Conjugates of Double-Stranded Oligonucleotides with Poly(ethylene glycol) and Keyhole Limpet Hemocyanin: A Model for Treating Systemic Lupus Erythematosus

Two types of oligonucleotides were synthesized with linker groups attached at the 5'-end. Both were repeating dimers of deoxyribocytidine and deoxyriboadenosine. A 20-mer was prepared with a thiol-containing linker, masked as a disulfide, and a 50-mer was prepared with a vicinal diol-containing...

Full description

Saved in:
Bibliographic Details
Published in:Bioconjugate chemistry Vol. 5; no. 5; pp. 390 - 399
Main Authors: Jones, David S, Hachmann, John P, Osgood, Stephen A, Hayag, Merle S, Barstad, Paul A, Iverson, G. Michael, Coutts, Stephen M
Format: Journal Article
Language:English
Published: United States American Chemical Society 01-09-1994
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Two types of oligonucleotides were synthesized with linker groups attached at the 5'-end. Both were repeating dimers of deoxyribocytidine and deoxyriboadenosine. A 20-mer was prepared with a thiol-containing linker, masked as a disulfide, and a 50-mer was prepared with a vicinal diol-containing linker. A tetraiodoacetylated poly(ethylene glycol) (PEG) derivative was synthesized and reacted with the thiol-containing 20-mer to provide an oligonucleotide PEG conjugate of precisely four oligonucleotides on each PEG carrier. The vicinal diol on the 50-mer was oxidized to an aldehyde and conjugated to keyhole limpet hemocyanin (KLH) to provide an oligonucleotide-KLH conjugate by reductive alkylation. The conjugates were annealed with complementary (TG)n strands. While the double-stranded oligonucleotide-KLH conjugate is an immunogen, eliciting the synthesis of antibodies against oligonucleotides, the PEG conjugate has the biological property of specifically suppressing (tolerizing) B cells which make antibodies against the immunizing oligonucleotide.
Bibliography:ark:/67375/TPS-PC46W96W-5
istex:5B2A100A69E73F4C91C71CF356D99673C8077BE7
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1043-1802
1520-4812
DOI:10.1021/bc00029a003