Ediacaran‐Ordovician Magmatism and REE Mineralization in the Wet Mountains, Colorado, USA: Implications for Failed Continental Rifting
Structures associated with Ediacaran‐Ordovician alkaline magmatism and the timing of rare earth element (REE) mineralization in the Wet Mountains, CO, were analyzed using field, geophysical, and U‐Th‐Pb isotope methods to interpret their tectonic setting in the context of previously proposed rift mo...
Saved in:
Published in: | Tectonics (Washington, D.C.) Vol. 42; no. 4 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Washington
Blackwell Publishing Ltd
01-04-2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Structures associated with Ediacaran‐Ordovician alkaline magmatism and the timing of rare earth element (REE) mineralization in the Wet Mountains, CO, were analyzed using field, geophysical, and U‐Th‐Pb isotope methods to interpret their tectonic setting in the context of previously proposed rift models. The Wet Mountains are known for thorium and REE mineralization associated with failed rift‐related, Ediacaran‐Ordovician alkaline intrusions and veins. Structural field data indicate that alkaline dikes and mineralized veins are controlled by a system of northwest‐striking, high‐angle faults and tension fractures formed in a 040°‐directed extensional regime. Magnetic and surface expressions of Democrat Creek and McClure Mountain complexes show tectonic elongation toward ∼045°, consistent with NE‐directed extension. Magnetic data also suggest the existence of a fourth, previously unrecognized mafic‐ultramafic complex of inferred Cambrian age with a similar elongated orientation. Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA‐ICP‐MS) 208Pb/232Th analysis of low‐uranium zircon from carbonatite dikes and in situ 206Pb/238U LA‐ICP‐MS analysis of monazite in mineralized dikes yielded 465 ± 18 Ma and 489 ± 33 Ma ages, respectively. These ages are consistent with the expected age based on slightly older, cross‐cut syenite dikes and the hypothesized Ordovician end to failed rift‐related magmatism. The Ediacaran‐Ordovician age of alkaline magmatic rocks and the associated northeast‐directed extension direction are similar to those of the along‐strike, Ediacaran‐Cambrian Southern Oklahoma Aulacogen. Therefore, the failed rift system in the Wet Mountains is interpreted to be a northwestern continuation of the Southern Oklahoma Aulacogen with carbonatite magmatism and thorium/REE mineralization representing late intrusive phases.
Plain Language Summary
The Wet Mountains of south‐central Colorado contain elements and minerals important to modern electronics and green energy technology. These minerals formed along an ancient tectonic system where the Earth's crust pulled apart, which was associated with uprise of magma from greater depths. The orientation of the system was previously unknown. This study used field and geophysical data to analyze the faults and fractures that controlled the migration of magma and emplacement of associated mineralization in order to understand the direction in which the Earth's crust pulled apart. Results of this study reveal that mineralization occurred along northwest‐striking faults and fractures, and that large magma bodies were elongated to the northeast during emplacement. This information suggests that the crust pulled apart by northeast‐directed extension along a northwest‐trending system. Additionally, isotopic analyses of mineralized features indicate that mineralization occurred at the end of this tectonic event. The orientation and age of the system is similar to a comparable system in southern Oklahoma, suggesting that the two are related. Based on this information, it is possible that additional mineral deposits formed between southern Colorado and southern Oklahoma.
Key Points
Ediacaran‐Ordovician failed rift‐related magmatism in the Wet Mountains formed along a northwest‐trending extensional regime
The failed‐rift system is likely related to the northwest‐trending, Ediacaran‐Cambrian Southern Oklahoma Aulacogen
Rare earth element mineralization occurred near the end of failed rifting |
---|---|
