Light-Responsive and Antibacterial Graphenic Materials as a Holistic Approach to Tissue Engineering
While the continuous development of advanced bioprinting technologies is under fervent study, enhancing the regenerative potential of hydrogel-based constructs using external stimuli for wound dressing has yet to be tackled. Fibroblasts play a significant role in wound healing and tissue implants at...
Saved in:
Published in: | ACS Nanoscience Au Vol. 4; no. 4; pp. 263 - 272 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
American Chemical Society
21-08-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | While the continuous development of advanced bioprinting technologies is under fervent study, enhancing the regenerative potential of hydrogel-based constructs using external stimuli for wound dressing has yet to be tackled. Fibroblasts play a significant role in wound healing and tissue implants at different stages, including extracellular matrix production, collagen synthesis, and wound and tissue remodeling. This study explores the synergistic interplay between photothermal activity and nanomaterial-mediated cell proliferation. The use of different graphene-based materials (GBM) in the development of photoactive bioinks is investigated. In particular, we report the creation of a skin-inspired dressing for wound healing and regenerative medicine. Three distinct GBM, namely, graphene oxide (GO), reduced graphene oxide (rGO), and graphene platelets (GP), were rigorously characterized, and their photothermal capabilities were elucidated. Our investigations revealed that rGO exhibited the highest photothermal efficiency and antibacterial properties when irradiated, even at a concentration as low as 0.05 mg/mL, without compromising human fibroblast viability. Alginate-based bioinks alongside human fibroblasts were employed for the bioprinting with rGO. The scaffold did not affect the survival of fibroblasts for 3 days after bioprinting, as cell viability was not affected. Remarkably, the inclusion of rGO did not compromise the printability of the hydrogel, ensuring the successful fabrication of complex constructs. Furthermore, the presence of rGO in the final scaffold continued to provide the benefits of photothermal antimicrobial therapy without detrimentally affecting fibroblast growth. This outcome underscores the potential of rGO-enhanced hydrogels in tissue engineering and regenerative medicine applications. Our findings hold promise for developing game-changer strategies in 4D bioprinting to create smart and functional tissue constructs with high fibroblast proliferation and promising therapeutic capabilities in drug delivery and bactericidal skin-inspired dressings. |
---|---|
AbstractList | While the continuous development of advanced bioprinting technologies is under fervent study, enhancing the regenerative potential of hydrogel-based constructs using external stimuli for wound dressing has yet to be tackled. Fibroblasts play a significant role in wound healing and tissue implants at different stages, including extracellular matrix production, collagen synthesis, and wound and tissue remodeling. This study explores the synergistic interplay between photothermal activity and nanomaterial-mediated cell proliferation. The use of different graphene-based materials (GBM) in the development