorado Geological Survey
  funderid: G20AC00161
GroupedDBID -DZ
-~X
05W
0R~
123
1OB
1OC
24P
31~
33P
3V.
50Y
702
8-1
8FE
8FH
8G5
A00
AAESR
AAHHS
AAIHA
AANLZ
AASGY
AAXRX
AAZKR
ABCUV
ABJNI
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AENEX
AEQDE
AETEA
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFZJQ
AGCDD
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
ASPBG
AVWKF
AZFZN
AZQEC
AZVAB
BDRZF
BENPR
BFHJK
BHPHI
BKSAR
BMXJE
BPHCQ
BRXPI
CCPQU
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
FA8
FEDTE
G-S
GNUQQ
GODZA
GUQSH
HCIFZ
HGLYW
HVGLF
HZ~
H~9
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M2O
M2P
M7R
MEWTI
MSFUL
MSSTM
MVM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
PCBAR
PQQKQ
PROAC
R.K
R05
RIWAO
RJQFR
ROL
RXW
SAMSI
SJN
SUPJJ
TAE
TAF
TN5
UB1
UQL
VJK
WBKPD
WH7
WIN
WXSBR
WYJ
XJT
XOL
ZZTAW
~02
~OA
~~A
AAMNL
AAYXX
CITATION
7TG
7TN
F1W
H96
KL.
L.G
ID FETCH-LOGICAL-a3684-57c9a751c5bb48b8f638694b9728e3ba693df192bbbbeda497b216fe88e684f33
IEDL.DBID 33P
ISSN 0278-7407
IngestDate Mon Nov 18 02:57:42 EST 2024
Fri Nov 22 01:31:45 EST 2024
Sat Aug 24 00:48:08 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a3684-57c9a751c5bb48b8f638694b9728e3ba693df192bbbbeda497b216fe88e684f33
ORCID 0000-0002-8506-8180
0000-0001-9951-4404
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2022TC007674
PQID 2806173996
PQPubID 30885
PageCount 28
ParticipantIDs proquest_journals_2806173996
crossref_primary_10_1029_2022TC007674
wiley_primary_10_1029_2022TC007674_TECT21864
PublicationCentury 2000
PublicationDate April 2023
2023-04-00
20230401
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: April 2023
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Tectonics (Washington, D.C.)
PublicationYear 2023
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Keller G. R. (e_1_2_13_1_34_1)
Christman R. A. (e_1_2_13_1_16_1) 1954
Minty B. R. S. (e_1_2_13_1_56_1) 1997; 17
e_1_2_13_1_93_1
e_1_2_13_1_91_1
e_1_2_13_1_30_1
e_1_2_13_1_51_1
e_1_2_13_1_76_1
e_1_2_13_1_53_1
Erslev E. A. (e_1_2_13_1_20_1) 2004; 160
Lindsey D. A. (e_1_2_13_1_41_1) 2010
e_1_2_13_1_36_1
e_1_2_13_1_78_1
Verplank P. L. (e_1_2_13_1_89_1) 2010
e_1_2_13_1_38_1
Plouff D. (e_1_2_13_1_65_1) 1977
Thomas W. A. (e_1_2_13_1_85_1) 2014
Strong T. R. (e_1_2_13_1_80_1) 2016
Alexander D. H. (e_1_2_13_1_3_1) 1981
Armbrustmacher T. J. (e_1_2_13_1_6_1) 1984
Scott G. R. (e_1_2_13_1_70_1) 1978
Brock M. R. (e_1_2_13_1_15_1) 1968
Reed J. C. (e_1_2_13_1_68_1) 1983
e_1_2_13_1_63_1
e_1_2_13_1_86_1
Morelli C. (e_1_2_13_1_57_1) 1974; 4
