Light-Responsive and Antibacterial Graphenic Materials as a Holistic Approach to Tissue Engineering

While the continuous development of advanced bioprinting technologies is under fervent study, enhancing the regenerative potential of hydrogel-based constructs using external stimuli for wound dressing has yet to be tackled. Fibroblasts play a significant role in wound healing and tissue implants at...

Full description

Saved in:
Bibliographic Details
Published in:ACS Nanoscience Au Vol. 4; no. 4; pp. 263 - 272
Main Authors: Ferreras, Andrea, Matesanz, Ana, Mendizabal, Jabier, Artola, Koldo, Nishina, Yuta, Acedo, Pablo, Jorcano, José L., Ruiz, Amalia, Reina, Giacomo, Martín, Cristina
Format: Journal Article
Language:English
Published: United States American Chemical Society 21-08-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract While the continuous development of advanced bioprinting technologies is under fervent study, enhancing the regenerative potential of hydrogel-based constructs using external stimuli for wound dressing has yet to be tackled. Fibroblasts play a significant role in wound healing and tissue implants at different stages, including extracellular matrix production, collagen synthesis, and wound and tissue remodeling. This study explores the synergistic interplay between photothermal activity and nanomaterial-mediated cell proliferation. The use of different graphene-based materials (GBM) in the development of photoactive bioinks is investigated. In particular, we report the creation of a skin-inspired dressing for wound healing and regenerative medicine. Three distinct GBM, namely, graphene oxide (GO), reduced graphene oxide (rGO), and graphene platelets (GP), were rigorously characterized, and their photothermal capabilities were elucidated. Our investigations revealed that rGO exhibited the highest photothermal efficiency and antibacterial properties when irradiated, even at a concentration as low as 0.05 mg/mL, without compromising human fibroblast viability. Alginate-based bioinks alongside human fibroblasts were employed for the bioprinting with rGO. The scaffold did not affect the survival of fibroblasts for 3 days after bioprinting, as cell viability was not affected. Remarkably, the inclusion of rGO did not compromise the printability of the hydrogel, ensuring the successful fabrication of complex constructs. Furthermore, the presence of rGO in the final scaffold continued to provide the benefits of photothermal antimicrobial therapy without detrimentally affecting fibroblast growth. This outcome underscores the potential of rGO-enhanced hydrogels in tissue engineering and regenerative medicine applications. Our findings hold promise for developing game-changer strategies in 4D bioprinting to create smart and functional tissue constructs with high fibroblast proliferation and promising therapeutic capabilities in drug delivery and bactericidal skin-inspired dressings.
AbstractList While the continuous development of advanced bioprinting technologies is under fervent study, enhancing the regenerative potential of hydrogel-based constructs using external stimuli for wound dressing has yet to be tackled. Fibroblasts play a significant role in wound healing and tissue implants at different stages, including extracellular matrix production, collagen synthesis, and wound and tissue remodeling. This study explores the synergistic interplay between photothermal activity and nanomaterial-mediated cell proliferation. The use of different graphene-based materials (GBM) in the development of photoactive bioinks is investigated. In particular, we report the creation of a skin-inspired dressing for wound healing and regenerative medicine. Three distinct GBM, namely, graphene oxide (GO), reduced graphene oxide (rGO), and graphene platelets (GP), were rigorously characterized, and their photothermal capabilities were elucidated. Our investigations revealed that rGO exhibited the highest photothermal efficiency and antibacterial properties when irradiated, even at a concentration as low as 0.05 mg/mL, without compromising human fibroblast viability. Alginate-based bioinks alongside human fibroblasts were employed for the bioprinting with rGO. The scaffold did not affect the survival of fibroblasts for 3 days after bioprinting, as cell viability was not affected. Remarkably, the inclusion of rGO did not compromise the printability of the hydrogel, ensuring the successful fabrication of complex constructs. Furthermore, the presence of rGO in the final scaffold continued to provide the benefits of photothermal antimicrobial therapy without detrimentally affecting