Mechanisms of Directed Self-Assembly in Cylindrical Hole Confinements
The directed self-assembly of block copolymers in cylindrical holes is a promising technology for lithographic patterning, particularly in the context of vertical interconnect accesses. While the hole-shrink process for single cylinders has been extensively explored, the proliferation of morphologic...
Saved in:
Published in: | Macromolecules Vol. 51; no. 7; pp. 2418 - 2427 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
American Chemical Society
10-04-2018
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The directed self-assembly of block copolymers in cylindrical holes is a promising technology for lithographic patterning, particularly in the context of vertical interconnect accesses. While the hole-shrink process for single cylinders has been extensively explored, the proliferation of morphological defects remains a significant technological barrier. We use a coarse-grained model to explore morphologies that form within cylindrical confinements for combinations of template surface energies. We identify metastable defect morphologies, in addition to the desired cylindrical morphology, in majority-wetting sidewall templates. We use our coarse-grained model and the string method to identify transition pathways between defective morphologies and the cylindrical morphology to elucidate the mechanism of defect annihilation within the confinements; the transition pathway from a disordered state is also identified. This work demonstrates that the minimum free energy path for the formation of a cylinder goes through defective morphologies and that designing confinements can eliminate these undesirable transition states. |
---|---|
AbstractList | The directed self-assembly of block copolymers in cylindrical holes is a promising technology for lithographic patterning, particularly in the context of vertical interconnect accesses. While the hole-shrink process for single cylinders has been extensively explored, the proliferation of morphological defects remains a significant technological barrier. We use a coarse-grained model to explore morphologies that form within cylindrical confinements for combinations of template surface energies. We identify metastable defect morphologies, in addition to the desired cylindrical morphology, in majority-wetting sidewall templates. We use our coarse-grained model and the string method to identify transition pathways between defective morphologies and the cylindrical morphology to elucidate the mechanism of defect annihilation within the confinements; the transition pathway from a disordered state is also identified. This work demonstrates that the minimum free energy path for the formation of a cylinder goes through defective morphologies and that designing confinements can eliminate these undesirable transition states. We report the directed self-assembly of block copolymers in cylindrical holes is a promising technology for lithographic patterning, particularly in the context of vertical interconnect accesses. While the hole-shrink process for single cylinders has been extensively explored, the proliferation of morphological defects remains a significant technological barrier. We use a coarse grained model to explore morphologies that form within cylindrical confinements for combinations of template surface energies. We identify metastable defect morphologies, in addition to the desired cylindrical morphology, in majority-wetting sidewall templates. We use our coarse-grained model and the string method to identify transition pathways between defective morphologies and the cylindrical morphology to elucidate the mechanism of defect annihilation within the confinements; the transition pathway from a disordered state is also identified. Lastly, this work demonstrates that the minimum free energy path for the formation of a cylinder goes through defective morphologies and that designing confinements can eliminate these undesirable transition states. |