of photoactive bioinks is investigated. In particular, we report the creation of a skin-inspired dressing for wound healing and regenerative medicine. Three distinct GBM, namely, graphene oxide (GO), reduced graphene oxide (rGO), and graphene platelets (GP), were rigorously characterized, and their photothermal capabilities were elucidated. Our investigations revealed that rGO exhibited the highest photothermal efficiency and antibacterial properties when irradiated, even at a concentration as low as 0.05 mg/mL, without compromising human fibroblast viability. Alginate-based bioinks alongside human fibroblasts were employed for the bioprinting with rGO. The scaffold did not affect the survival of fibroblasts for 3 days after bioprinting, as cell viability was not affected. Remarkably, the inclusion of rGO did not compromise the printability of the hydrogel, ensuring the successful fabrication of complex constructs. Furthermore, the presence of rGO in the final scaffold continued to provide the benefits of photothermal antimicrobial therapy without detrimentally affecting fibroblast growth. This outcome underscores the potential of rGO-enhanced hydrogels in tissue engineering and regenerative medicine applications. Our findings hold promise for developing game-changer strategies in 4D bioprinting to create smart and functional tissue constructs with high fibroblast proliferation and promising therapeutic capabilities in drug delivery and bactericidal skin-inspired dressings.While the continuous development of advanced bioprinting technologies is under fervent study, enhancing the regenerative potential of hydrogel-based constructs using external stimuli for wound dressing has yet to be tackled. Fibroblasts play a significant role in wound healing and tissue implants at different stages, including extracellular matrix production, collagen synthesis, and wound and tissue remodeling. This study explores the synergistic interplay between photothermal activity and nanomaterial-mediated cell proliferation. The use of different graphene-based materials (GBM) in the development of photoactive bioinks is investigated. In particular, we report the creation of a skin-inspired dressing for wound healing and regenerative medicine. Three distinct GBM, namely, graphene oxide (GO), reduced graphene oxide (rGO), and graphene platelets (GP), were rigorously characterized, and their photothermal capabilities were elucidated. Our investigations revealed that rGO exhibited the highest photothermal efficiency and antibacterial properties when irradiated, even at a concentration as low as 0.05 mg/mL, without compromising human fibroblast viability. Alginate-based bioinks alongside human fibroblasts were employed for the bioprinting with rGO. The scaffold did not affect the survival of fibroblasts for 3 days after bioprinting, as cell viability was not affected. Remarkably, the inclusion of rGO did not compromise the printability of the hydrogel, ensuring the successful fabrication of complex constructs. Furthermore, the presence of rGO in the final scaffold continued to provide the benefits of photothermal antimicrobial therapy without detrimentally affecting fibroblast growth. This outcome underscores the potential of rGO-enhanced hydrogels in tissue engineering and regenerative medicine applications. Our findings hold