fibroblast growth. This outcome underscores the potential of rGO-enhanced hydrogels in tissue engineering and regenerative medicine applications. Our findings hold promise for developing game-changer strategies in 4D bioprinting to create smart and functional tissue constructs with high fibroblast proliferation and promising therapeutic capabilities in drug delivery and bactericidal skin-inspired dressings.While the continuous development of advanced bioprinting technologies is under fervent study, enhancing the regenerative potential of hydrogel-based constructs using external stimuli for wound dressing has yet to be tackled. Fibroblasts play a significant role in wound healing and tissue implants at different stages, including extracellular matrix production, collagen synthesis, and wound and tissue remodeling. This study explores the synergistic interplay between photothermal activity and nanomaterial-mediated cell proliferation. The use of different graphene-based materials (GBM) in the development of photoactive bioinks is investigated. In particular, we report the creation of a skin-inspired dressing for wound healing and regenerative medicine. Three distinct GBM, namely, graphene oxide (GO), reduced graphene oxide (rGO), and graphene platelets (GP), were rigorously characterized, and their photothermal capabilities were elucidated. Our investigations revealed that rGO exhibited the highest photothermal efficiency and antibacterial properties when irradiated, even at a concentration as low as 0.05 mg/mL, without compromising human fibroblast viability. Alginate-based bioinks alongside human fibroblasts were employed for the bioprinting with rGO. The scaffold did not affect the survival of fibroblasts for 3 days after bioprinting, as cell viability was not affected. Remarkably, the inclusion of rGO did not compromise the printability of the hydrogel, ensuring the successful fabrication of complex constructs. Furthermore, the presence of rGO in the final scaffold continued to provide the benefits of photothermal antimicrobial therapy without detrimentally affecting fibroblast growth. This outcome underscores the potential of rGO-enhanced hydrogels in tissue engineering and regenerative medicine applications. Our findings hold promise for developing game-changer strategies in 4D bioprinting to create smart and functional tissue constructs with high fibroblast proliferation and promising therapeutic capabilities in drug delivery and bactericidal skin-inspired dressings.
While the continuous development of advanced bioprinting technologies is under fervent study, enhancing the regenerative potential of hydrogel-based constructs using external stimuli for wound dressing has yet to be tackled. Fibroblasts play a significant role in wound healing and tissue implants at different stages, including extracellular matrix production, collagen synthesis, and wound and tissue remodeling. This study explores the synergistic interplay between photothermal activity and nanomaterial-mediated cell proliferation. The use of different graphene-based materials (GBM) in the development of photoactive bioinks is investigated. In particular, we report the creation of a skin-inspired dressing for wound healing and regenerative medicine. Three distinct GBM, namely, graphene oxide (GO), reduced graphene oxide (rGO), and graphene platelets (GP), were rigorously characterized, and their photothermal capabilities were elucidated. Our investigations revealed that rGO exhibited the highest photothermal efficiency and antibacterial properties when irradiated, even at a concentration as low as 0.05 mg/mL, without compromising human fibroblast viability. Alginate-based bioinks alongside human fibroblasts were employed for the bioprinting with rGO. The scaffold did not affect the survival of fibroblasts for 3 days after bioprinting, as cell viability was not affected. Remarkably, the inclusion of rGO did not compromise the printability of the hydrogel, ensuring the successful fabrication of complex constructs. Furthermore, the presence of rGO in the final scaffold continued to provide the benefits of photothermal antimicrobial therapy without detrimentally affecting fibroblast growth. This outcome underscores the potential of rGO-enhanced hydrogels in tissue engineering and regenerative medicine applications. Our findings hold promise for developing game-changer strategies in 4D bioprinting to create smart and functional tissue constructs with high fibroblast proliferation and promising therapeutic capabilities in drug delivery and bactericidal skin-inspired dressings.
Author Artola, Koldo
Jorcano, José L.