AbstractList | Structures associated with Ediacaran‐Ordovician alkaline magmatism and the timing of rare earth element (REE) mineralization in the Wet Mountains, CO, were analyzed using field, geophysical, and U‐Th‐Pb isotope methods to interpret their tectonic setting in the context of previously proposed rift models. The Wet Mountains are known for thorium and REE mineralization associated with failed rift‐related, Ediacaran‐Ordovician alkaline intrusions and veins. Structural field data indicate that alkaline dikes and mineralized veins are controlled by a system of northwest‐striking, high‐angle faults and tension fractures formed in a 040°‐directed extensional regime. Magnetic and surface expressions of Democrat Creek and McClure Mountain complexes show tectonic elongation toward ∼045°, consistent with NE‐directed extension. Magnetic data also suggest the existence of a fourth, previously unrecognized mafic‐ultramafic complex of inferred Cambrian age with a similar elongated orientation. Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA‐ICP‐MS) 208Pb/232Th analysis of low‐uranium zircon from carbonatite dikes and in situ 206Pb/238U LA‐ICP‐MS analysis of monazite in mineralized dikes yielded 465 ± 18 Ma and 489 ± 33 Ma ages, respectively. These ages are consistent with the expected age based on slightly older, cross‐cut syenite dikes and the hypothesized Ordovician end to failed rift‐related magmatism. The Ediacaran‐Ordovician age of alkaline magmatic rocks and the associated northeast‐directed extension direction are similar to those of the along‐strike, Ediacaran‐Cambrian Southern Oklahoma Aulacogen. Therefore, the failed rift system in the Wet Mountains is interpreted to be a northwestern continuation of the Southern Oklahoma Aulacogen with carbonatite magmatism and thorium/REE mineralization representing late intrusive phases. Structures associated with Ediacaran‐Ordovician alkaline magmatism and the timing of rare earth element (REE) mineralization in the Wet Mountains, CO, were analyzed using field, geophysical, and U‐Th‐Pb isotope methods to interpret their tectonic setting in the context of previously proposed rift models. The Wet Mountains are known for thorium and REE mineralization associated with failed rift‐related, Ediacaran‐Ordovician alkaline intrusions and veins. Structural field data indicate that alkaline dikes and mineralized veins are controlled by a system of northwest‐striking, high‐angle faults and tension fractures formed in a 040°‐directed extensional regime. Magnetic and surface expressions of Democrat Creek and McClure Mountain complexes show tectonic elongation toward ∼045°, consistent with NE‐directed extension. Magnetic data also suggest the existence of a fourth, previously unrecognized mafic‐ultramafic complex of inferred Cambrian age with a similar elongated orientation. Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA‐ICP‐MS) 208 Pb/ 232 Th analysis of low‐uranium zircon from carbonatite dikes and in situ 206 Pb/ 238 U LA‐ICP‐MS analysis of monazite in mineralized dikes yielded 465 ± 18 Ma and 489 ± 33 Ma ages, respectively. These ages are consistent with the expected age based on slightly older, cross‐cut syenite dikes and the hypothesized Ordovician end to failed rift‐related magmatism. The Ediacaran‐Ordovician age of alkaline magmatic rocks and the associated northeast‐directed extension direction are similar to those of the along‐strike, Ediacaran‐Cambrian Southern Oklahoma Aulacogen. Therefore, the failed rift system in the Wet Mountains is interpreted to be a northwestern continuation of the Southern Oklahoma Aulacogen with carbonatite magmatism and thorium/REE mineralization representing late intrusive phases. The Wet Mountains of south‐central Colorado contain elements and minerals important to modern electronics and green energy technology. These minerals formed along an ancient tectonic system where the Earth's crust pulled apart, which was associated with uprise of magma from greater depths. The orientation of the system was previously unknown. This study used field and geophysical data to analyze the faults and fractures that controlled the migration of magma and emplacement of associated mineralization in order to understand the direction in which the Earth's crust pulled apart. Results of this study reveal that mineralization occurred along northwest‐striking faults and fractures, and that large magma bodies were elongated to the northeast during emplacement. This information suggests that the crust pulled apart by northeast‐directed extension along a northwest‐trending system. Additionally, isotopic analyses of mineralized features indicate that mineralization occurred at the end of this tectonic event. The orientation and age of the system is similar to a comparable system in southern Oklahoma, suggesting that the two