Mechanisms of Directed Self-Assembly in Cylindrical Hole Confinements

The directed self-assembly of block copolymers in cylindrical holes is a promising technology for lithographic patterning, particularly in the context of vertical interconnect accesses. While the hole-shrink process for single cylinders has been extensively explored, the proliferation of morphologic...

Full description

Saved in:
Bibliographic Details
Published in:Macromolecules Vol. 51; no. 7; pp. 2418 - 2427
Main Authors: Bezik, Cody T, Garner, Grant P, de Pablo, Juan J
Format: Journal Article
Language:English
Published: United States American Chemical Society 10-04-2018
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The directed self-assembly of block copolymers in cylindrical holes is a promising technology for lithographic patterning, particularly in the context of vertical interconnect accesses. While the hole-shrink process for single cylinders has been extensively explored, the proliferation of morphological defects remains a significant technological barrier. We use a coarse-grained model to explore morphologies that form within cylindrical confinements for combinations of template surface energies. We identify metastable defect morphologies, in addition to the desired cylindrical morphology, in majority-wetting sidewall templates. We use our coarse-grained model and the string method to identify transition pathways between defective morphologies and the cylindrical morphology to elucidate the mechanism of defect annihilation within the confinements; the transition pathway from a disordered state is also identified. This work demonstrates that the minimum free energy path for the formation of a cylinder goes through defective morphologies and that designing confinements can eliminate these undesirable transition states.
AbstractList The directed self-assembly of block copolymers in cylindrical holes is a promising technology for lithographic patterning, particularly in the context of vertical interconnect accesses. While the hole-shrink process for single cylinders has been extensively explored, the proliferation of morphological defects remains a significant technological barrier. We use a coarse-grained model to explore morphologies that form within cylindrical confinements for combinations of template surface energies. We identify metastable defect morphologies, in addition to the desired cylindrical morphology, in majority-wetting sidewall templates. We use our coarse-grained model and the string method to identify transition pathways between defective morphologies and the cylindrical morphology to elucidate the mechanism of defect annihilation within the confinements; the transition pathway from a disordered state is also identified. This work demonstrates that the minimum free energy path for the formation of a cylinder goes through defective morphologies and that designing confinements can eliminate these undesirable transition states.
We report the directed self-assembly of block copolymers in cylindrical holes is a promising technology for lithographic patterning, particularly in the context of vertical interconnect accesses. While the hole-shrink process for single cylinders has been extensively explored, the proliferation of morphological defects remains a significant technological barrier. We use a coarse grained model to explore morphologies that form within cylindrical confinements for combinations of template surface energies. We identify metastable defect morphologies, in addition to the desired cylindrical morphology, in majority-wetting sidewall templates. We use our coarse-grained model and the string method to identify transition pathways between defective morphologies and the cylindrical morphology to elucidate the mechanism of defect annihilation within the confinements; the transition pathway from a disordered state is also identified. Lastly, this work demonstrates that the minimum free energy path for the formation of a cylinder goes through defective morphologies and that designing confinements can eliminate these undesirable transition states.