promise for developing game-changer strategies in 4D bioprinting to create smart and functional tissue constructs with high fibroblast proliferation and promising therapeutic capabilities in drug delivery and bactericidal skin-inspired dressings. While the continuous development of advanced bioprinting technologies is under fervent study, enhancing the regenerative potential of hydrogel-based constructs using external stimuli for wound dressing has yet to be tackled. Fibroblasts play a significant role in wound healing and tissue implants at different stages, including extracellular matrix production, collagen synthesis, and wound and tissue remodeling. This study explores the synergistic interplay between photothermal activity and nanomaterial-mediated cell proliferation. The use of different graphene-based materials (GBM) in the development of photoactive bioinks is investigated. In particular, we report the creation of a skin-inspired dressing for wound healing and regenerative medicine. Three distinct GBM, namely, graphene oxide (GO), reduced graphene oxide (rGO), and graphene platelets (GP), were rigorously characterized, and their photothermal capabilities were elucidated. Our investigations revealed that rGO exhibited the highest photothermal efficiency and antibacterial properties when irradiated, even at a concentration as low as 0.05 mg/mL, without compromising human fibroblast viability. Alginate-based bioinks alongside human fibroblasts were employed for the bioprinting with rGO. The scaffold did not affect the survival of fibroblasts for 3 days after bioprinting, as cell viability was not affected. Remarkably, the inclusion of rGO did not compromise the printability of the hydrogel, ensuring the successful fabrication of complex constructs. Furthermore, the presence of rGO in the final scaffold continued to provide the benefits of photothermal antimicrobial therapy without detrimentally affecting fibroblast growth. This outcome underscores the potential of rGO-enhanced hydrogels in tissue engineering and regenerative medicine applications. Our findings hold promise for developing game-changer strategies in 4D bioprinting to create smart and functional tissue constructs with high fibroblast proliferation and promising therapeutic capabilities in drug delivery and bactericidal skin-inspired dressings. |
Author | Artola, Koldo Jorcano, José L. Nishina, Yuta Acedo, Pablo Reina, Giacomo Ferreras, Andrea Matesanz, Ana Martín, Cristina Ruiz, Amalia Mendizabal, Jabier |
AuthorAffiliation | Universidad Carlos III de Madrid Research Core for Interdisciplinary Sciences Empa Swiss Federal Laboratories for Materials Science and Technology Department of Bioengineering Instituto de Investigación Sanitaria Gregorio Marañón Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences Department of Electronic Technology Graduate School of Natural Science and Technology Domotek ingeniería prototipado y formación S.L Okayama University |
AuthorAffiliation_xml | – name: Department of Bioengineering – name: Universidad Carlos III de Madrid – name: Domotek ingeniería prototipado y formación S.L – name: Graduate School of Natural Science and Technology – name: Department of Electronic Technology – name: Research Core for Interdisciplinary Sciences – name: Instituto de Investigación Sanitaria Gregorio Marañón – name: Empa Swiss Federal Laboratories for Materials Science and Technology – name: Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences – name: Okayama University |