are related. Based on this information, it is possible that additional mineral deposits formed between southern Colorado and southern Oklahoma. Ediacaran‐Ordovician failed rift‐related magmatism in the Wet Mountains formed along a northwest‐trending extensional regime The failed‐rift system is likely related to the northwest‐trending, Ediacaran‐Cambrian Southern Oklahoma Aulacogen Rare earth element mineralization occurred near the end of failed rifting Structures associated with Ediacaran‐Ordovician alkaline magmatism and the timing of rare earth element (REE) mineralization in the Wet Mountains, CO, were analyzed using field, geophysical, and U‐Th‐Pb isotope methods to interpret their tectonic setting in the context of previously proposed rift models. The Wet Mountains are known for thorium and REE mineralization associated with failed rift‐related, Ediacaran‐Ordovician alkaline intrusions and veins. Structural field data indicate that alkaline dikes and mineralized veins are controlled by a system of northwest‐striking, high‐angle faults and tension fractures formed in a 040°‐directed extensional regime. Magnetic and surface expressions of Democrat Creek and McClure Mountain complexes show tectonic elongation toward ∼045°, consistent with NE‐directed extension. Magnetic data also suggest the existence of a fourth, previously unrecognized mafic‐ultramafic complex of inferred Cambrian age with a similar elongated orientation. Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA‐ICP‐MS) 208Pb/232Th analysis of low‐uranium zircon from carbonatite dikes and in situ 206Pb/238U LA‐ICP‐MS analysis of monazite in mineralized dikes yielded 465 ± 18 Ma and 489 ± 33 Ma ages, respectively. These ages are consistent with the expected age based on slightly older, cross‐cut syenite dikes and the hypothesized Ordovician end to failed rift‐related magmatism. The Ediacaran‐Ordovician age of alkaline magmatic rocks and the associated northeast‐directed extension direction are similar to those of the along‐strike, Ediacaran‐Cambrian Southern Oklahoma Aulacogen. Therefore, the failed rift system in the Wet Mountains is interpreted to be a northwestern continuation of the Southern Oklahoma Aulacogen with carbonatite magmatism and thorium/REE mineralization representing late intrusive phases. Plain Language Summary The Wet Mountains of south‐central Colorado contain elements and minerals important to modern electronics and green energy technology. These minerals formed along an ancient tectonic system where the Earth's crust pulled apart, which was associated with uprise of magma from greater depths. The orientation of the system was previously unknown. This study used field and geophysical data to analyze the faults and fractures that controlled the migration of magma and emplacement of associated mineralization in order to understand the direction in which the Earth's crust pulled apart. Results of this study reveal that mineralization occurred along northwest‐striking faults and fractures, and that large magma bodies were elongated to the northeast during emplacement. This information suggests that the crust pulled apart by northeast‐directed extension along a northwest‐trending system. Additionally, isotopic analyses of mineralized features indicate that mineralization occurred at the end of this tectonic event. The orientation and age of the system is similar to a comparable system in southern Oklahoma, suggesting that the two are related. Based on this information, it is possible that additional mineral deposits formed between southern Colorado and southern Oklahoma. Key Points Ediacaran‐Ordovician failed rift‐related magmatism in the Wet Mountains formed along a northwest‐trending extensional regime The failed‐rift system is likely related to the northwest‐trending, Ediacaran‐Cambrian Southern Oklahoma Aulacogen Rare earth element mineralization occurred near the end of failed rifting |
Author | Magnin, Benjamin P. Kuiper, Yvette D. Anderson, Eric D. |
Author_xml | – sequence: 1 givenname: Benjamin P. orcidid: 0000-0001-9951-4404 surname: Magnin fullname: Magnin, Benjamin P. email: bmagnin@usgs.gov organization: Colorado School of Mines – sequence: 2 givenname: Yvette D. orcidid: 0000-0002-8506-8180 surname: Kuiper fullname: Kuiper, Yvette D. organization: Colorado School of Mines – sequence: 3 givenname: Eric D. surname: Anderson fullname: Anderson, Eric D. organization: U.S. Geological Survey, Geology, Geochemistry, and Geophysics Science Center |