Author de Pablo, Juan J
Bezik, Cody T
Garner, Grant P
AuthorAffiliation University of Chicago
Institute for Molecular Engineering
AuthorAffiliation_xml – name: Institute for Molecular Engineering
– name: University of Chicago
Author_xml – sequence: 1
  givenname: Cody T
  orcidid: 0000-0002-1940-4895
  surname: Bezik
  fullname: Bezik, Cody T
  organization: University of Chicago
– sequence: 2
  givenname: Grant P
  surname: Garner
  fullname: Garner, Grant P
  organization: University of Chicago
– sequence: 3
  givenname: Juan J
  orcidid: 0000-0002-3526-516X
  surname: de Pablo
  fullname: de Pablo, Juan J
  email: depablo@uchicago.edu
  organization: University of Chicago
BackLink https://www.osti.gov/servlets/purl/1498499$$D View this record in Osti.gov
BookMark eNp9kD1PwzAQhi0EEm3hHzBY7Cn-Tj1WoVCkIgZgthznLFwlNrLD0H9PqpaV6YZ7n9N7zxxdxhQBoTtKlpQw-mBdWQ7W5TSkflm3hCmuL9CMSkYqueLyEs0IYaLSTNfXaF7KnhBKpeAztHkF92VjKEPByePHkMGN0OF36H21LgWGtj_gEHFz6EPscnC2x9vUA25S9CHCAHEsN-jK277A7Xku0OfT5qPZVru355dmvassV3KstKMdn1ox5VtPOFO116RmoqNetKqzVEFtV0RJ6RgwS0A4a4HVXINWSmi-QPenu6mMwRQXxqm9SzFOpQ0VeiX0MSROoUlIKRm8-c5hsPlgKDFHX2byZf58mbOvCSMn7Ljdp58cp0_-R34BB3Fzdw
CitedBy_id crossref_primary_10_1021_acsnano_8b08382
crossref_primary_10_1021_acs_macromol_0c00983
crossref_primary_10_3740_MRSK_2019_29_12_804
crossref_primary_10_1116_1_5121541
Cites_doi 10.1021/ma0257696
10.1126/science.1111041
10.2494/photopolymer.28.689
10.1002/1521-4095(200108)13:15<1152::AID-ADMA1152>3.0.CO;2-5
10.1038/nature01775
10.1002/adma.200800826
10.1117/12.2011238
10.1103/PhysRevLett.113.168301
10.1063/1.1389766
10.1021/ma052151y
10.1117/12.2085819
10.1063/1.2212942
10.1117/12.2086090
10.1002/polb.23652
10.1021/acs.macromol.6b01088
10.1021/ma902332h
10.1103/PhysRevLett.91.196101
10.1103/PhysRevB.66.052301
10.1103/PhysRevLett.108.228103
10.1002/adma.200601421
10.1021/nn100686v
10.1021/ma00102a025
10.1021/ma061630+
10.1002/polb.23630
10.1117/12.2012353
10.1117/12.2045328
10.1073/pnas.0705830104
10.1021/ma900667w
10.1117/12.915652
10.1117/12.2065508
10.1073/pnas.1508225112
10.1093/acprof:oso/9780198567295.003.0001
10.1103/PhysRevLett.108.065502
10.1063/1.3130083
10.1038/nmat1211
10.1016/j.mee.2013.03.025
10.1117/12.2011477
10.1103/PhysRevLett.102.197801
10.1021/nl9004833
10.7567/JJAP.55.06GE01
10.1126/science.1157626
10.1016/j.cplett.2007.08.017
10.1103/PhysRevLett.96.138306
10.1021/ma702514v
10.1063/1.2720838
10.1021/ma025879c
10.1021/nn700164p
10.1063/1.5004181
10.1103/PhysRevLett.106.168101
10.1103/PhysRevLett.104.148301
10.1117/12.2046187
10.1002/polb.23452
10.1021/jp0455430
10.1116/1.4929884
ContentType Journal Article
CorporateAuthor Argonne National Lab. (ANL), Argonne, IL (United States)
CorporateAuthor_xml – name: Argonne National Lab. (ANL), Argonne, IL (United States)
DBID AAYXX
CITATION
OIOZB
OTOTI
DOI 10.1021/acs.macromol.7b02639
DatabaseName CrossRef
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Engineering
EISSN 1520-5835
EndPage 2427
ExternalDocumentID 1498499
10_1021_acs_macromol_7b02639
c57881750
GroupedDBID .K2
53G
55A
5GY
5VS
7~N
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
P2P
ROL
TN5
TWZ
UI2
VF5
VG9
W1F
WH7
X
YZZ
-~X
4.4
AAHBH
AAYXX
ABJNI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
ABFRP
OIOZB
OTOTI
ID FETCH-LOGICAL-a365t-9c1d315226fbf03267f90724d1f4b6da16e7a80655c2e2a0e4caae2739e966493
IEDL.DBID ACS
ISSN 0024-9297
IngestDate Thu May 18 18:37:53 EDT 2023
Fri Aug 23 02:20:02 EDT 2024
Thu Aug 27 13:42:32 EDT 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a365t-9c1d315226fbf03267f90724d1f4b6da16e7a80655c2e2a0e4caae2739e966493