Nishina, Yuta
Acedo, Pablo
Reina, Giacomo
Ferreras, Andrea
Matesanz, Ana
Martín, Cristina
Ruiz, Amalia
Mendizabal, Jabier
AuthorAffiliation Universidad Carlos III de Madrid
Research Core for Interdisciplinary Sciences
Empa Swiss Federal Laboratories for Materials Science and Technology
Department of Bioengineering
Instituto de Investigación Sanitaria Gregorio Marañón
Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences
Department of Electronic Technology
Graduate School of Natural Science and Technology
Domotek ingeniería prototipado y formación S.L
Okayama University
AuthorAffiliation_xml – name: Department of Bioengineering
– name: Universidad Carlos III de Madrid
– name: Domotek ingeniería prototipado y formación S.L
– name: Graduate School of Natural Science and Technology
– name: Department of Electronic Technology
– name: Research Core for Interdisciplinary Sciences
– name: Instituto de Investigación Sanitaria Gregorio Marañón
– name: Empa Swiss Federal Laboratories for Materials Science and Technology
– name: Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences
– name: Okayama University
Author_xml – sequence: 1
  givenname: Andrea
  surname: Ferreras
  fullname: Ferreras, Andrea
  organization: Universidad Carlos III de Madrid
– sequence: 2
  givenname: Ana
  surname: Matesanz
  fullname: Matesanz, Ana
  organization: Department of Electronic Technology
– sequence: 3
  givenname: Jabier
  surname: Mendizabal
  fullname: Mendizabal, Jabier
  organization: Domotek ingeniería prototipado y formación S.L
– sequence: 4
  givenname: Koldo
  surname: Artola
  fullname: Artola, Koldo
  organization: Domotek ingeniería prototipado y formación S.L
– sequence: 5
  givenname: Yuta
  orcidid: 0000-0002-4958-1753
  surname: Nishina
  fullname: Nishina, Yuta
  organization: Okayama University
– sequence: 6
  givenname: Pablo
  surname: Acedo
  fullname: Acedo, Pablo
  organization: Department of Electronic Technology
– sequence: 7
  givenname: José L.
  surname: Jorcano
  fullname: Jorcano, José L.
  organization: Instituto de Investigación Sanitaria Gregorio Marañón
– sequence: 8
  givenname: Amalia
  surname: Ruiz
  fullname: Ruiz, Amalia
  email: g.ruizestrada@bradford.ac.uk
  organization: Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences
– sequence: 9
  givenname: Giacomo
  surname: Reina
  fullname: Reina, Giacomo
  email: giacomo.reina@empa.ch
  organization: Empa Swiss Federal Laboratories for Materials Science and Technology
– sequence: 10
  givenname: Cristina
  orcidid: 0000-0001-5670-3328
  surname: Martín
  fullname: Martín, Cristina
  email: cristima@ing.uc3m.es
  organization: Universidad Carlos III de Madrid
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39184835$$D View this record in MEDLINE/PubMed
BookMark eNqFUcFq3DAQFSWlSdP8QtGxFyeWJcvWcQlpEthSKOlZjOXxrhav5Ep2oX-fab0JpZcKgYbHe280896zsxADMsZFeS3KStyAywFCzM5jcAjLtXIlHf2GXVTaqKJSRp_9VZ-zq5wPxKhqISst37FzaUSrWllfMLf1u_1cfMM8xZD9T-QQer4Js-_AzZg8jPw-wbTH4B3_AiuUOdDlD3H0eSZ8M00pgtvzOfInn_OC_C7sfEBih90H9nYgDV6d3kv2_fPd0-1Dsf16_3i72RYgazEXgzNVL6SDAdpWVQZRSEFTNN1QS-iF0di5sjGuNbWr-rqpteo1NnIQYnAK5CV7XH37CAc7JX-E9MtG8PYPENPOQqLvjmjLupJKadpOD0pL0_WAiEY1htxoMeT1afWiwX4smGd79NnhOELAuGQrS9OIWpCUqO1KdSnmnHB4bS1K-zsx-29i9pQYST-euizdEftX4Us-RFArgSzsIS4p0AL_7_sMOJOq2g
Cites_doi 10.1021/acsnano.8b04758
10.1016/j.jallcom.2022.164091
10.3390/ma14040858
10.1016/j.actbio.2018.05.010
10.1128/JCM.01421-08
10.1021/acsnano.6b02039
10.1002/admt.202201917
10.1016/j.jhazmat.2020.122380
10.3390/pharmaceutics14122596