BookMark | eNp9kE1PGzEQhi0UJBLKjR9gqdds66_4o7dotVAkIiQI4ria3fVSRxs7tTcgeuqxx_7G_pK6hENPzGFmNHredzQzQxMfvEXonJJPlDDzmRHG1iUhSipxhKbUCFGYnCdoSpjShRJEnaBZShtCqFhIOUW_qs5BCxH8n5-_b2IXnlzrwOMVPG5hdGmLwXf4tqrwynkbYXA_8jh47Dwev1n8YEe8Cns_gvNpjsswhAhdmOP7u-UXfLXdDa59FSTch4gvwA22y5gfs11WDfjW9bl__ICOexiSPXurp-j-olqXX4vrm8urcnldAJdaFAvVGlAL2i6aRuhG95JraURjFNOWNyAN73pqWJPDdiCMahiVvdXaZnnP-Sn6ePDdxfB9b9NYb8I--ryyZppIqrgxMlPzA9XGkFK0fb2Lbgvxpaak_vfr-v9fZ5wf8Od83su7bL2uyjWjWgr-F5Rlg4s |
CitedBy_id | crossref_primary_10_1111_ter_12692 |
Cites_doi | 10.1130/L1062.1 10.1130/DNAG-GNA-C2 10.1016/j.oregeorev.2015.09.019 10.1130/L78.1 10.1130/0016-7606(1991)103<0415:TAORMO>2.3.CO;2 10.1130/0016-7606(1987)99<674:PCHOTW>2.0.CO;2 10.1130/0091-7613(1981)9<10:PTOTAR>2.0.CO;2 10.5802/crgeos.63 10.1144/gsjgs.138.1.0069 10.1130/ges02039.1 10.1130/G48140.1 10.1029/2002TC001369 10.1130/0091-7613(2000)28<735:IOPEFA>2.0.CO;2 10.1016/j.cageo.2018.03.006 10.1007/s00410-006-0077-4 10.1017/CBO9780511549816 10.3133/ofr0042 10.1130/g47513.1 10.1186/s40623-020-01288-x 10.1039/c1ja10172b 10.2113/34.1.37 10.1007/BF01132072 10.1130/0091-7613(1980)8<344:Csonmp>2.0.Co;2 10.1130/ges00681.1 10.1111/j.1751-908X.1995.tb00147.x 10.5066/P9XJ7FMM 10.5066/P9PISI0X 10.5066/P99YBJLX 10.1130/B26200.1 10.1130/B25659.1 10.1130/0016-7606(2001)113<0163:PMCAGE>2.0.CO;2 10.1130/GES00055.1 10.1130/0016-7606(1962)73[1047:PASOTS]2.0.CO;2 10.1130/0016-7606(1988)100<1846:PPASEO>2.3.CO;2 10.1130/B26565.1 10.1130/0016-7606(1985)96<1364:PPASEO>2.0.CO;2 10.3809/jvirtex.2000.00008 10.5066/P96YTJ5F 10.1130/GSATG518A.1 10.1130/L287.1 10.1130/GES00574.1 10.1016/j.lithos.2012.06.003 10.1007/BF02596759 10.1190/1.1439334 10.1016/S0009-2541(03)00005-6 10.1016/j.earscirev.2020.103219 10.1130/2022.1220(19) 10.1130/2021.2554(05) 10.25676/11124/16066 10.1016/j.chemgeo.2007.11.005 10.1130/SPE235-p49 10.2113/35.1.91 10.1016/S0009-2541(00)00239-4 10.1016/S0419-0254(06)80020-0 |
ContentType | Journal Article |
Copyright | 2023 The Authors. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA. 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Authors. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA. – notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P WIN AAYXX CITATION 7TG 7TN F1W H96 KL. L.G |
DOI | 10.1029/2022TC007674 |
DatabaseName | Wiley Online Library (Open Access Collection) Wiley-Blackwell Backfiles (Open access) CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Meteorological & Geoastrophysical Abstracts - Academic ASFA: Aquatic Sciences and Fisheries Abstracts |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 1944-9194 |
EndPage | n/a |
ExternalDocumentID | 10_1029_2022TC007674 TECT21864 |
Genre | researchArticle |
GeographicLocations | United States--US Oklahoma Colorado Wet Mountains |
GeographicLocations_xml | – name: Oklahoma – name: Wet Mountains – name: Colorado – name: United States--US |
GrantInformation_xml | – fundername: U.S. Geological Survey funderid: Earth Mapping Resources Initiative – fundername: Society of Economic Geologists Foundation funderid: SRG_21‐27 – fundername: Colorado Geological Survey funderid: G20AC00161 |
GroupedDBID | -DZ -~X 05W 0R~ 123 1OB 1OC 24P 31~ 33P 3V. 50Y 702 8-1 8FE 8FH 8G5 A00 AAESR AAHHS AAIHA AANLZ AASGY AAXRX AAZKR ABCUV ABJNI ABUWG ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOD ACPOU ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AENEX AEQDE AETEA AEUYR AFBPY AFFPM AFGKR AFKRA AFPWT AFZJQ AGCDD AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB ASPBG AVWKF AZFZN AZQEC AZVAB BDRZF BENPR BFHJK BHPHI BKSAR BMXJE BPHCQ BRXPI CCPQU CS3 DCZOG DPXWK DRFUL DRSTM DU5 DWQXO EBS EJD FA8 FEDTE G-S GNUQQ GODZA GUQSH HCIFZ HGLYW HVGLF HZ~ H~9 LATKE LEEKS LITHE LK5 LOXES LUTES LYRES M2O M2P M7R MEWTI MSFUL MSSTM MVM MXFUL MXSTM MY~ O9- OK1 P-X P2P P2W PCBAR PQQKQ PROAC R.K R05 RIWAO RJQFR ROL RXW SAMSI SJN SUPJJ TAE TAF TN5 UB1 UQL VJK WBKPD WH7 WIN WXSBR WYJ XJT XOL ZZTAW ~02 ~OA ~~A AAMNL AAYXX CITATION 7TG 7TN F1W H96 KL. L.G |
ID | FETCH-LOGICAL-a3684-57c9a751c5bb48b8f638694b9728e3ba693df192bbbbeda497b216fe88e684f33 |
IEDL.DBID | 33P |
ISSN | 0278-7407 |
IngestDate | Mon Nov 18 02:57:42 EST 2024 Fri Nov 22 01:31:45 EST 2024 Sat Aug 24 00:48:08 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a3684-57c9a751c5bb48b8f638694b9728e3ba693df192bbbbeda497b216fe88e684f33 |
ORCID | 0000-0002-8506-8180 0000-0001-9951-4404 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2022TC007674 |
PQID | 2806173996 |
PQPubID | 30885 |