Keller G. R. (e_1_2_13_1_31_1) 2014; 38
e_1_2_13_1_84_1
e_1_2_13_1_21_1
e_1_2_13_1_23_1
e_1_2_13_1_44_1
e_1_2_13_1_69_1
McMillan N. J. (e_1_2_13_1_55_1) 2004
e_1_2_13_1_88_1
e_1_2_13_1_46_1
e_1_2_13_2_3_1
e_1_2_13_1_48_1
Taylor R. B. (e_1_2_13_1_81_1) 1974
e_1_2_13_1_19_1
Olson J. C. (e_1_2_13_1_59_1) 1974
e_1_2_13_1_13_1
e_1_2_13_1_11_1
Lambert P. W. (e_1_2_13_1_37_1) 1961
e_1_2_13_1_9_1
e_1_2_13_1_5_1
e_1_2_13_1_71_1
e_1_2_13_1_94_1
Armbrustmacher T. J. (e_1_2_13_1_7_1) 1988
e_1_2_13_1_50_1
e_1_2_13_1_92_1
Christman R. A. (e_1_2_13_1_17_1) 1959
e_1_2_13_1_52_1
e_1_2_13_1_75_1
e_1_2_13_1_73_1
e_1_2_13_1_33_1
e_1_2_13_1_79_1
Hansen W. R. (e_1_2_13_1_25_1) 1971
e_1_2_13_1_35_1
e_1_2_13_1_77_1
McLemore V. (e_1_2_13_1_54_1) 2020
e_1_2_13_1_39_1
Olson J. (e_1_2_13_1_58_1) 1977; 5
Shawe D. R. (e_1_2_13_1_72_1) 1967
Lipman P. W. (e_1_2_13_1_42_1) 1976
Luyendyk A. (e_1_2_13_1_47_1) 1997; 17
Hedlund D. C. (e_1_2_13_1_27_1) 1975
e_1_2_13_1_2_1
Keller G. R. (e_1_2_13_1_32_1) 1995
e_1_2_13_1_83_1
e_1_2_13_1_60_1
Pardo J. M. (e_1_2_13_1_61_1) 2008
International Association of Geodesy (e_1_2_13_1_29_1) 1971
Parker R. L. (e_1_2_13_1_62_1) 1970
e_1_2_13_1_64_1
Singewald Q. D. (e_1_2_13_1_74_1) 1955
e_1_2_13_1_22_1
e_1_2_13_1_66_1
e_1_2_13_1_26_1
e_1_2_13_1_49_1
Tweto O. (e_1_2_13_1_87_1) 1979
e_1_2_13_2_4_1
Guilbert J. M. (e_1_2_13_1_24_1) 1986
e_1_2_13_1_28_1
e_1_2_13_1_18_1
Lidiak E. G. (e_1_2_13_1_40_1) 2014
e_1_2_13_2_2_1
e_1_2_13_1_14_1
Taylor R. B. (e_1_2_13_1_82_1) 1975
e_1_2_13_1_12_1
Lipman P. W. (e_1_2_13_1_43_1) 1989
e_1_2_13_1_10_1
Ludwig K. R. (e_1_2_13_1_45_1) 2012
e_1_2_13_1_8_1
Reed J. C. (e_1_2_13_1_67_1) 1993
e_1_2_13_1_90_1
e_1_2_13_1_4_1
References_xml – ident: e_1_2_13_1_64_1
  doi: 10.1130/L1062.1
– start-page: 110
  volume-title: Geology of North America: Precambrian: Conterminous U.S.
  year: 1993
  ident: e_1_2_13_1_67_1
  doi: 10.1130/DNAG-GNA-C2
  contributor:
    fullname: Reed J. C.
– ident: e_1_2_13_1_22_1
  doi: 10.1016/j.oregeorev.2015.09.019
– ident: e_1_2_13_1_30_1
  doi: 10.1130/L78.1
– ident: e_1_2_13_1_83_1
  doi: 10.1130/0016-7606(1991)103<0415:TAORMO>2.3.CO;2
– start-page: 375
  volume-title: Igneous and tectonic history of the Southern Oklahoma Aulacogen
  year: 2014
  ident: e_1_2_13_1_85_1
  contributor:
    fullname: Thomas W. A.
– ident: e_1_2_13_1_9_1
  doi: 10.1130/0016-7606(1987)99<674:PCHOTW>2.0.CO;2
– volume-title: Wet Mountains, Colorado, thorium investigations, 1952‐1954 (No. 354)
  year: 1954
  ident: e_1_2_13_1_16_1
  contributor:
    fullname: Christman R. A.