10.1016/j.carbon.2022.05.036
10.3390/pharmaceutics14071365
10.1103/PhysRevLett.97.187401
10.1186/s12967-021-02752-2
10.1038/ncomms1067
10.1002/smll.202207229
10.1089/ten.tea.2020.0210
10.1016/j.smaim.2020.09.001
10.1021/am200428v
10.1155/2012/751075
10.1038/srep17422
10.1088/1758-5090/8/3/035020
10.1088/1758-5090/9/1/015006
10.1016/j.heliyon.2023.e20475
10.3390/toxics9030062
10.1159/000484405
10.3390/ijms19124031
10.1021/acs.chemmater.6b04807
10.1021/acs.chemrev.3c00159
10.3390/polym14020354
10.1002/smll.202204044
10.1039/C9CC01205B
10.1089/mdr.2018.0319
10.1080/09506608.2023.2193784
10.1038/s41467-019-12313-3
10.1021/acsanm.2c03409
10.1016/j.actbio.2014.06.034
10.18063/ijb.v9i1.638
10.1021/acs.chemrev.0c00084
10.1021/acsami.8b18304
10.3389/fbioe.2019.00164
10.1021/acsmaterialslett.2c01044
10.1021/acsami.0c17523
10.1016/j.msec.2021.112352
10.1039/C8NR00333E
10.1016/j.bprint.2020.e00093
10.36922/ijb.2135
10.1088/2053-1583/ac4572
10.3390/polym14112229
10.1111/j.1524-475X.2009.00496.x
10.1016/j.diagmicrobio.2006.05.009
10.1007/s42242-023-00245-3
10.1002/smll.201900147
10.1016/j.ijbiomac.2024.129372
10.3390/bioengineering8020027
10.1021/ar7002804
10.1021/acsnano.7b07734
10.1111/j.1365-2133.2007.07914.x
10.1111/tid.13897
10.1038/s41598-017-17286-1
10.1038/srep40572
10.1016/j.matdes.2022.110551
10.1021/acsami.0c00710
10.3390/ijms17121976
ContentType Journal Article
Copyright 2024 The Authors. Published by American Chemical Society
2024 The Authors. Published by American Chemical Society.
Copyright_xml – notice: 2024 The Authors. Published by American Chemical Society
– notice: 2024 The Authors. Published by American Chemical Society.
DBID NPM
AAYXX
CITATION
7X8
DOA
DOI 10.1021/acsnanoscienceau.4c00006
DatabaseName PubMed
CrossRef
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2694-2496
EndPage 272
ExternalDocumentID oai_doaj_org_article_0523446496da4639bdaeee94793f1835
10_1021_acsnanoscienceau_4c00006
39184835
g07154941
Genre Journal Article
GroupedDBID ACS
AELXD
ALMA_UNASSIGNED_HOLDINGS
EBS
GROUPED_DOAJ
M~E
N~.
OK1
PGMZT
RPM
NPM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-a351t-fc92d13cafa88429ee1312697bf53ad196ebc079c895c2d57564d6e73f11fc4a3
IEDL.DBID ACS
ISSN 2694-2496
IngestDate Tue Oct 22 15:05:06 EDT 2024
Sat Oct 26 04:32:47 EDT 2024
Wed Aug 28 12:32:59 EDT 2024
Sat Nov 02 12:18:26 EDT 2024
Thu Aug 22 06:10:25 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords alginate
graphene derivatives
tissue engineering
photothermal therapy
4D bioprinting
Language English
License 2024 The Authors. Published by American Chemical Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a351t-fc92d13cafa88429ee1312697bf53ad196ebc079c895c2d57564d6e73f11fc4a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4958-1753
0000-0001-5670-3328
OpenAccessLink https://doaj.org/article/0523446496da4639bdaeee94793f1835
PMID 39184835
PQID 3097151639
PQPubID 23479
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_0523446496da4639bdaeee94793f1835
proquest_miscellaneous_3097151639
crossref_primary_10_1021_acsnanoscienceau_4c00006
pubmed_primary_39184835
acs_journals_10_1021_acsnanoscienceau_4c00006
PublicationCentury 2000
PublicationDate 2024-Aug-21
PublicationDateYYYYMMDD 2024-08-21
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-Aug-21
  day: 21
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS Nanoscience Au
PublicationTitleAlternate ACS Nanosci. Au
PublicationYear 2024
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref36/cit36