Author | de Pablo, Juan J Bezik, Cody T Garner, Grant P |
AuthorAffiliation | University of Chicago Institute for Molecular Engineering |
AuthorAffiliation_xml | – name: Institute for Molecular Engineering – name: University of Chicago |
Author_xml | – sequence: 1 givenname: Cody T orcidid: 0000-0002-1940-4895 surname: Bezik fullname: Bezik, Cody T organization: University of Chicago – sequence: 2 givenname: Grant P surname: Garner fullname: Garner, Grant P organization: University of Chicago – sequence: 3 givenname: Juan J orcidid: 0000-0002-3526-516X surname: de Pablo fullname: de Pablo, Juan J email: depablo@uchicago.edu organization: University of Chicago |
BackLink | https://www.osti.gov/servlets/purl/1498499$$D View this record in Osti.gov |
BookMark | eNp9kD1PwzAQhi0EEm3hHzBY7Cn-Tj1WoVCkIgZgthznLFwlNrLD0H9PqpaV6YZ7n9N7zxxdxhQBoTtKlpQw-mBdWQ7W5TSkflm3hCmuL9CMSkYqueLyEs0IYaLSTNfXaF7KnhBKpeAztHkF92VjKEPByePHkMGN0OF36H21LgWGtj_gEHFz6EPscnC2x9vUA25S9CHCAHEsN-jK277A7Xku0OfT5qPZVru355dmvassV3KstKMdn1ox5VtPOFO116RmoqNetKqzVEFtV0RJ6RgwS0A4a4HVXINWSmi-QPenu6mMwRQXxqm9SzFOpQ0VeiX0MSROoUlIKRm8-c5hsPlgKDFHX2byZf58mbOvCSMn7Ljdp58cp0_-R34BB3Fzdw |
CitedBy_id | crossref_primary_10_1021_acsnano_8b08382 crossref_primary_10_1021_acs_macromol_0c00983 crossref_primary_10_3740_MRSK_2019_29_12_804 crossref_primary_10_1116_1_5121541 |
Cites_doi | 10.1021/ma0257696 10.1126/science.1111041 10.2494/photopolymer.28.689 10.1002/1521-4095(200108)13:15<1152::AID-ADMA1152>3.0.CO;2-5 10.1038/nature01775 10.1002/adma.200800826 10.1117/12.2011238 10.1103/PhysRevLett.113.168301 10.1063/1.1389766 10.1021/ma052151y 10.1117/12.2085819 10.1063/1.2212942 10.1117/12.2086090 10.1002/polb.23652 10.1021/acs.macromol.6b01088 10.1021/ma902332h 10.1103/PhysRevLett.91.196101 10.1103/PhysRevB.66.052301 10.1103/PhysRevLett.108.228103 10.1002/adma.200601421 10.1021/nn100686v 10.1021/ma00102a025 10.1021/ma061630+ 10.1002/polb.23630 10.1117/12.2012353 10.1117/12.2045328 10.1073/pnas.0705830104 10.1021/ma900667w 10.1117/12.915652 10.1117/12.2065508 10.1073/pnas.1508225112 10.1093/acprof:oso/9780198567295.003.0001 10.1103/PhysRevLett.108.065502 10.1063/1.3130083 10.1038/nmat1211 10.1016/j.mee.2013.03.025 10.1117/12.2011477 10.1103/PhysRevLett.102.197801 10.1021/nl9004833 10.7567/JJAP.55.06GE01 10.1126/science.1157626 10.1016/j.cplett.2007.08.017 10.1103/PhysRevLett.96.138306 10.1021/ma702514v 10.1063/1.2720838 10.1021/ma025879c 10.1021/nn700164p 10.1063/1.5004181 10.1103/PhysRevLett.106.168101 10.1103/PhysRevLett.104.148301 10.1117/12.2046187 10.1002/polb.23452 10.1021/jp0455430 10.1116/1.4929884 |
ContentType | Journal Article |
CorporateAuthor | Argonne National Lab. (ANL), Argonne, IL (United States) |
CorporateAuthor_xml | – name: Argonne National Lab. (ANL), Argonne, IL (United States) |
DBID | AAYXX CITATION OIOZB OTOTI |
DOI | 10.1021/acs.macromol.7b02639 |
DatabaseName | CrossRef OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Engineering |
EISSN | 1520-5835 |
EndPage | 2427 |
ExternalDocumentID | 1498499 10_1021_acs_macromol_7b02639 c57881750 |