– ident: e_1_2_13_1_35_1
  doi: 10.1130/0091-7613(1981)9<10:PTOTAR>2.0.CO;2
– volume-title: Geology, mineralogy, and geochemistry of the McClure Mountain alkalic complex, Fremont County, Colorado, (Doctoral dissertation)
  year: 1981
  ident: e_1_2_13_1_3_1
  contributor:
    fullname: Alexander D. H.
– volume-title: The geologic story of Colorado’s Sangre de Cristo Range (Circular 1349)
  year: 2010
  ident: e_1_2_13_1_41_1
  contributor:
    fullname: Lindsey D. A.
– ident: e_1_2_13_1_49_1
  doi: 10.5802/crgeos.63
– ident: e_1_2_13_1_21_1
  doi: 10.1144/gsjgs.138.1.0069
– volume-title: Reconnaissance geologic map of the Royal Gorge quadrangle, Fremont and Custer Counties, Colorado (Miscellaneous Investigations Series Map 1‐369)
  year: 1975
  ident: e_1_2_13_1_82_1
  contributor:
    fullname: Taylor R. B.
– ident: e_1_2_13_1_18_1
– ident: e_1_2_13_1_91_1
  doi: 10.1130/ges02039.1
– ident: e_1_2_13_1_92_1
  doi: 10.1130/G48140.1
– volume-title: The geology of Ore deposits
  year: 1986
  ident: e_1_2_13_1_24_1
  contributor:
    fullname: Guilbert J. M.
– volume-title: Geologic map of the Black Canyon of the Gunnison River and vicinity, western Colorado (Miscellaneous investigations series Map I‐584)
  year: 1971
  ident: e_1_2_13_1_25_1
  contributor:
    fullname: Hansen W. R.
– start-page: 1
  volume-title: A deposit model for carbonatite and peralkaline intrusion‐related rare earth element deposits: Chapter J of mineral deposit models for resource assessment (Scientific Investigations Report 2010–5070–J
  year: 2010
  ident: e_1_2_13_1_89_1
  contributor:
    fullname: Verplank P. L.
– year: 1971
  ident: e_1_2_13_1_29_1
  article-title: Geodetic reference system 1967 (No. 3)
  publication-title: Bulletin of Geodesy and Geomatics
  contributor:
    fullname: International Association of Geodesy
– ident: e_1_2_13_1_13_1
  doi: 10.1029/2002TC001369
– ident: e_1_2_13_1_53_1
  doi: 10.1130/0091-7613(2000)28<735:IOPEFA>2.0.CO;2
– volume: 4
  start-page: 1
  year: 1974
  ident: e_1_2_13_1_57_1
  article-title: The international gravity standardization net 1971
  publication-title: International Association of Geodesy
  contributor:
    fullname: Morelli C.
– volume: 17
  start-page: 31
  year: 1997
  ident: e_1_2_13_1_47_1
  article-title: Processing of airborne magnetic data
  publication-title: AGSO Journal of Australian Geology and Geophysics
  contributor:
    fullname: Luyendyk A.
– ident: e_1_2_13_1_90_1
  doi: 10.1016/j.cageo.2018.03.006
– ident: e_1_2_13_2_3_1
  doi: 10.1007/s00410-006-0077-4
– ident: e_1_2_13_1_11_1
  doi: 10.1017/CBO9780511549816
– start-page: 105
  volume-title: Igneous and tectonic history of the southern Oklahoma Aulacogen
  year: 2014
  ident: e_1_2_13_1_40_1
  contributor:
    fullname: Lidiak E. G.
– volume-title: Geologic map of the Latir Volcanic Field and adjacent areas, northern New Mexico (Miscellaneous investigations series Map I–1907)
  year: 1989
  ident: e_1_2_13_1_43_1
  contributor:
    fullname: Lipman P. W.
– ident: e_1_2_13_1_60_1
  doi: 10.3133/ofr0042
– ident: e_1_2_13_1_69_1
  doi: 10.1130/g47513.1
– volume-title: Mafic‐ultramafic layered intrusion at Iron Mountain, Fremont County, Colorado (No. 1251‐A)
  year: 1967
  ident: e_1_2_13_1_72_1
  contributor:
    fullname: Shawe D. R.