Notes National Institute of Standards and Technology (NIST) - Center for Hierarchical Materials Design (CHiMaD)
AC02-06CH11357
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division
ORCID 0000-0002-1940-4895
0000-0002-3526-516X
000000023526516X
0000000219404895
OpenAccessLink https://www.osti.gov/servlets/purl/1498499
PageCount 10
ParticipantIDs osti_scitechconnect_1498499
crossref_primary_10_1021_acs_macromol_7b02639
acs_journals_10_1021_acs_macromol_7b02639
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2018-04-10
PublicationDateYYYYMMDD 2018-04-10
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-10
  day: 10
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Macromolecules
PublicationTitleAlternate Macromolecules
PublicationYear 2018
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref8/cit8
  doi: 10.1021/ma0257696
– ident: ref11/cit11
  doi: 10.1126/science.1111041
– ident: ref25/cit25
  doi: 10.2494/photopolymer.28.689
– ident: ref7/cit7
  doi: 10.1002/1521-4095(200108)13:15<1152::AID-ADMA1152>3.0.CO;2-5
– ident: ref13/cit13
  doi: 10.1038/nature01775
– ident: ref16/cit16
  doi: 10.1002/adma.200800826
– ident: ref26/cit26
  doi: 10.1117/12.2011238
– ident: ref36/cit36
  doi: 10.1103/PhysRevLett.113.168301
– ident: ref17/cit17
  doi: 10.1063/1.1389766
– ident: ref34/cit34
  doi: 10.1021/ma052151y
– ident: ref22/cit22
  doi: 10.1117/12.2085819
– ident: ref49/cit49
  doi: 10.1063/1.2212942
– ident: ref23/cit23
  doi: 10.1117/12.2086090
– ident: ref28/cit28
  doi: 10.1002/polb.23652
– ident: ref39/cit39
  doi: 10.1021/acs.macromol.6b01088
– ident: ref44/cit44
  doi: 10.1021/ma902332h
– ident: ref10/cit10
  doi: 10.1103/PhysRevLett.91.196101
– ident: ref45/cit45
  doi: 10.1103/PhysRevB.66.052301
– ident: ref54/cit54
  doi: 10.1103/PhysRevLett.108.228103
– ident: ref18/cit18
  doi: 10.1002/adma.200601421
– ident: ref3/cit3
  doi: 10.1021/nn100686v
– ident: ref40/cit40
  doi: 10.1021/ma00102a025
– ident: ref31/cit31
  doi: 10.1021/ma061630+
– ident: ref38/cit38
  doi: 10.1002/polb.23630
– ident: ref19/cit19
  doi: 10.1117/12.2012353
– ident: ref21/cit21
  doi: 10.1117/12.2045328
– ident: ref51/cit51
  doi: 10.1073/pnas.0705830104
– ident: ref32/cit32
  doi: 10.1021/ma900667w
– ident: ref5/cit5
  doi: 10.1117/12.915652
– ident: ref6/cit6
  doi: 10.1117/12.2065508
– ident: ref37/cit37
  doi: 10.1073/pnas.1508225112
– ident: ref41/cit41
  doi: 10.1093/acprof:oso/9780198567295.003.0001
– ident: ref15/cit15
  doi: 10.1103/PhysRevLett.108.065502
– ident: ref48/cit48
  doi: 10.1063/1.3130083
– ident: ref2/cit2
  doi: 10.1038/nmat1211
– ident: ref4/cit4
  doi: 10.1016/j.mee.2013.03.025
– ident: ref20/cit20
  doi: 10.1117/12.2011477
– ident: ref42/cit42
  doi: 10.1103/PhysRevLett.102.197801
– ident: ref1/cit1
  doi: 10.1021/nl9004833
– ident: ref27/cit27
  doi: 10.7567/JJAP.55.06GE01
– ident: ref14/cit14
  doi: 10.1126/science.1157626
– ident: ref50/cit50
  doi: 10.1016/j.cplett.2007.08.017
– ident: ref30/cit30
  doi: 10.1103/PhysRevLett.96.138306
– ident: ref43/cit43
  doi: 10.1021/ma702514v
– ident: ref46/cit46
  doi: 10.1063/1.2720838
– ident: ref9/cit9
  doi: 10.1021/ma025879c
– ident: ref12/cit12
  doi: 10.1021/nn700164p
– ident: ref33/cit33
  doi: 10.1063/1.5004181
– ident: ref53/cit53
  doi: 10.1103/PhysRevLett.106.168101
– ident: ref52/cit52
  doi: 10.1103/PhysRevLett.104.148301
– ident: ref24/cit24
  doi: 10.1117/12.2046187
– ident: ref29/cit29
  doi: 10.1002/polb.23452
– ident: ref47/cit47
  doi: 10.1021/jp0455430
– ident: ref35/cit35
  doi: 10.1116/1.4929884
SSID ssj0011543
Score 2.3362467
Snippet The directed self-assembly of block copolymers in cylindrical holes is a promising technology for lithographic patterning, particularly in the context of...
We report the directed self-assembly of block copolymers in cylindrical holes is a promising technology for lithographic patterning, particularly in the...
