Mössbauer Spectroscopy Indicates That Iron in an Aluminosilicate Glass Phase Is the Source of the Bioavailable Iron from Coal Fly Ash

Iron speciation by Mössbauer spectroscopy indicates that ferric iron in an aluminosilicate glass phase is the source of the bioavailable iron in coal fly ash and that this iron species is associated with combustion particles, but not with crustal dust derived from soil minerals. Urban particulate ha...

Full description

Saved in:
Bibliographic Details
Published in:Chemical research in toxicology Vol. 13; no. 3; pp. 161 - 164
Main Authors: Veranth, John M, Smith, Kevin R, Huggins, Frank, Hu, Autumn A, Lighty, JoAnn S, Aust, Ann E
Format: Journal Article
Language:English
Published: United States American Chemical Society 01-03-2000
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Iron speciation by Mössbauer spectroscopy indicates that ferric iron in an aluminosilicate glass phase is the source of the bioavailable iron in coal fly ash and that this iron species is associated with combustion particles, but not with crustal dust derived from soil minerals. Urban particulate has been shown to be a source of bioavailable iron and has been shown to be able to induce the formation of reactive species in cell culture experiments. Crustal dust and laboratory-generated coal fly ash have been studied as surrogates for two sources of metal-bearing particles in ambient air. As much as a 60-fold difference in the amount of iron mobilized by the chelator citrate was observed between fly ash and crustal dust samples with similar total iron contents. The extent of iron mobilization by citrate in vitro has been shown to correlate with indirect measures of excess iron in cultured cells and with assays for reactive oxygen species generation in vitro. Mössbauer spectroscopy of coal fly ash, before and after treatment with the chelator desferrioxamine B, showed that the iron in an aluminosilicate glass phase was preferentially removed. The removal of the glass-phase iron greatly reduced the amount of iron that could be mobilized by citrate and prevented the particles from inducing interleukin-8 in cultured human lung epithelial (A549) cells. Ferric iron in aluminosilicate glass is associated with particles formed at high temperatures followed by rapid cooling. The observation that ferric iron in aluminosilicate glass is the source of bioavailable iron in coal fly ash suggests that particles from ambient sources and other specific combustion sources should be examined for the presence of this potential source of bioavailable iron.
Bibliography:istex:796AC9219AED23A4ECB534BFD51FDFC6FF26B172
ark:/67375/TPS-NVHT5Q1H-4
ISSN:0893-228X
1520-5010
DOI:10.1021/tx9902136