  doi: 10.1021/acsnano.8b04758
– ident: ref32/cit32
  doi: 10.1016/j.jallcom.2022.164091
– ident: ref58/cit58
  doi: 10.3390/ma14040858
– ident: ref9/cit9
  doi: 10.1016/j.actbio.2018.05.010
– ident: ref24/cit24
  doi: 10.1128/JCM.01421-08
– ident: ref48/cit48
  doi: 10.1021/acsnano.6b02039
– ident: ref61/cit61
  doi: 10.1002/admt.202201917
– ident: ref42/cit42
  doi: 10.1016/j.jhazmat.2020.122380
– ident: ref11/cit11
  doi: 10.3390/pharmaceutics14122596
– ident: ref63/cit63
  doi: 10.1016/j.carbon.2022.05.036
– ident: ref26/cit26
  doi: 10.3390/pharmaceutics14071365
– ident: ref40/cit40
  doi: 10.1103/PhysRevLett.97.187401
– ident: ref16/cit16
  doi: 10.1186/s12967-021-02752-2
– ident: ref43/cit43
  doi: 10.1038/ncomms1067
– ident: ref25/cit25
  doi: 10.1002/smll.202207229
– ident: ref10/cit10
  doi: 10.1089/ten.tea.2020.0210
– ident: ref34/cit34
  doi: 10.1016/j.smaim.2020.09.001
– ident: ref51/cit51
  doi: 10.1021/am200428v
– ident: ref31/cit31
  doi: 10.1155/2012/751075
– ident: ref37/cit37
  doi: 10.1038/srep17422
– ident: ref38/cit38
  doi: 10.1088/1758-5090/8/3/035020
– ident: ref2/cit2
  doi: 10.1088/1758-5090/9/1/015006
– ident: ref5/cit5
  doi: 10.1016/j.heliyon.2023.e20475
– ident: ref64/cit64
  doi: 10.3390/toxics9030062
– ident: ref14/cit14
  doi: 10.1159/000484405
– ident: ref29/cit29
  doi: 10.3390/ijms19124031
– ident: ref44/cit44
  doi: 10.1021/acs.chemmater.6b04807
– ident: ref47/cit47
  doi: 10.1021/acs.chemrev.3c00159
– ident: ref56/cit56
  doi: 10.3390/polym14020354
– ident: ref28/cit28
  doi: 10.1002/smll.202204044
– ident: ref35/cit35
  doi: 10.1039/C9CC01205B
– ident: ref20/cit20
  doi: 10.1089/mdr.2018.0319
– ident: ref21/cit21
  doi: 10.1080/09506608.2023.2193784
– ident: ref33/cit33
  doi: 10.1038/s41467-019-12313-3
– ident: ref46/cit46
  doi: 10.1021/acsanm.2c03409
– ident: ref57/cit57
  doi: 10.1016/j.actbio.2014.06.034
– ident: ref53/cit53
– ident: ref1/cit1
  doi: 10.18063/ijb.v9i1.638
– ident: ref6/cit6
  doi: 10.1021/acs.chemrev.0c00084
– ident: ref50/cit50
  doi: 10.1021/acsami.8b18304
– ident: ref3/cit3
  doi: 10.3389/fbioe.2019.00164
– ident: ref18/cit18
  doi: 10.1021/acsmaterialslett.2c01044
– ident: ref49/cit49
  doi: 10.1021/acsami.0c17523
– ident: ref17/cit17
  doi: 10.1016/j.msec.2021.112352
– ident: ref45/cit45
  doi: 10.1039/C8NR00333E
– ident: ref4/cit4
  doi: 10.1016/j.bprint.2020.e00093
– ident: ref8/cit8
  doi: 10.36922/ijb.2135
– ident: ref27/cit27
  doi: 10.1088/2053-1583/ac4572
– ident: ref59/cit59
  doi: 10.3390/polym14112229
– ident: ref13/cit13
  doi: 10.1111/j.1524-475X.2009.00496.x
– ident: ref23/cit23
  doi: 10.1016/j.diagmicrobio.2006.05.009
– ident: ref7/cit7
  doi: 10.1007/s42242-023-00245-3
– ident: ref39/cit39
  doi: 10.1002/smll.201900147
– ident: ref62/cit62
  doi: 10.1016/j.ijbiomac.2024.129372
– ident: ref12/cit12
  doi: 10.3390/bioengineering8020027
– ident: ref30/cit30
  doi: 10.1021/ar7002804
– ident: ref52/cit52
  doi: 10.1021/acsnano.7b07734
– ident: ref15/cit15
  doi: 10.1111/j.1365-2133.2007.07914.x
– ident: ref22/cit22
  doi: 10.1111/tid.13897
– ident: ref55/cit55
  doi: 10.1038/s41598-017-17286-1
– ident: ref41/cit41
  doi: 10.1038/srep40572
– ident: ref60/cit60
  doi: 10.1016/j.matdes.2022.110551
– ident: ref19/cit19
  doi: 10.1021/acsami.0c00710
– ident: ref54/cit54
  doi: 10.3390/ijms17121976
SSID ssj0002513263
Score 2.3171356
Snippet While the continuous development of advanced bioprinting technologies is under fervent study, enhancing the regenerative potential of hydrogel-based constructs...