Author_xml | – sequence: 1 givenname: Andrea surname: Ferreras fullname: Ferreras, Andrea organization: Universidad Carlos III de Madrid – sequence: 2 givenname: Ana surname: Matesanz fullname: Matesanz, Ana organization: Department of Electronic Technology – sequence: 3 givenname: Jabier surname: Mendizabal fullname: Mendizabal, Jabier organization: Domotek ingeniería prototipado y formación S.L – sequence: 4 givenname: Koldo surname: Artola fullname: Artola, Koldo organization: Domotek ingeniería prototipado y formación S.L – sequence: 5 givenname: Yuta orcidid: 0000-0002-4958-1753 surname: Nishina fullname: Nishina, Yuta organization: Okayama University – sequence: 6 givenname: Pablo surname: Acedo fullname: Acedo, Pablo organization: Department of Electronic Technology – sequence: 7 givenname: José L. surname: Jorcano fullname: Jorcano, José L. organization: Instituto de Investigación Sanitaria Gregorio Marañón – sequence: 8 givenname: Amalia surname: Ruiz fullname: Ruiz, Amalia email: g.ruizestrada@bradford.ac.uk organization: Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences – sequence: 9 givenname: Giacomo surname: Reina fullname: Reina, Giacomo email: giacomo.reina@empa.ch organization: Empa Swiss Federal Laboratories for Materials Science and Technology – sequence: 10 givenname: Cristina orcidid: 0000-0001-5670-3328 surname: Martín fullname: Martín, Cristina email: cristima@ing.uc3m.es organization: Universidad Carlos III de Madrid |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39184835$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUcFq3DAQFSWlSdP8QtGxFyeWJcvWcQlpEthSKOlZjOXxrhav5Ep2oX-fab0JpZcKgYbHe280896zsxADMsZFeS3KStyAywFCzM5jcAjLtXIlHf2GXVTaqKJSRp_9VZ-zq5wPxKhqISst37FzaUSrWllfMLf1u_1cfMM8xZD9T-QQer4Js-_AzZg8jPw-wbTH4B3_AiuUOdDlD3H0eSZ8M00pgtvzOfInn_OC_C7sfEBih90H9nYgDV6d3kv2_fPd0-1Dsf16_3i72RYgazEXgzNVL6SDAdpWVQZRSEFTNN1QS-iF0di5sjGuNbWr-rqpteo1NnIQYnAK5CV7XH37CAc7JX-E9MtG8PYPENPOQqLvjmjLupJKadpOD0pL0_WAiEY1htxoMeT1afWiwX4smGd79NnhOELAuGQrS9OIWpCUqO1KdSnmnHB4bS1K-zsx-29i9pQYST-euizdEftX4Us-RFArgSzsIS4p0AL_7_sMOJOq2g |
Cites_doi | 10.1021/acsnano.8b04758 10.1016/j.jallcom.2022.164091 10.3390/ma14040858 10.1016/j.actbio.2018.05.010 10.1128/JCM.01421-08 10.1021/acsnano.6b02039 10.1002/admt.202201917 10.1016/j.jhazmat.2020.122380 10.3390/pharmaceutics14122596 10.1016/j.carbon.2022.05.036 10.3390/pharmaceutics14071365 10.1103/PhysRevLett.97.187401 10.1186/s12967-021-02752-2 10.1038/ncomms1067 10.1002/smll.202207229 10.1089/ten.tea.2020.0210 10.1016/j.smaim.2020.09.001 10.1021/am200428v 10.1155/2012/751075 10.1038/srep17422 10.1088/1758-5090/8/3/035020 10.1088/1758-5090/9/1/015006 10.1016/j.heliyon.2023.e20475 10.3390/toxics9030062 10.1159/000484405 10.3390/ijms19124031 10.1021/acs.chemmater.6b04807 10.1021/acs.chemrev.3c00159 10.3390/polym14020354 10.1002/smll.202204044 10.1039/C9CC01205B 10.1089/mdr.2018.0319 10.1080/09506608.2023.2193784 10.1038/s41467-019-12313-3 10.1021/acsanm.2c03409 10.1016/j.actbio.2014.06.034 10.18063/ijb.v9i1.638 10.1021/acs.chemrev.0c00084 10.1021/acsami.8b18304 10.3389/fbioe.2019.00164 10.1021/acsmaterialslett.2c01044 10.1021/acsami.0c17523 10.1016/j.msec.2021.112352 10.1039/C8NR00333E 10.1016/j.bprint.2020.e00093 10.36922/ijb.2135 10.1088/2053-1583/ac4572 10.3390/polym14112229 10.1111/j.1524-475X.2009.00496.x 10.1016/j.diagmicrobio.2006.05.009 10.1007/s42242-023-00245-3 10.1002/smll.201900147 10.1016/j.ijbiomac.2024.129372 10.3390/bioengineering8020027 10.1021/ar7002804 10.1021/acsnano.7b07734 10.1111/j.1365-2133.2007.07914.x 10.1111/tid.13897 10.1038/s41598-017-17286-1 10.1038/srep40572 10.1016/j.matdes.2022.110551 10.1021/acsami.0c00710 10.3390/ijms17121976 |