PageCount | 28 |
ParticipantIDs | proquest_journals_2806173996 crossref_primary_10_1029_2022TC007674 wiley_primary_10_1029_2022TC007674_TECT21864 |
PublicationCentury | 2000 |
PublicationDate | April 2023 2023-04-00 20230401 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: April 2023 |
PublicationDecade | 2020 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Tectonics (Washington, D.C.) |
PublicationYear | 2023 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Keller G. R. (e_1_2_13_1_34_1) Christman R. A. (e_1_2_13_1_16_1) 1954 Minty B. R. S. (e_1_2_13_1_56_1) 1997; 17 e_1_2_13_1_93_1 e_1_2_13_1_91_1 e_1_2_13_1_30_1 e_1_2_13_1_51_1 e_1_2_13_1_76_1 e_1_2_13_1_53_1 Erslev E. A. (e_1_2_13_1_20_1) 2004; 160 Lindsey D. A. (e_1_2_13_1_41_1) 2010 e_1_2_13_1_36_1 e_1_2_13_1_78_1 Verplank P. L. (e_1_2_13_1_89_1) 2010 e_1_2_13_1_38_1 Plouff D. (e_1_2_13_1_65_1) 1977 Thomas W. A. (e_1_2_13_1_85_1) 2014 Strong T. R. (e_1_2_13_1_80_1) 2016 Alexander D. H. (e_1_2_13_1_3_1) 1981 Armbrustmacher T. J. (e_1_2_13_1_6_1) 1984 Scott G. R. (e_1_2_13_1_70_1) 1978 Brock M. R. (e_1_2_13_1_15_1) 1968 Reed J. C. (e_1_2_13_1_68_1) 1983 e_1_2_13_1_63_1 e_1_2_13_1_86_1 Morelli C. (e_1_2_13_1_57_1) 1974; 4 Keller G. R. (e_1_2_13_1_31_1) 2014; 38 e_1_2_13_1_84_1 e_1_2_13_1_21_1 e_1_2_13_1_23_1 e_1_2_13_1_44_1 e_1_2_13_1_69_1 McMillan N. J. (e_1_2_13_1_55_1) 2004 e_1_2_13_1_88_1 e_1_2_13_1_46_1 e_1_2_13_2_3_1 e_1_2_13_1_48_1 Taylor R. B. (e_1_2_13_1_81_1) 1974 e_1_2_13_1_19_1 Olson J. C. (e_1_2_13_1_59_1) 1974 e_1_2_13_1_13_1 e_1_2_13_1_11_1 Lambert P. W. (e_1_2_13_1_37_1) 1961 e_1_2_13_1_9_1 e_1_2_13_1_5_1 e_1_2_13_1_71_1 e_1_2_13_1_94_1 Armbrustmacher T. J. (e_1_2_13_1_7_1) 1988 e_1_2_13_1_50_1 e_1_2_13_1_92_1 Christman R. A. (e_1_2_13_1_17_1) 1959 e_1_2_13_1_52_1 e_1_2_13_1_75_1 e_1_2_13_1_73_1 e_1_2_13_1_33_1 e_1_2_13_1_79_1 Hansen W. R. (e_1_2_13_1_25_1) 1971 e_1_2_13_1_35_1 e_1_2_13_1_77_1 McLemore V. (e_1_2_13_1_54_1) 2020 e_1_2_13_1_39_1 Olson J. (e_1_2_13_1_58_1) 1977; 5 Shawe D. R. (e_1_2_13_1_72_1) 1967 Lipman P. W. (e_1_2_13_1_42_1) 1976 Luyendyk A. (e_1_2_13_1_47_1) 1997; 17 Hedlund D. C. (e_1_2_13_1_27_1) 1975 e_1_2_13_1_2_1 Keller G. R. (e_1_2_13_1_32_1) 1995 e_1_2_13_1_83_1 e_1_2_13_1_60_1 Pardo J. M. (e_1_2_13_1_61_1) 2008 International Association of Geodesy (e_1_2_13_1_29_1) 1971 Parker R. L. (e_1_2_13_1_62_1) 1970 e_1_2_13_1_64_1 Singewald Q. D. (e_1_2_13_1_74_1) 1955 e_1_2_13_1_22_1 e_1_2_13_1_66_1 e_1_2_13_1_26_1 e_1_2_13_1_49_1 Tweto O. (e_1_2_13_1_87_1) 1979 e_1_2_13_2_4_1 Guilbert J. M. (e_1_2_13_1_24_1) 1986 e_1_2_13_1_28_1 e_1_2_13_1_18_1 Lidiak E. G. (e_1_2_13_1_40_1) 2014 e_1_2_13_2_2_1 e_1_2_13_1_14_1 Taylor R. B. (e_1_2_13_1_82_1) 1975 e_1_2_13_1_12_1 Lipman P. W. (e_1_2_13_1_43_1) 1989 e_1_2_13_1_10_1 Ludwig K. R. (e_1_2_13_1_45_1) 2012 e_1_2_13_1_8_1 Reed J. C. (e_1_2_13_1_67_1) 1993 e_1_2_13_1_90_1 e_1_2_13_1_4_1 |
References_xml | – ident: e_1_2_13_1_64_1 doi: 10.1130/L1062.1 – start-page: 110 volume-title: Geology of North America: Precambrian: Conterminous U.S. year: 1993 ident: e_1_2_13_1_67_1 doi: 10.1130/DNAG-GNA-C2 contributor: fullname: Reed J. C. – ident: e_1_2_13_1_22_1 doi: 10.1016/j.oregeorev.2015.09.019 – ident: e_1_2_13_1_30_1 doi: 10.1130/L78.1 – ident: e_1_2_13_1_83_1 doi: 10.1130/0016-7606(1991)103<0415:TAORMO>2.3.CO;2 – start-page: 375 volume-title: Igneous and tectonic history of the Southern Oklahoma Aulacogen year: 2014 ident: e_1_2_13_1_85_1 contributor: fullname: Thomas W. A. – ident: e_1_2_13_1_9_1 doi: 10.1130/0016-7606(1987)99<674:PCHOTW>2.0.CO;2 – volume-title: Wet Mountains, Colorado, thorium investigations, 1952‐1954 (No. 354) year: 1954 ident: e_1_2_13_1_16_1 contributor: fullname: Christman R. A. – ident: e_1_2_13_1_35_1 doi: 10.1130/0091-7613(1981)9<10:PTOTAR>2.0.CO;2 – volume-title: Geology, mineralogy, and geochemistry of the McClure Mountain alkalic complex, Fremont County, Colorado, (Doctoral dissertation) year: 1981 ident: e_1_2_13_1_3_1 contributor: fullname: Alexander D. H. – volume-title: The geologic story of Colorado’s Sangre de Cristo Range (Circular 1349) year: 2010 ident: e_1_2_13_1_41_1 contributor: fullname: Lindsey D. A. – ident: e_1_2_13_1_49_1 doi: 10.5802/crgeos.63 – ident: e_1_2_13_1_21_1 doi: 10.1144/gsjgs.138.1.0069 – volume-title: Reconnaissance geologic map of the Royal Gorge quadrangle, Fremont and Custer Counties, Colorado (Miscellaneous Investigations Series Map 1‐369) year: 1975 ident: e_1_2_13_1_82_1 contributor: fullname: Taylor R. B. – ident: e_1_2_13_1_18_1 – ident: e_1_2_13_1_91_1 doi: 10.1130/ges02039.1 – ident: e_1_2_13_1_92_1 doi: 10.1130/G48140.1 – volume-title: The geology of Ore deposits year: 1986 ident: e_1_2_13_1_24_1 contributor: fullname: Guilbert J. M. – volume-title: Geologic map of the Black Canyon of the Gunnison River and vicinity, western Colorado (Miscellaneous investigations series Map I‐584) year: 1971 ident: e_1_2_13_1_25_1 contributor: fullname: Hansen W. R. – start-page: 1 volume-title: A deposit model for carbonatite and peralkaline intrusion‐related rare earth element deposits: Chapter J of mineral deposit models for resource assessment (Scientific Investigations Report 2010–5070–J year: 2010 ident: e_1_2_13_1_89_1 contributor: fullname: Verplank P. L. – year: 1971 ident: e_1_2_13_1_29_1 article-title: Geodetic reference system 1967 (No. 3) publication-title: Bulletin of Geodesy and Geomatics contributor: fullname: International Association of Geodesy – ident: e_1_2_13_1_13_1 doi: 10.1029/2002TC001369 – ident: e_1_2_13_1_53_1 doi: 10.1130/0091-7613(2000)28<735:IOPEFA>2.0.CO;2 – volume: 4 start-page: 1 year: 1974 ident: e_1_2_13_1_57_1 article-title: The international gravity standardization net 1971 publication-title: International Association of Geodesy contributor: fullname: Morelli C. – volume: 17 start-page: 31 year: 1997 ident: e_1_2_13_1_47_1 article-title: Processing of airborne magnetic data publication-title: AGSO Journal of Australian Geology and Geophysics contributor: fullname: Luyendyk A. – ident: e_1_2_13_1_90_1 doi: 10.1016/j.cageo.2018.03.006 – ident: e_1_2_13_2_3_1 doi: 10.1007/s00410-006-0077-4 – ident: e_1_2_13_1_11_1 doi: 10.1017/CBO9780511549816 – start-page: 105 volume-title: Igneous and tectonic history of the southern Oklahoma Aulacogen year: 2014 ident: e_1_2_13_1_40_1 contributor: fullname: Lidiak E. G. – volume-title: Geologic map of the Latir Volcanic Field and adjacent areas, northern New Mexico (Miscellaneous investigations series Map I–1907) year: 1989 ident: e_1_2_13_1_43_1 contributor: fullname: Lipman P. W. – ident: e_1_2_13_1_60_1 doi: 10.3133/ofr0042 – ident: e_1_2_13_1_69_1 doi: 10.1130/g47513.1 – volume-title: Mafic‐ultramafic layered intrusion at Iron Mountain, Fremont County, Colorado (No. 1251‐A) year: 1967 ident: e_1_2_13_1_72_1 contributor: fullname: Shawe D. R. – ident: e_1_2_13_1_4_1 doi: 10.1186/s40623-020-01288-x – ident: e_1_2_13_1_63_1 doi: 10.1039/c1ja10172b – ident: e_1_2_13_1_71_1 doi: 10.2113/34.1.37 – ident: e_1_2_13_2_2_1 doi: 10.1007/BF01132072 – volume: 17 start-page: 51 issue: 2 year: 1997 ident: e_1_2_13_1_56_1 article-title: Calibration and data processing for airborne gamma‐ray spectrometry publication-title: AGSO Journal of Australian Geology and Geophysics contributor: fullname: Minty B. R. S. – volume-title: Geologic map of the Lake City Caldera area, western San Juan Mountains, southwestern Colorado (Miscellaneous investigations series Map I‐962) year: 1976 ident: e_1_2_13_1_42_1 contributor: fullname: Lipman P. W. – volume-title: Geologic map of the Rudolph Hill quadrangle, Gunnison, Hinsdale, and Saguache Counties, Colorado (Geologic Quadrangle 1177) year: 1974 ident: e_1_2_13_1_59_1 contributor: fullname: Olson J. C. – volume-title: Mafic‐ultramafic rocks and associated carbonatites of the Gem Park complex, Custer and Fremont counties, Colorado (Prof. Paper 649) year: 1970 ident: e_1_2_13_1_62_1 contributor: fullname: Parker R. L. – start-page: 1 volume-title: A process for reducing rocks and concentrating heavy minerals (Open‐File Report 2016–1022 year: 2016 ident: e_1_2_13_1_80_1 contributor: fullname: Strong T. R. – ident: e_1_2_13_1_44_1 doi: 10.1130/0091-7613(1980)8<344:Csonmp>2.0.Co;2 – volume-title: Geology and thorium deposits of the Wet Mountains, Colorado: A progress report (No. 1072‐H) year: 1959 ident: e_1_2_13_1_17_1 contributor: fullname: Christman R. A. – ident: e_1_2_13_1_77_1 doi: 10.1130/ges00681.1 – ident: e_1_2_13_1_94_1 doi: 10.1111/j.1751-908X.1995.tb00147.x – ident: e_1_2_13_1_51_1 doi: 10.5066/P9XJ7FMM – volume-title: Petrology of the Precambrian rocks of part of the Monte Largo area, New Mexico (Master’s thesis) year: 1961 ident: e_1_2_13_1_37_1 contributor: fullname: Lambert P. W. – ident: e_1_2_13_1_23_1 doi: 10.5066/P9PISI0X – ident: e_1_2_13_1_88_1 doi: 10.5066/P99YBJLX – ident: e_1_2_13_1_5_1 doi: 10.1130/B26200.1 – start-page: 411 volume-title: Vision for discovery: Geology and Ore deposits of the Great Basin year: 2020 ident: e_1_2_13_1_54_1 contributor: fullname: McLemore V. – volume-title: Preliminary documentation for a FORTRAN program to compute gravity terrain corrections based on topography digitized on a geographic grid (Open File Report 77‐535) year: 1977 ident: e_1_2_13_1_65_1 contributor: fullname: Plouff D. – ident: e_1_2_13_1_2_1 doi: 10.1130/B25659.1 – start-page: 427 volume-title: Continental rifts: Evolution, structure, tectonics year: 1995 ident: e_1_2_13_1_32_1 contributor: fullname: Keller G. R. – issue: 5 year: 2012 ident: e_1_2_13_1_45_1 article-title: Isoplot 3.75: A geochronological tool‐kit for microsoft excel publication-title: Berkeley Geochronology Center Special Publication contributor: fullname: Ludwig K. R. – ident: e_1_2_13_1_86_1 doi: 10.1130/0016-7606(2001)113<0163:PMCAGE>2.0.CO;2 – volume: 160 start-page: 181 year: 2004 ident: e_1_2_13_1_20_1 article-title: Laramide minor faulting in the Colorado Front Range publication-title: New Mexico Bureau of Geology & Mineral Resources contributor: fullname: Erslev E. A. – start-page: 127 volume-title: The southern Oklahoma and Dniepr‐Donets aulacogens: A comparative analysis ident: e_1_2_13_1_34_1 contributor: fullname: Keller G. R. – ident: e_1_2_13_1_93_1 doi: 10.1130/GES00055.1 – volume: 5 start-page: 673 issue: 6 year: 1977 ident: e_1_2_13_1_58_1 article-title: Age and tectonic setting of Lower Paleozoic alkalic and mafic rocks, carbonatites, and thorium veins in south central Colorado publication-title: US Geological Survey Journal of Research contributor: fullname: Olson J. – ident: e_1_2_13_1_14_1 doi: 10.1130/0016-7606(1962)73[1047:PASOTS]2.0.CO;2 – volume-title: Geologic map of the Latir Peak and Wheeler Peak Wildernesses and Columbine‐Hondo Wilderness study area, Taos County, New Mexico (Miscellaneous Field Studies Map 1570) year: 1983 ident: e_1_2_13_1_68_1 contributor: fullname: Reed J. C. – volume-title: Alkaline rock complexes in the Wet Mountains area, Custer and Fremont counties, Colorado (No. 1269) year: 1984 ident: e_1_2_13_1_6_1 contributor: fullname: Armbrustmacher T. J. – volume: 38 start-page: 389 year: 2014 ident: e_1_2_13_1_31_1 article-title: The Southern Oklahoma Aulacogen: It’s a classic publication-title: Oklahoma Geological Survey contributor: fullname: Keller G. R. – ident: e_1_2_13_1_66_1 doi: 10.1130/0016-7606(1988)100<1846:PPASEO>2.3.CO;2 – ident: e_1_2_13_1_46_1 doi: 10.1130/B26565.1 – ident: e_1_2_13_1_38_1 doi: 10.1130/0016-7606(1985)96<1364:PPASEO>2.0.CO;2 – ident: e_1_2_13_1_12_1 doi: 10.3809/jvirtex.2000.00008 – volume-title: Geologic map of the Pueblo 1 degree x 2 degrees quadrangle, south‐central Colorado (Miscellaneous Investigations Series Map I‐1022) year: 1978 ident: e_1_2_13_1_70_1 contributor: fullname: Scott G. R. – ident: e_1_2_13_1_52_1 doi: 10.5066/P96YTJ5F – ident: e_1_2_13_1_19_1 doi: 10.1130/GSATG518A.1 – ident: e_1_2_13_1_39_1 doi: 10.1130/L287.1 – ident: e_1_2_13_1_84_1 doi: 10.1130/GES00574.1 – ident: e_1_2_13_1_26_1 doi: 10.1016/j.lithos.2012.06.003 – volume-title: Geologic map of the Mount Tyndall quadrangle, Custer County, Colorado (Map GQ‐596) year: 1968 ident: e_1_2_13_1_15_1 contributor: fullname: Brock M. R. – volume-title: Reconnaissance geologic map of the Deer Peak quadrangle and southern part of the Hardscrabble Mountain quadrangle, Custer and Huerfano Counties, Colorado (Miscellaneous Investigations Series Map I‐870) year: 1974 ident: e_1_2_13_1_81_1 contributor: fullname: Taylor R. B. – ident: e_1_2_13_1_76_1 – ident: e_1_2_13_1_28_1 doi: 10.1007/BF02596759 – start-page: 1 volume-title: Tectonics, geochronology, and volcanism in the southern Rocky Mountains and the Rio Grande Rift year: 2004 ident: e_1_2_13_1_55_1 contributor: fullname: McMillan N. J. – ident: e_1_2_13_1_8_1 doi: 10.1190/1.1439334 – volume-title: Geologic Map of Colorado (Map MI‐16) year: 1979 ident: e_1_2_13_1_87_1 contributor: fullname: Tweto O. – ident: e_1_2_13_2_4_1 doi: 10.1016/S0009-2541(03)00005-6 – ident: e_1_2_13_1_78_1 doi: 10.1016/j.earscirev.2020.103219 – volume-title: Geology and resources of thorium and associated elements in the Wet Mountains area, Fremont and Custer counties, Colorado (No. 1094‐F) year: 1988 ident: e_1_2_13_1_7_1 contributor: fullname: Armbrustmacher T. J. – volume-title: Geologic map of the Powderhorn quadrangle, Gunnison and Saguache Counties, Colorado (Geologic Quadrangle 1178) year: 1975 ident: e_1_2_13_1_27_1 contributor: fullname: Hedlund D. C. – volume-title: Geologic and radiometric maps of the McKinley Mountain area, Wet