– ident: e_1_2_13_1_4_1
  doi: 10.1186/s40623-020-01288-x
– ident: e_1_2_13_1_63_1
  doi: 10.1039/c1ja10172b
– ident: e_1_2_13_1_71_1
  doi: 10.2113/34.1.37
– ident: e_1_2_13_2_2_1
  doi: 10.1007/BF01132072
– volume: 17
  start-page: 51
  issue: 2
  year: 1997
  ident: e_1_2_13_1_56_1
  article-title: Calibration and data processing for airborne gamma‐ray spectrometry
  publication-title: AGSO Journal of Australian Geology and Geophysics
  contributor:
    fullname: Minty B. R. S.
– volume-title: Geologic map of the Lake City Caldera area, western San Juan Mountains, southwestern Colorado (Miscellaneous investigations series Map I‐962)
  year: 1976
  ident: e_1_2_13_1_42_1
  contributor:
    fullname: Lipman P. W.
– volume-title: Geologic map of the Rudolph Hill quadrangle, Gunnison, Hinsdale, and Saguache Counties, Colorado (Geologic Quadrangle 1177)
  year: 1974
  ident: e_1_2_13_1_59_1
  contributor:
    fullname: Olson J. C.
– volume-title: Mafic‐ultramafic rocks and associated carbonatites of the Gem Park complex, Custer and Fremont counties, Colorado (Prof. Paper 649)
  year: 1970
  ident: e_1_2_13_1_62_1
  contributor:
    fullname: Parker R. L.
– start-page: 1
  volume-title: A process for reducing rocks and concentrating heavy minerals (Open‐File Report 2016–1022
  year: 2016
  ident: e_1_2_13_1_80_1
  contributor:
    fullname: Strong T. R.
– ident: e_1_2_13_1_44_1
  doi: 10.1130/0091-7613(1980)8<344:Csonmp>2.0.Co;2
– volume-title: Geology and thorium deposits of the Wet Mountains, Colorado: A progress report (No. 1072‐H)
  year: 1959
  ident: e_1_2_13_1_17_1
  contributor:
    fullname: Christman R. A.
– ident: e_1_2_13_1_77_1
  doi: 10.1130/ges00681.1
– ident: e_1_2_13_1_94_1
  doi: 10.1111/j.1751-908X.1995.tb00147.x
– ident: e_1_2_13_1_51_1
  doi: 10.5066/P9XJ7FMM
– volume-title: Petrology of the Precambrian rocks of part of the Monte Largo area, New Mexico (Master’s thesis)
  year: 1961
  ident: e_1_2_13_1_37_1
  contributor:
    fullname: Lambert P. W.
– ident: e_1_2_13_1_23_1
  doi: 10.5066/P9PISI0X
– ident: e_1_2_13_1_88_1
  doi: 10.5066/P99YBJLX
– ident: e_1_2_13_1_5_1
  doi: 10.1130/B26200.1
– start-page: 411
  volume-title: Vision for discovery: Geology and Ore deposits of the Great Basin
  year: 2020
  ident: e_1_2_13_1_54_1
  contributor:
    fullname: McLemore V.
– volume-title: Preliminary documentation for a FORTRAN program to compute gravity terrain corrections based on topography digitized on a geographic grid (Open File Report 77‐535)
  year: 1977
  ident: e_1_2_13_1_65_1
  contributor:
    fullname: Plouff D.
– ident: e_1_2_13_1_2_1
  doi: 10.1130/B25659.1
– start-page: 427
  volume-title: Continental rifts: Evolution, structure, tectonics
  year: 1995
  ident: e_1_2_13_1_32_1
  contributor:
    fullname: Keller G. R.
– issue: 5
  year: 2012
  ident: e_1_2_13_1_45_1
  article-title: Isoplot 3.75: A geochronological tool‐kit for microsoft excel
  publication-title: Berkeley Geochronology Center Special Publication
  contributor:
    fullname: Ludwig K. R.