GroupedDBID | .K2 53G 55A 5GY 5VS 7~N AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ACGFS ACJ ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 LG6 P2P ROL TN5 TWZ UI2 VF5 VG9 W1F WH7 X YZZ -~X 4.4 AAHBH AAYXX ABJNI ABQRX ACBEA ACGFO ADHLV AGXLV AHGAQ CITATION CUPRZ GGK ABFRP OIOZB OTOTI |
ID | FETCH-LOGICAL-a365t-9c1d315226fbf03267f90724d1f4b6da16e7a80655c2e2a0e4caae2739e966493 |
IEDL.DBID | ACS |
ISSN | 0024-9297 |
IngestDate | Thu May 18 18:37:53 EDT 2023 Fri Aug 23 02:20:02 EDT 2024 Thu Aug 27 13:42:32 EDT 2020 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a365t-9c1d315226fbf03267f90724d1f4b6da16e7a80655c2e2a0e4caae2739e966493 |
Notes | National Institute of Standards and Technology (NIST) - Center for Hierarchical Materials Design (CHiMaD) AC02-06CH11357 USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division |
ORCID | 0000-0002-1940-4895 0000-0002-3526-516X 000000023526516X 0000000219404895 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1498499 |
PageCount | 10 |
ParticipantIDs | osti_scitechconnect_1498499 crossref_primary_10_1021_acs_macromol_7b02639 acs_journals_10_1021_acs_macromol_7b02639 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 2018-04-10 |
PublicationDateYYYYMMDD | 2018-04-10 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-10 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Macromolecules |
PublicationTitleAlternate | Macromolecules |
PublicationYear | 2018 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref8/cit8 doi: 10.1021/ma0257696 – ident: ref11/cit11 doi: 10.1126/science.1111041 – ident: ref25/cit25 doi: 10.2494/photopolymer.28.689 – ident: ref7/cit7 doi: 10.1002/1521-4095(200108)13:15<1152::AID-ADMA1152>3.0.CO;2-5 – ident: ref13/cit13 doi: 10.1038/nature01775 – ident: ref16/cit16 doi: 10.1002/adma.200800826 – ident: ref26/cit26 doi: 10.1117/12.2011238 – ident: ref36/cit36 doi: 10.1103/PhysRevLett.113.168301 – ident: ref17/cit17 doi: 10.1063/1.1389766 – ident: ref34/cit34 doi: 10.1021/ma052151y – ident: ref22/cit22 doi: 10.1117/12.2085819 – ident: ref49/cit49 doi: 10.1063/1.2212942 – ident: ref23/cit23 doi: 10.1117/12.2086090 – ident: ref28/cit28 doi: 10.1002/polb.23652 – ident: ref39/cit39 doi: 10.1021/acs.macromol.6b01088 – ident: ref44/cit44 doi: 10.1021/ma902332h – ident: ref10/cit10 doi: 10.1103/PhysRevLett.91.196101 – ident: ref45/cit45 doi: 10.1103/PhysRevB.66.052301 – ident: ref54/cit54 doi: 10.1103/PhysRevLett.108.228103 – ident: ref18/cit18 doi: 10.1002/adma.200601421 – ident: ref3/cit3 doi: 10.1021/nn100686v – ident: ref40/cit40 doi: 10.1021/ma00102a025 – ident: ref31/cit31 doi: 10.1021/ma061630+ – ident: ref38/cit38 doi: 10.1002/polb.23630 – ident: ref19/cit19 doi: 10.1117/12.2012353 – ident: ref21/cit21 doi: 10.1117/12.2045328 – ident: ref51/cit51 doi: 10.1073/pnas.0705830104 – ident: ref32/cit32 doi: 10.1021/ma900667w – ident: ref5/cit5 doi: 10.1117/12.915652 – ident: ref6/cit6 doi: 10.1117/12.2065508 – ident: ref37/cit37 doi: 10.1073/pnas.1508225112 – ident: ref41/cit41 doi: 10.1093/acprof:oso/9780198567295.003.0001 – ident: ref15/cit15 doi: 10.1103/PhysRevLett.108.065502 – ident: ref48/cit48 doi: 10.1063/1.3130083 – ident: ref2/cit2 doi: 10.1038/nmat1211 – ident: ref4/cit4 doi: 10.1016/j.mee.2013.03.025 – ident: ref20/cit20 doi: 10.1117/12.2011477 – ident: ref42/cit42 doi: 10.1103/PhysRevLett.102.197801 – ident: ref1/cit1 doi: 10.1021/nl9004833 – ident: ref27/cit27 doi: 10.7567/JJAP.55.06GE01 – ident: ref14/cit14 doi: 10.1126/science.1157626 – ident: ref50/cit50 doi: 10.1016/j.cplett.2007.08.017 – ident: ref30/cit30 doi: 10.1103/PhysRevLett.96.138306 – ident: ref43/cit43 doi: 10.1021/ma702514v – ident: ref46/cit46 doi: 10.1063/1.2720838 – ident: ref9/cit9 doi: 10.1021/ma025879c – ident: ref12/cit12 doi: 10.1021/nn700164p – ident: ref33/cit33 doi: 10.1063/1.5004181 – ident: ref53/cit53 doi: 10.1103/PhysRevLett.106.168101 – ident: ref52/cit52 doi: 10.1103/PhysRevLett.104.148301 – ident: ref24/cit24 doi: 10.1117/12.2046187 – ident: ref29/cit29 doi: 10.1002/polb.23452 – ident: ref47/cit47 doi: 10.1021/jp0455430 – ident: ref35/cit35 doi: 10.1116/1.4929884 |