SourceID osti
crossref
acs
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 2418
SubjectTerms ENGINEERING
MATERIALS SCIENCE
Title Mechanisms of Directed Self-Assembly in Cylindrical Hole Confinements
URI http://dx.doi.org/10.1021/acs.macromol.7b02639
https://www.osti.gov/servlets/purl/1498499
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ07T8MwEMctWgZYeCNKAXlgYXCJEzdORhRadYGlILFFfkWqlCaItEO_PXd5IBgq1DWyEuts537nv-9MyH0gncVCYIxb5zERC8O0NpqFgTQqgq5HGrcGZnP5-hE9T7BMzmiLgu_zR2Wq0VLVh9PykdQQMwRxj-z7EmABUSiZ_6gGgAONouwLBm5fdqlyW96CDslUfxxSv4SF9cvBTI937doJOWpRkj41Y39K9lxxRg6S7ga3czJ5cZjXu6iWFS0z2vzdnKVzl2cM1d6lzjd0UdBkA7Bp62IhdFbmjmIeIOBnnf52Qd6nk7dkxtprE5gKwvGKxYbbgCNXZTrzAM9kBhGwLyzPhA6t4qGTCvXUsfGdrzwnjFIOMCZ2EPuIOLgk_aIs3BWhQksgKs2lBXLhxkZSO50JAdSBji0bkAewQdpO-yqtFW2fp_iwM0zaGmZAWGfn9LOppPFP-yEORgokgOVsDZ77MSsIVeIIorTrHb48JIeAORFqQNy7If3V19rdkl5l13f1_PkGa0bDeQ
link.rule.ids 230,315,782,786,887,2769,27085,27933,27934,56747,56797
linkProvider American Chemical Society
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ07T8MwEMctWoay8EaU8vDAwmCIEydORlRaFdF2aZHYovgRqVKaItIO_fbcJQ2PASFYrci2Lnbud_n7zoRce9IaLATGuLEOE5HQTCmtWOBJnYQw9VDhr4HBRI5fwocelsnx61wYmEQBPRWliP9ZXYDfYds8Kc-oZbdSQejgRQ2y7QfAw0hE3cmHeABUUAnLrmDg_WWdMfdDL-iXdPHNLzUXsL---Jn-3j9nuE92N2BJ76uVcEC2bH5IWt36Prcj0htZzPKdFfOCLlJafeusoRObpQy137nK1nSW0-4a0NOUpUPoYJFZilmBAKNlMtwxee73pt0B21yiwBIv8Jcs0tx4HCkrVakDsCZTiIddYXgqVGASHliZoLrqa9e6iWOFThILUBNZiIRE5J2QZr7I7SmhQkngK8WlAY7h2oRSWZUKAQyCbi5tkxuwQbzZBEVc6tsuj7GxNky8MUybsNrc8WtVV-OX5zv4TmLgAixuq_EUkF5C4BKFELOd_WHkK9IaTEfDePg4fuqQHQCgENUh7pyT5vJtZS9IozCry3JJvQPgJ8vm
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PS8MwFMeDTlAv_hbn_JGDFw_Rpc2a9ji6jYk6hCl4K80vGHTrsNth_73vdd3Qg4h4DSUJr0nf5_Wb90LIjS-twUJgjBvbZCISmimlFQt8qdMQph4q_DXQH8rBe9jpYpmc9VVfMIkCeipKER939dS4qsIAv8f2cVqeU8vupILwwY82yVYrkBHGXe14uBYQgAyW4rInGBCAXGXN_dAL-iZdfPNNtRz22Bdf09v_xywPyF4FmLS9XBGHZMNOjshOvLrX7Zh0ny1m-46KcUFzR5ffPGvo0GaOoQY8VtmCjiY0XgCCmrKECO3nmaWYHQhQWibFnZC3Xvc17rPqMgWW-kFrxiLNjc-RtpxyTYA26SAu9oThTqjApDywMkWVtaU966VNK3SaWoCbyEJEJCL_lNQm-cSeESqUBM5SXBrgGa5NKJVVTghgEXR3rk5uwQZJtRmKpNS5PZ5g48owSWWYOmErkyfTZX2NX55v4HtJgA-wyK3G00B6BgFMFELsdv6Hka_J9kunlzw9DB4bZBc4KESRiDcvSG32MbeXZLMw86tyVX0CpoHOaQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanisms+of+Directed+Self-Assembly+in+Cylindrical+Hole+Confinements&rft.jtitle=Macromolecules&rft.au=Bezik%2C+Cody+T&rft.au=Garner%2C+Grant+P&rft.au=de+Pablo%2C+Juan+J&rft.date=2018-04-10&rft.pub=American+Chemical+Society&rft.issn=0024-9297&rft.eissn=1520-5835&rft.volume=51&rft.issue=7&rft.spage=2418&rft.epage=2427&rft_id=info:doi/10.1021%2Facs.macromol.7b02639&rft.externalDocID=c57881750
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-9297&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-9297&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-9297&client=summon