– ident: e_1_2_13_1_86_1
  doi: 10.1130/0016-7606(2001)113<0163:PMCAGE>2.0.CO;2
– volume: 160
  start-page: 181
  year: 2004
  ident: e_1_2_13_1_20_1
  article-title: Laramide minor faulting in the Colorado Front Range
  publication-title: New Mexico Bureau of Geology & Mineral Resources
  contributor:
    fullname: Erslev E. A.
– start-page: 127
  volume-title: The southern Oklahoma and Dniepr‐Donets aulacogens: A comparative analysis
  ident: e_1_2_13_1_34_1
  contributor:
    fullname: Keller G. R.
– ident: e_1_2_13_1_93_1
  doi: 10.1130/GES00055.1
– volume: 5
  start-page: 673
  issue: 6
  year: 1977
  ident: e_1_2_13_1_58_1
  article-title: Age and tectonic setting of Lower Paleozoic alkalic and mafic rocks, carbonatites, and thorium veins in south central Colorado
  publication-title: US Geological Survey Journal of Research
  contributor:
    fullname: Olson J.
– ident: e_1_2_13_1_14_1
  doi: 10.1130/0016-7606(1962)73[1047:PASOTS]2.0.CO;2
– volume-title: Geologic map of the Latir Peak and Wheeler Peak Wildernesses and Columbine‐Hondo Wilderness study area, Taos County, New Mexico (Miscellaneous Field Studies Map 1570)
  year: 1983
  ident: e_1_2_13_1_68_1
  contributor:
    fullname: Reed J. C.
– volume-title: Alkaline rock complexes in the Wet Mountains area, Custer and Fremont counties, Colorado (No. 1269)
  year: 1984
  ident: e_1_2_13_1_6_1
  contributor:
    fullname: Armbrustmacher T. J.
– volume: 38
  start-page: 389
  year: 2014
  ident: e_1_2_13_1_31_1
  article-title: The Southern Oklahoma Aulacogen: It’s a classic
  publication-title: Oklahoma Geological Survey
  contributor:
    fullname: Keller G. R.
– ident: e_1_2_13_1_66_1
  doi: 10.1130/0016-7606(1988)100<1846:PPASEO>2.3.CO;2
– ident: e_1_2_13_1_46_1
  doi: 10.1130/B26565.1
– ident: e_1_2_13_1_38_1
  doi: 10.1130/0016-7606(1985)96<1364:PPASEO>2.0.CO;2
– ident: e_1_2_13_1_12_1
  doi: 10.3809/jvirtex.2000.00008
– volume-title: Geologic map of the Pueblo 1 degree x 2 degrees quadrangle, south‐central Colorado (Miscellaneous Investigations Series Map I‐1022)
  year: 1978
  ident: e_1_2_13_1_70_1
  contributor:
    fullname: Scott G. R.
– ident: e_1_2_13_1_52_1
  doi: 10.5066/P96YTJ5F
– ident: e_1_2_13_1_19_1
  doi: 10.1130/GSATG518A.1
– ident: e_1_2_13_1_39_1
  doi: 10.1130/L287.1
– ident: e_1_2_13_1_84_1
  doi: 10.1130/GES00574.1
– ident: e_1_2_13_1_26_1
  doi: 10.1016/j.lithos.2012.06.003
– volume-title: Geologic map of the Mount Tyndall quadrangle, Custer County, Colorado (Map GQ‐596)
  year: 1968
  ident: e_1_2_13_1_15_1
  contributor:
    fullname: Brock M. R.
– volume-title: Reconnaissance geologic map of the Deer Peak quadrangle and southern part of the Hardscrabble Mountain quadrangle, Custer and Huerfano Counties, Colorado (Miscellaneous Investigations Series Map I‐870)
  year: 1974
  ident: e_1_2_13_1_81_1
  contributor:
    fullname: Taylor R. B.
– ident: e_1_2_13_1_76_1
– ident: e_1_2_13_1_28_1
  doi: 10.1007/BF02596759
– start-page: 1
  volume-title: Tectonics, geochronology, and volcanism in the southern Rocky Mountains and the Rio Grande Rift
  year: 2004
  ident: e_1_2_13_1_55_1
  contributor:
    fullname: McMillan N. J.
– ident: e_1_2_13_1_8_1
  doi: 10.1190/1.1439334
– volume-title: Geologic Map of Colorado (Map MI‐16)
  year: 1979
  ident: e_1_2_13_1_87_1
  contributor:
    fullname: Tweto O.