SSID | ssj0011543 |
Score | 2.3362467 |
Snippet | The directed self-assembly of block copolymers in cylindrical holes is a promising technology for lithographic patterning, particularly in the context of... We report the directed self-assembly of block copolymers in cylindrical holes is a promising technology for lithographic patterning, particularly in the... |
SourceID | osti crossref acs |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | 2418 |
SubjectTerms | ENGINEERING MATERIALS SCIENCE |
Title | Mechanisms of Directed Self-Assembly in Cylindrical Hole Confinements |
URI | http://dx.doi.org/10.1021/acs.macromol.7b02639 https://www.osti.gov/servlets/purl/1498499 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ07T8MwEMctWgZYeCNKAXlgYXCJEzdORhRadYGlILFFfkWqlCaItEO_PXd5IBgq1DWyEuts537nv-9MyH0gncVCYIxb5zERC8O0NpqFgTQqgq5HGrcGZnP5-hE9T7BMzmiLgu_zR2Wq0VLVh9PykdQQMwRxj-z7EmABUSiZ_6gGgAONouwLBm5fdqlyW96CDslUfxxSv4SF9cvBTI937doJOWpRkj41Y39K9lxxRg6S7ga3czJ5cZjXu6iWFS0z2vzdnKVzl2cM1d6lzjd0UdBkA7Bp62IhdFbmjmIeIOBnnf52Qd6nk7dkxtprE5gKwvGKxYbbgCNXZTrzAM9kBhGwLyzPhA6t4qGTCvXUsfGdrzwnjFIOMCZ2EPuIOLgk_aIs3BWhQksgKs2lBXLhxkZSO50JAdSBji0bkAewQdpO-yqtFW2fp_iwM0zaGmZAWGfn9LOppPFP-yEORgokgOVsDZ77MSsIVeIIorTrHb48JIeAORFqQNy7If3V19rdkl5l13f1_PkGa0bDeQ |
link.rule.ids | 230,315,782,786,887,2769,27085,27933,27934,56747,56797 |
linkProvider | American Chemical Society |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ07T8MwEMctWoay8EaU8vDAwmCIEydORlRaFdF2aZHYovgRqVKaItIO_fbcJQ2PASFYrci2Lnbud_n7zoRce9IaLATGuLEOE5HQTCmtWOBJnYQw9VDhr4HBRI5fwocelsnx61wYmEQBPRWliP9ZXYDfYds8Kc-oZbdSQejgRQ2y7QfAw0hE3cmHeABUUAnLrmDg_WWdMfdDL-iXdPHNLzUXsL---Jn-3j9nuE92N2BJ76uVcEC2bH5IWt36Prcj0htZzPKdFfOCLlJafeusoRObpQy137nK1nSW0-4a0NOUpUPoYJFZilmBAKNlMtwxee73pt0B21yiwBIv8Jcs0tx4HCkrVakDsCZTiIddYXgqVGASHliZoLrqa9e6iWOFThILUBNZiIRE5J2QZr7I7SmhQkngK8WlAY7h2oRSWZUKAQyCbi5tkxuwQbzZBEVc6tsuj7GxNky8MUybsNrc8WtVV-OX5zv4TmLgAixuq_EUkF5C4BKFELOd_WHkK9IaTEfDePg4fuqQHQCgENUh7pyT5vJtZS9IozCry3JJvQPgJ8vm |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PS8MwFMeDTlAv_hbn_JGDFw_Rpc2a9ji6jYk6hCl4K80vGHTrsNth_73vdd3Qg4h4DSUJr0nf5_Wb90LIjS-twUJgjBvbZCISmimlFQt8qdMQph4q_DXQH8rBe9jpYpmc9VVfMIkCeipKER939dS4qsIAv8f2cVqeU8vupILwwY82yVYrkBHGXe14uBYQgAyW4rInGBCAXGXN_dAL-iZdfPNNtRz22Bdf09v_xywPyF4FmLS9XBGHZMNOjshOvLrX7Zh0ny1m-46KcUFzR5ffPGvo0GaOoQY8VtmCjiY0XgCCmrKECO3nmaWYHQhQWibFnZC3Xvc17rPqMgWW-kFrxiLNjc-RtpxyTYA26SAu9oThTqjApDywMkWVtaU966VNK3SaWoCbyEJEJCL_lNQm-cSeESqUBM5SXBrgGa5NKJVVTghgEXR3rk5uwQZJtRmKpNS5PZ5g48owSWWYOmErkyfTZX2NX55v4HtJgA-wyK3G00B6BgFMFELsdv6Hka_J9kunlzw9DB4bZBc4KESRiDcvSG32MbeXZLMw86tyVX0CpoHOaQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanisms+of+Directed+Self-Assembly+in+Cylindrical+Hole+Confinements&rft.jtitle=Macromolecules&rft.au=Bezik%2C+Cody+T&rft.au=Garner%2C+Grant+P&rft.au=de+Pablo%2C+Juan+J&rft.date=2018-04-10&rft.pub=American+Chemical+Society&rft.issn=0024-9297&rft.eissn=1520-5835&rft.volume=51&rft.issue=7&rft.spage=2418&rft.epage=2427&rft_id=info:doi/10.1021%2Facs.macromol.7b02639&rft.externalDocID=c57881750 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-9297&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-9297&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-9297&client=summon |