ContentType | Journal Article |
Copyright | 2024 The Authors. Published by American Chemical Society 2024 The Authors. Published by American Chemical Society. |
Copyright_xml | – notice: 2024 The Authors. Published by American Chemical Society – notice: 2024 The Authors. Published by American Chemical Society. |
DBID | NPM AAYXX CITATION 7X8 DOA |
DOI | 10.1021/acsnanoscienceau.4c00006 |
DatabaseName | PubMed CrossRef MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2694-2496 |
EndPage | 272 |
ExternalDocumentID | oai_doaj_org_article_0523446496da4639bdaeee94793f1835 10_1021_acsnanoscienceau_4c00006 39184835 g07154941 |
Genre | Journal Article |
GroupedDBID | ACS AELXD ALMA_UNASSIGNED_HOLDINGS EBS GROUPED_DOAJ M~E N~. OK1 PGMZT RPM NPM AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-a351t-fc92d13cafa88429ee1312697bf53ad196ebc079c895c2d57564d6e73f11fc4a3 |
IEDL.DBID | ACS |
ISSN | 2694-2496 |
IngestDate | Tue Oct 22 15:05:06 EDT 2024 Sat Oct 26 04:32:47 EDT 2024 Wed Aug 28 12:32:59 EDT 2024 Sat Nov 02 12:18:26 EDT 2024 Thu Aug 22 06:10:25 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | alginate graphene derivatives tissue engineering photothermal therapy 4D bioprinting |
Language | English |
License | 2024 The Authors. Published by American Chemical Society. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a351t-fc92d13cafa88429ee1312697bf53ad196ebc079c895c2d57564d6e73f11fc4a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-4958-1753 0000-0001-5670-3328 |
OpenAccessLink | https://doaj.org/article/0523446496da4639bdaeee94793f1835 |
PMID | 39184835 |
PQID | 3097151639 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0523446496da4639bdaeee94793f1835 proquest_miscellaneous_3097151639 crossref_primary_10_1021_acsnanoscienceau_4c00006 pubmed_primary_39184835 acs_journals_10_1021_acsnanoscienceau_4c00006 |
PublicationCentury | 2000 |
PublicationDate | 2024-Aug-21 |
PublicationDateYYYYMMDD | 2024-08-21 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-Aug-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS Nanoscience Au |
PublicationTitleAlternate | ACS Nanosci. Au |
PublicationYear | 2024 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref36/cit36 doi: 10.1021/acsnano.8b04758 – ident: ref32/cit32 doi: 10.1016/j.jallcom.2022.164091 – ident: ref58/cit58 doi: 10.3390/ma14040858 – ident: ref9/cit9 doi: 10.1016/j.actbio.2018.05.010 – ident: ref24/cit24 doi: 10.1128/JCM.01421-08 – ident: ref48/cit48 doi: 10.1021/acsnano.6b02039 – ident: ref61/cit61 doi: 10.1002/admt.202201917 – ident: ref42/cit42 doi: 10.1016/j.jhazmat.2020.122380 – ident: ref11/cit11 doi: 10.3390/pharmaceutics14122596 – ident: ref63/cit63 doi: 10.1016/j.carbon.2022.05.036 – ident: ref26/cit26 doi: 10.3390/pharmaceutics14071365 – ident: ref40/cit40 doi: 10.1103/PhysRevLett.97.187401 – ident: ref16/cit16 doi: 