SourceID doaj
proquest
crossref
pubmed
acs
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 263
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3NSx0xEMCDerIH0art86NE8Lq6-diPHJ9f9dB6UcFbmM1OQJC80n2vf38nm_h4Foo9FPaUTUiYmWQmk_ALY6cl-NJrjYWJR7u6M1UBrtGF6rxRtfeREhZTF_fN3VN7dR0xOcunvuKdsIQHToI7j2lL2rJoU_egyZ12PSCiiQkhT-aY6KWlWdlMxTWYvDbFJSpf3SE_dg5uCBAyIBJhcabduFZHr-SGN15phPf_PeIcPc_NNtvKISOfpqHusDUMH9mHFZDgLnPfEg8kX3j9hRxCz6dh_twlGjO1_xrR1BieHf8OqWjgQB-_nb2MtGY-zXxxPp_xh1EhfKWXPfZ4c_1weVvk5xMKUJWYF94Z2QvlwEPbkttBFErI2jSdrxT0NPWwc2VjXGsqJ3uK22rd19iQXIV3GtQ-2wizgJ8ZNy2IGui_8iZGXJ2BEqX0DYKXXroJIw0PNpv_YMeTbSnsn0K3WegTJl7FbX8kqsY_tLmIelnWj1zssYCsxWZrse9Zy4SdvGrV0jyKhyMQcLYYrIowrYqiUzNhn5K6l10pQ_tgan3wP4ZwyDYlBUYxLy3FEduY_1zgMVsf-sWX0YZ_Awu99nQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Light-Responsive and Antibacterial Graphenic Materials as a Holistic Approach to Tissue Engineering
URI http://dx.doi.org/10.1021/acsnanoscienceau.4c00006
https://www.ncbi.nlm.nih.gov/pubmed/39184835
https://www.proquest.com/docview/3097151639
https://doaj.org/article/0523446496da4639bdaeee94793f1835
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RcoED78fyqIzENbC28_JxKS09AJcWiZs1ccZSJeStyC6_nxnHXRWkIkDKyYnjZB6ezzPOF4DXS4zLWNdUOSnt1oNrKgxdXdkhOtvGKCxhkro47T5_7d8fCU2OuaaCb_RbDFPCVJgdCbdv6pAn2T24aTr2EYFDh6e7vArHa0YkUliWbzQrXl20ZQPPn24msSlMv8SmTOF_Pe7M8ef47v88-T24U9CmWs3mcR9uUHoAt69wED6E8HGmEil7ZX-QwjSqVdqcDzORM_f_IKzWlM6D-oRz06SQD3Wy_paJntWqUJOrzVqdZV2qK6M8gi_HR2eHJ1X580KFttGbKgZnRm0DRux7jlhE2mqWZzfExuLIXktDWHYu9K4JZmTI19ZjS52NWsdQo30M-2md6Cko16Nukc_b6ASsDQ6XZEzsCKOJJiyAjWPyxXMmn4viRvvfheeL8BagL3XkL2ZCjr_o806UubteKLVzA2vLFw_1kh_ntTHby4g147ZhRCJyknmMPO81C3h1aQqeXVDqKphovZ28FR6uhoGtW8CT2UZ2Q1nHS2ju_ewfX_M53DIMnyR7bfQL2N9839JL2JvG7UG294OcPPgJe18CLQ
link.rule.ids 315,783,787,867,2109,2772,27088,27936,27937,56751,56801
linkProvider American Chemical Society