Mountains, Colorado (Investigations Field Studies Map MF‐37) year: 1955 ident: e_1_2_13_1_74_1 contributor: fullname: Singewald Q. D. – ident: e_1_2_13_1_48_1 doi: 10.1130/2022.1220(19) – ident: e_1_2_13_1_36_1 doi: 10.1130/2021.2554(05) – ident: e_1_2_13_1_50_1 doi: 10.25676/11124/16066 – ident: e_1_2_13_1_75_1 doi: 10.1016/j.chemgeo.2007.11.005 – ident: e_1_2_13_1_10_1 doi: 10.1130/SPE235-p49 – ident: e_1_2_13_1_73_1 doi: 10.2113/35.1.91 – ident: e_1_2_13_1_79_1 doi: 10.1016/S0009-2541(00)00239-4 – volume-title: An integrated geophysical study of the Wet Mountains, southern Colorado [Conference presentation] year: 2008 ident: e_1_2_13_1_61_1 contributor: fullname: Pardo J. M. – ident: e_1_2_13_1_33_1 doi: 10.1016/S0419-0254(06)80020-0 |
SSID | ssj0014566 |
Score | 2.4400892 |
Snippet | Structures associated with Ediacaran‐Ordovician alkaline magmatism and the timing of rare earth element (REE) mineralization in the Wet Mountains, CO, were... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Ablation airborne geophysics Cambrian Coastal inlets Dikes Direction Earth Earth crust Embankments Fault lines Faults faults and fractures Fractures geochronology Geophysical data Green energy Isotopes Lava Magma Magnetic data Mass spectrometry Mass spectroscopy Mineral deposits Mineralization Minerals Monazite Mountains Ordovician Rare earth elements Rifting Southern Oklahoma Aulacogen Thorium Uranium Veins (geology) Wet Mountains |
Title | Ediacaran‐Ordovician Magmatism and REE Mineralization in the Wet Mountains, Colorado, USA: Implications for Failed Continental Rifting |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2022TC007674 https://www.proquest.com/docview/2806173996 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZapEq9FOhDXV6aQ3vbqLtxEjsckNCSLRy2rWBRe4vGsY32QBZtAIkbR478Rn4JM94sbC-VUHO2LSvj8XyexzdCfPFIMACNjIzSSZRUfR8Zm8ooST0ZoDi2WcWu7MMT9eOPPiiYJmdvUQsz54d4crixZoT7mhUcTdOSDTBHJr3aY3aLMxsNXcH0UAgVHPLXUxCBsEEIVcaKKTN7qs17p-nflif_bZGeYeYyWA3WZrj6v_tcE-9anAn784OxLl65-r148z308b35IO4KOhcVkqF6uL3_ObPT6-DegBGeMYRtzgFrC8dFAaNJ4KVuyzVhUgNBRvjtLmHEbSZwUjddGNCyM7TTLpye7O_C0VKaOhAqhiHS1i0wFRYtxwWYcDzxnHH9UZwOi_HgMGqbMkQoMxJnqqocVdqvUmMSbbQnBc7yxOQq1k4azHJpPcFGQ5-zmOTKxP3MO60dTfdSfhIr9bR2nwW4JI-x1zPKID0CtUedcTohSplbAhq2I74uBFNezLk3yhAzj_Ny-a92xNZCamWrgU3JEeO-IviVdUQ3yOefa5TjYjDm_lzJxsuGb4q33IF-nsyzJVYuZ1duW7xu7NVOOI2PcoPdwA |
link.rule.ids | 315,782,786,1408,27934,27935,46065,46489 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB71IQQXSnmIQKFzKLdYJN61d80FValDqjYFtangZu16d1EOOChpkbhx5Mhv5Jcws3FKuCAhfPauVp4Zz7fz-AbgIBiCAcaKxCotE1n3Q2JdJhKZBXJAaerymkPZowt19kEflUyT83rVC7Pkh7gJuLFlxP81GzgHpFu2ASbJpGt7ynFxpqPZhG2ZS81qLcS7mzQCoYOYrEwVk2b2VFv5Tutfrq_-0yf9BprrcDX6m-HOf5_0HtxtoSYeLnVjFzZ8cx9uvYmjfL8-gO8lqUZtyFf9_Pbj7dzNvsQIB47NR0axi09oGofnZYnjaaSmbjs2cdogoUZ8769wzJMmzLRZdHFA286Nm3Xx8uLwFR6vVaojAWMcGjq7Q2bDou24BxPPp4GLrh_C5bCcDEZJO5chMSIniWaqLozK-nVmrdRWB7LhvJC2UKn2wpq8EC4QcrT0eGdkoWzaz4PX2tPyIMQj2GpmjX8M6GWRml7PKmvoHqiD0TlXFBohCkdYw3XgxUoy1ecl_UYV0-ZpUa1_1Q7srcRWtUa4qDhp3FeEwPIOdKOA_rpHNSkHEx7RJZ_82-v7cHs0GZ9Wp8dnJ0_hDg-kX9b27MHW1fzaP4PNhbt-HlXzF4614ek |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB71IRAXoDxEoMAcyi0WiXftXfeAVKUOrWjaqk0FN2vXu4tywKmSFokbxx75jfwSZjZOCRckhM-e1cqz4_l2Ht8A7ARDMMBYkVilZSLrfkisy0Qis0AOKE1dXnMo--BcHX_S-yXT5Lxb9sIs-CFuA25sGfF_zQZ-6UJLNsAcmXRrTzkszmw067ApCYlzSZ8Qp7dZBAIHMVeZKubM7Km28J3k365K_-mSfuPMVbQa3c3wwf9u9CHcb4Em7i1Oxhas-eYR3HkfB_l-eww3JR2M2pCn-vn9x8nMTb_G-AaOzGfGsPMvaBqHZ2WJo0kkpm77NXHSIGFG_OivcMRzJsykmXdxQMvOjJt28eJ8bxcPV-rUkWAxDg1t3SFzYdFy3IGJZ5PAJddP4GJYjgcHSTuVITEiJ31mqi6Myvp1Zq3UVgey4LyQtlCp9sKavBAuEG609HhnZKFs2s-D19qTeBDiKWw008Y_A_SySE2vZ5U1dAvUweic6wmNEIUjpOE68GapmOpyQb5RxaR5WlSrX7UD20utVa0JzitOGfcV4a-8A92on7-uUY3LwZgHdMnn__b6a7h7uj-sjg6PP7yAezyNflHYsw0bV7Nr_xLW5-76VTyYvwDewuCP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ediacaran%E2%80%90Ordovician+Magmatism+and+REE+Mineralization+in+the+Wet+Mountains%2C+Colorado%2C+USA%3A+Implications+for+Failed+Continental+Rifting&rft.jtitle=Tectonics+%28Washington%2C+D.C.%29&rft.au=Magnin%2C+Benjamin+P.&rft.au=Kuiper%2C+Yvette+D.&rft.au=Anderson%2C+Eric+D.&rft.date=2023-04-01&rft.issn=0278-7407&rft.eissn=1944-9194&rft.volume=42&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2022TC007674&rft.externalDBID=10.1029%252F2022TC007674&rft.externalDocID=TECT21864 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-7407&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-7407&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-7407&client=summon |