10.1186/s12967-021-02752-2 – ident: ref43/cit43 doi: 10.1038/ncomms1067 – ident: ref25/cit25 doi: 10.1002/smll.202207229 – ident: ref10/cit10 doi: 10.1089/ten.tea.2020.0210 – ident: ref34/cit34 doi: 10.1016/j.smaim.2020.09.001 – ident: ref51/cit51 doi: 10.1021/am200428v – ident: ref31/cit31 doi: 10.1155/2012/751075 – ident: ref37/cit37 doi: 10.1038/srep17422 – ident: ref38/cit38 doi: 10.1088/1758-5090/8/3/035020 – ident: ref2/cit2 doi: 10.1088/1758-5090/9/1/015006 – ident: ref5/cit5 doi: 10.1016/j.heliyon.2023.e20475 – ident: ref64/cit64 doi: 10.3390/toxics9030062 – ident: ref14/cit14 doi: 10.1159/000484405 – ident: ref29/cit29 doi: 10.3390/ijms19124031 – ident: ref44/cit44 doi: 10.1021/acs.chemmater.6b04807 – ident: ref47/cit47 doi: 10.1021/acs.chemrev.3c00159 – ident: ref56/cit56 doi: 10.3390/polym14020354 – ident: ref28/cit28 doi: 10.1002/smll.202204044 – ident: ref35/cit35 doi: 10.1039/C9CC01205B – ident: ref20/cit20 doi: 10.1089/mdr.2018.0319 – ident: ref21/cit21 doi: 10.1080/09506608.2023.2193784 – ident: ref33/cit33 doi: 10.1038/s41467-019-12313-3 – ident: ref46/cit46 doi: 10.1021/acsanm.2c03409 – ident: ref57/cit57 doi: 10.1016/j.actbio.2014.06.034 – ident: ref53/cit53 – ident: ref1/cit1 doi: 10.18063/ijb.v9i1.638 – ident: ref6/cit6 doi: 10.1021/acs.chemrev.0c00084 – ident: ref50/cit50 doi: 10.1021/acsami.8b18304 – ident: ref3/cit3 doi: 10.3389/fbioe.2019.00164 – ident: ref18/cit18 doi: 10.1021/acsmaterialslett.2c01044 – ident: ref49/cit49 doi: 10.1021/acsami.0c17523 – ident: ref17/cit17 doi: 10.1016/j.msec.2021.112352 – ident: ref45/cit45 doi: 10.1039/C8NR00333E – ident: ref4/cit4 doi: 10.1016/j.bprint.2020.e00093 – ident: ref8/cit8 doi: 10.36922/ijb.2135 – ident: ref27/cit27 doi: 10.1088/2053-1583/ac4572 – ident: ref59/cit59 doi: 10.3390/polym14112229 – ident: ref13/cit13 doi: 10.1111/j.1524-475X.2009.00496.x – ident: ref23/cit23 doi: 10.1016/j.diagmicrobio.2006.05.009 – ident: ref7/cit7 doi: 10.1007/s42242-023-00245-3 – ident: ref39/cit39 doi: 10.1002/smll.201900147 – ident: ref62/cit62 doi: 10.1016/j.ijbiomac.2024.129372 – ident: ref12/cit12 doi: 10.3390/bioengineering8020027 – ident: ref30/cit30 doi: 10.1021/ar7002804 – ident: ref52/cit52 doi: 10.1021/acsnano.7b07734 – ident: ref15/cit15 doi: 10.1111/j.1365-2133.2007.07914.x – ident: ref22/cit22 doi: 10.1111/tid.13897 – ident: ref55/cit55 doi: 10.1038/s41598-017-17286-1 – ident: ref41/cit41 doi: 10.1038/srep40572 – ident: ref60/cit60 doi: 10.1016/j.matdes.2022.110551 – ident: ref19/cit19 doi: 10.1021/acsami.0c00710 – ident: ref54/cit54 doi: 10.3390/ijms17121976 |
SSID | ssj0002513263 |
Score | 2.3171356 |
Snippet | While the continuous development of advanced bioprinting technologies is under fervent study, enhancing the regenerative potential of hydrogel-based constructs... |
SourceID | doaj proquest crossref pubmed acs |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 263 |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3NSx0xEMCDerIH0art86NE8Lq6-diPHJ9f9dB6UcFbmM1OQJC80n2vf38nm_h4Foo9FPaUTUiYmWQmk_ALY6cl-NJrjYWJR7u6M1UBrtGF6rxRtfeREhZTF_fN3VN7dR0xOcunvuKdsIQHToI7j2lL2rJoU_egyZ12PSCiiQkhT-aY6KWlWdlMxTWYvDbFJSpf3SE_dg5uCBAyIBJhcabduFZHr-SGN15phPf_PeIcPc_NNtvKISOfpqHusDUMH9mHFZDgLnPfEg8kX3j9hRxCz6dh_twlGjO1_xrR1BieHf8OqWjgQB-_nb2MtGY-zXxxPp_xh1EhfKWXPfZ4c_1weVvk5xMKUJWYF94Z2QvlwEPbkttBFErI2jSdrxT0NPWwc2VjXGsqJ3uK22rd19iQXIV3GtQ-2wizgJ8ZNy2IGui_8iZGXJ2BEqX0DYKXXroJIw0PNpv_YMeTbSnsn0K3WegTJl7FbX8kqsY_tLmIelnWj1zssYCsxWZrse9Zy4SdvGrV0jyKhyMQcLYYrIowrYqiUzNhn5K6l10pQ_tgan3wP4ZwyDYlBUYxLy3FEduY_1zgMVsf-sWX0YZ_Awu99nQ priority: 102 providerName: Directory of Open Access Journals |