– ident: e_1_2_13_2_4_1
  doi: 10.1016/S0009-2541(03)00005-6
– ident: e_1_2_13_1_78_1
  doi: 10.1016/j.earscirev.2020.103219
– volume-title: Geology and resources of thorium and associated elements in the Wet Mountains area, Fremont and Custer counties, Colorado (No. 1094‐F)
  year: 1988
  ident: e_1_2_13_1_7_1
  contributor:
    fullname: Armbrustmacher T. J.
– volume-title: Geologic map of the Powderhorn quadrangle, Gunnison and Saguache Counties, Colorado (Geologic Quadrangle 1178)
  year: 1975
  ident: e_1_2_13_1_27_1
  contributor:
    fullname: Hedlund D. C.
– volume-title: Geologic and radiometric maps of the McKinley Mountain area, Wet Mountains, Colorado (Investigations Field Studies Map MF‐37)
  year: 1955
  ident: e_1_2_13_1_74_1
  contributor:
    fullname: Singewald Q. D.
– ident: e_1_2_13_1_48_1
  doi: 10.1130/2022.1220(19)
– ident: e_1_2_13_1_36_1
  doi: 10.1130/2021.2554(05)
– ident: e_1_2_13_1_50_1
  doi: 10.25676/11124/16066
– ident: e_1_2_13_1_75_1
  doi: 10.1016/j.chemgeo.2007.11.005
– ident: e_1_2_13_1_10_1
  doi: 10.1130/SPE235-p49
– ident: e_1_2_13_1_73_1
  doi: 10.2113/35.1.91
– ident: e_1_2_13_1_79_1
  doi: 10.1016/S0009-2541(00)00239-4
– volume-title: An integrated geophysical study of the Wet Mountains, southern Colorado [Conference presentation]
  year: 2008
  ident: e_1_2_13_1_61_1
  contributor:
    fullname: Pardo J. M.
– ident: e_1_2_13_1_33_1
  doi: 10.1016/S0419-0254(06)80020-0
SSID ssj0014566
Score 2.4400892
Snippet Structures associated with Ediacaran‐Ordovician alkaline magmatism and the timing of rare earth element (REE) mineralization in the Wet Mountains, CO, were...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Ablation
airborne geophysics
Cambrian
Coastal inlets
Dikes
Direction
Earth
Earth crust
Embankments
Fault lines
Faults
faults and fractures
Fractures
geochronology
Geophysical data
Green energy
Isotopes
Lava
Magma
Magnetic data
Mass spectrometry
Mass spectroscopy
Mineral deposits
Mineralization
Minerals
Monazite
Mountains
Ordovician
Rare earth elements
Rifting
Southern Oklahoma Aulacogen
Thorium
Uranium
Veins (geology)
Wet Mountains
Title Ediacaran‐Ordovician Magmatism and REE Mineralization in the Wet Mountains, Colorado, USA: Implications for Failed Continental Rifting
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2022TC007674
https://www.proquest.com/docview/2806173996