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RcgAOLW-25WEkroG1nZePS2lZxLaXLhI3a-LYUqXKi8guv58Zx10KEgiElJMTO7FnxvN5xvkM8GqKYRrK0heGU7tlZ6oCXVMWugtG1yEwSxiHLs6bs8_tu2Omydke9UUfMVBLQ0ri_2AXkG-oLGLMBI8eN69Ll-baHbhZEehlm5wdnW_DK-S2CZhwfpl_1SxokVHnfTx_aoxdlBt-clGJyf_38DO5oZP9_-jAXdjL2FPMRmW5Bzd8vA93rjESPgC3GIlF8s7Zb15g7MUsri-6kdaZ6r9njmsfL5w4xbFoEEiXmK8uE-2zmGWicrFeiWWSrLj2lofw6eR4eTQv8jkMBepKrovgjOqldhiwbcl_eS-1pGFtulBp7MmGfeemjXGtqZzqCQDWZV_7RgcpgytRP4LduIr-CQjToqyR7utgGLp1BqdeqdB4DCooNwFSlcFmOxpsSpEraX8dPJsHbwLySlT2y0jP8Rd13rJMt88zwXYqIInZbK-Wo-W0Uia16bEkFNf16L03HIcMNAtWE3h5pRGWDJKzLBj9ajNYzaxcFcFcM4HHo6psX6UNLaip9sE_dvMF3JovTxd28eHs4yHcVgSsOK6t5FPYXX_d-GewM_Sb58kEvgN7Pwmd
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3daxQxEB9sBdEH61f1tGoEX1cvyX7lwYfrx1mxFqEVfAuz-YCC5Ip759_vzG7uqIJSEfYpu8luMjOZX2aS3wK8nmKcxrIMheHUbtmZqkDXlIXuotF1jMwSxqGLs-b0a3t4xDQ579ZnYegjemqpH5L4bNWXPmaGAfmWyhOmTPIYcPWmdMN8uwU3q5qmWkZGB2ebEAu5bgInnGPm45oFLTTqvJfnb42xm3L9L25qYPP_MwQdXNF85z87cQ_uZgwqZqPS3IcbIT2AO1eYCR-COxkJRvIO2h9BYPJilpYX3UjvTPXfM9d1SBdOfMKxqBdIlzhefBvon8UsE5aL5UKcDxIWV97yCL7Mj84Pjov8P4YCdSWXRXRGeakdRmxb8mMhSC1paJsuVho92XLo3LQxrjWVU56AYF36OjQ6ShldiXoXttMihScgTIuyRrqvo2EI1xmcBqViEzCqqNwESGV6m-2pt0OqXEn7--DZPHgTkGtx2cuRpuMadfZZrpvnmWh7KCCp2Wy3lqPmtGIm1fFYEprrPIYQDMcjI82G1QRerbXCkmFytgVTWKx6q5mdqyK4aybweFSXzau0oYU11X76j918Cbc-H87tyYfTj8_gtiJ8xeFtJfdge_l9FZ7DVu9XLwYr-AnkEwwX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Light-Responsive+and+Antibacterial+Graphenic+Materials+as+a+Holistic+Approach+to+Tissue+Engineering&rft.jtitle=ACS+Nanoscience+Au&rft.au=Ferreras%2C+Andrea&rft.au=Matesanz%2C+Ana&rft.au=Mendizabal%2C+Jabier&rft.au=Artola%2C+Koldo&rft.date=2024-08-21&rft.issn=2694-2496&rft.eissn=2694-2496&rft.volume=4&rft.issue=4&rft.spage=263&rft_id=info:doi/10.1021%2Facsnanoscienceau.4c00006&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2694-2496&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2694-2496&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2694-2496&client=summon