Title | Light-Responsive and Antibacterial Graphenic Materials as a Holistic Approach to Tissue Engineering |
URI | http://dx.doi.org/10.1021/acsnanoscienceau.4c00006 https://www.ncbi.nlm.nih.gov/pubmed/39184835 https://www.proquest.com/docview/3097151639 https://doaj.org/article/0523446496da4639bdaeee94793f1835 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RcoED78fyqIzENbC28_JxKS09AJcWiZs1ccZSJeStyC6_nxnHXRWkIkDKyYnjZB6ezzPOF4DXS4zLWNdUOSnt1oNrKgxdXdkhOtvGKCxhkro47T5_7d8fCU2OuaaCb_RbDFPCVJgdCbdv6pAn2T24aTr2EYFDh6e7vArHa0YkUliWbzQrXl20ZQPPn24msSlMv8SmTOF_Pe7M8ef47v88-T24U9CmWs3mcR9uUHoAt69wED6E8HGmEil7ZX-QwjSqVdqcDzORM_f_IKzWlM6D-oRz06SQD3Wy_paJntWqUJOrzVqdZV2qK6M8gi_HR2eHJ1X580KFttGbKgZnRm0DRux7jlhE2mqWZzfExuLIXktDWHYu9K4JZmTI19ZjS52NWsdQo30M-2md6Cko16Nukc_b6ASsDQ6XZEzsCKOJJiyAjWPyxXMmn4viRvvfheeL8BagL3XkL2ZCjr_o806UubteKLVzA2vLFw_1kh_ntTHby4g147ZhRCJyknmMPO81C3h1aQqeXVDqKphovZ28FR6uhoGtW8CT2UZ2Q1nHS2ju_ewfX_M53DIMnyR7bfQL2N9839JL2JvG7UG294OcPPgJe18CLQ |
link.rule.ids | 315,783,787,867,2109,2772,27088,27936,27937,56751,56801 |
linkProvider | American Chemical Society |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RcgAOLW-25WEkroG1nZePS2lZxLaXLhI3a-LYUqXKi8guv58Zx10KEgiElJMTO7FnxvN5xvkM8GqKYRrK0heGU7tlZ6oCXVMWugtG1yEwSxiHLs6bs8_tu2Omydke9UUfMVBLQ0ri_2AXkG-oLGLMBI8eN69Ll-baHbhZEehlm5wdnW_DK-S2CZhwfpl_1SxokVHnfTx_aoxdlBt-clGJyf_38DO5oZP9_-jAXdjL2FPMRmW5Bzd8vA93rjESPgC3GIlF8s7Zb15g7MUsri-6kdaZ6r9njmsfL5w4xbFoEEiXmK8uE-2zmGWicrFeiWWSrLj2lofw6eR4eTQv8jkMBepKrovgjOqldhiwbcl_eS-1pGFtulBp7MmGfeemjXGtqZzqCQDWZV_7RgcpgytRP4LduIr-CQjToqyR7utgGLp1BqdeqdB4DCooNwFSlcFmOxpsSpEraX8dPJsHbwLySlT2y0jP8Rd13rJMt88zwXYqIInZbK-Wo-W0Uia16bEkFNf16L03HIcMNAtWE3h5pRGWDJKzLBj9ajNYzaxcFcFcM4HHo6psX6UNLaip9sE_dvMF3JovTxd28eHs4yHcVgSsOK6t5FPYXX_d-GewM_Sb58kEvgN7Pwmd |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEB9sBdEH61f1tGoEX1cvyX7lwYfrx1mxFqEVfAuz-YCC5Ip759_vzG7uqIJSEfYpu8luMjOZX2aS3wK8nmKcxrIMheHUbtmZqkDXlIXuotF1jMwSxqGLs-b0a3t4xDQ579ZnYegjemqpH5L4bNWXPmaGAfmWyhOmTPIYcPWmdMN8uwU3q5qmWkZGB2ebEAu5bgInnGPm45oFLTTqvJfnb42xm3L9L25qYPP_MwQdXNF85z87cQ_uZgwqZqPS3IcbIT2AO1eYCR-COxkJRvIO2h9BYPJilpYX3UjvTPXfM9d1SBdOfMKxqBdIlzhefBvon8UsE5aL5UKcDxIWV97yCL7Mj84Pjov8P4YCdSWXRXRGeakdRmxb8mMhSC1paJsuVho92XLo3LQxrjWVU56AYF36OjQ6ShldiXoXttMihScgTIuyRrqvo2EI1xmcBqViEzCqqNwESGV6m-2pt0OqXEn7--DZPHgTkGtx2cuRpuMadfZZrpvnmWh7KCCp2Wy3lqPmtGIm1fFYEprrPIYQDMcjI82G1QRerbXCkmFytgVTWKx6q5mdqyK4aybweFSXzau0oYU11X76j918Cbc-H87tyYfTj8_gtiJ8xeFtJfdge_l9FZ7DVu9XLwYr-AnkEwwX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Light-Responsive+and+Antibacterial+Graphenic+Materials+as+a+Holistic+Approach+to+Tissue+Engineering&rft.jtitle=ACS+Nanoscience+Au&rft.au=Ferreras%2C+Andrea&rft.au=Matesanz%2C+Ana&rft.au=Mendizabal%2C+Jabier&rft.au=Artola%2C+Koldo&rft.date=2024-08-21&rft.issn=2694-2496&rft.eissn=2694-2496&rft.volume=4&rft.issue=4&rft.spage=263&rft_id=info:doi/10.1021%2Facsnanoscienceau.4c00006&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2694-2496&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2694-2496&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2694-2496&client=summon |