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZapEq9FOhDXV6aQ3vbqLtxEjsckNCSLRy2rWBRe4vGsY32QBZtAIkbR478Rn4JM94sbC-VUHO2LSvj8XyexzdCfPFIMACNjIzSSZRUfR8Zm8ooST0ZoDi2WcWu7MMT9eOPPiiYJmdvUQsz54d4crixZoT7mhUcTdOSDTBHJr3aY3aLMxsNXcH0UAgVHPLXUxCBsEEIVcaKKTN7qs17p-nflif_bZGeYeYyWA3WZrj6v_tcE-9anAn784OxLl65-r148z308b35IO4KOhcVkqF6uL3_ObPT6-DegBGeMYRtzgFrC8dFAaNJ4KVuyzVhUgNBRvjtLmHEbSZwUjddGNCyM7TTLpye7O_C0VKaOhAqhiHS1i0wFRYtxwWYcDzxnHH9UZwOi_HgMGqbMkQoMxJnqqocVdqvUmMSbbQnBc7yxOQq1k4azHJpPcFGQ5-zmOTKxP3MO60dTfdSfhIr9bR2nwW4JI-x1zPKID0CtUedcTohSplbAhq2I74uBFNezLk3yhAzj_Ny-a92xNZCamWrgU3JEeO-IviVdUQ3yOefa5TjYjDm_lzJxsuGb4q33IF-nsyzJVYuZ1duW7xu7NVOOI2PcoPdwA
link.rule.ids 315,782,786,1408,27934,27935,46065,46489
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB71IQQXSnmIQKFzKLdYJN61d80FValDqjYFtangZu16d1EOOChpkbhx5Mhv5Jcws3FKuCAhfPauVp4Zz7fz-AbgIBiCAcaKxCotE1n3Q2JdJhKZBXJAaerymkPZowt19kEflUyT83rVC7Pkh7gJuLFlxP81GzgHpFu2ASbJpGt7ynFxpqPZhG2ZS81qLcS7mzQCoYOYrEwVk2b2VFv5Tutfrq_-0yf9BprrcDX6m-HOf5_0HtxtoSYeLnVjFzZ8cx9uvYmjfL8-gO8lqUZtyFf9_Pbj7dzNvsQIB47NR0axi09oGofnZYnjaaSmbjs2cdogoUZ8769wzJMmzLRZdHFA286Nm3Xx8uLwFR6vVaojAWMcGjq7Q2bDou24BxPPp4GLrh_C5bCcDEZJO5chMSIniWaqLozK-nVmrdRWB7LhvJC2UKn2wpq8EC4QcrT0eGdkoWzaz4PX2tPyIMQj2GpmjX8M6GWRml7PKmvoHqiD0TlXFBohCkdYw3XgxUoy1ecl_UYV0-ZpUa1_1Q7srcRWtUa4qDhp3FeEwPIOdKOA_rpHNSkHEx7RJZ_82-v7cHs0GZ9Wp8dnJ0_hDg-kX9b27MHW1fzaP4PNhbt-HlXzF4614ek
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB71IRAXoDxEoMAcyi0WiXftXfeAVKUOrWjaqk0FN2vXu4tywKmSFokbxx75jfwSZjZOCRckhM-e1cqz4_l2Ht8A7ARDMMBYkVilZSLrfkisy0Qis0AOKE1dXnMo--BcHX_S-yXT5Lxb9sIs-CFuA25sGfF_zQZ-6UJLNsAcmXRrTzkszmw067ApCYlzSZ8Qp7dZBAIHMVeZKubM7Km28J3k365K_-mSfuPMVbQa3c3wwf9u9CHcb4Em7i1Oxhas-eYR3HkfB_l-eww3JR2M2pCn-vn9x8nMTb_G-AaOzGfGsPMvaBqHZ2WJo0kkpm77NXHSIGFG_OivcMRzJsykmXdxQMvOjJt28eJ8bxcPV-rUkWAxDg1t3SFzYdFy3IGJZ5PAJddP4GJYjgcHSTuVITEiJ31mqi6Myvp1Zq3UVgey4LyQtlCp9sKavBAuEG609HhnZKFs2s-D19qTeBDiKWw008Y_A_SySE2vZ5U1dAvUweic6wmNEIUjpOE68GapmOpyQb5RxaR5WlSrX7UD20utVa0JzitOGfcV4a-8A92on7-uUY3LwZgHdMnn__b6a7h7uj-sjg6PP7yAezyNflHYsw0bV7Nr_xLW5-76VTyYvwDewuCP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ediacaran%E2%80%90Ordovician+Magmatism+and+REE+Mineralization+in+the+Wet+Mountains%2C+Colorado%2C+USA%3A+Implications+for+Failed+Continental+Rifting&rft.jtitle=Tectonics+%28Washington%2C+D.C.%29&rft.au=Magnin%2C+Benjamin+P.&rft.au=Kuiper%2C+Yvette+D.&rft.au=Anderson%2C+Eric+D.&rft.date=2023-04-01&rft.issn=0278-7407&rft.eissn=1944-9194&rft.volume=42&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2022TC007674&rft.externalDBID=10.1029%252F2022TC007674&rft.externalDocID=TECT21864
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-7407&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-7407&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-7407&client=summon