Cell Membrane Oscillations under Radiofrequency Electromagnetic Modulation
Cell responses to external radiofrequencies (RF) are a fundamental problem of much scientific research, clinical applications, and even daily lives surrounded by wireless communication hardware. In this work, we report an unexpected observation that the cell membrane can oscillate at the nanometer s...
Saved in:
Published in: | Langmuir Vol. 39; no. 9; pp. 3320 - 3331 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
American Chemical Society
07-03-2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Cell responses to external radiofrequencies (RF) are a fundamental problem of much scientific research, clinical applications, and even daily lives surrounded by wireless communication hardware. In this work, we report an unexpected observation that the cell membrane can oscillate at the nanometer scale in phase with the external RF radiation from kHz to GHz. By analyzing the oscillation modes, we reveal the mechanism behind the membrane oscillation resonance, membrane blebbing, the resulting cell death, and the selectivity of plasma-based cancer treatment based on the difference in the membrane’s natural frequencies among cell lines. Therefore, a selectivity of treatment can be achieved by aiming at the natural frequency of the target cell line to focus the membrane damage on the cancer cells and avoid normal tissues nearby. This gives a promising cancer therapy that is especially effective in the mixing lesion of the cancer cells and normal cells such as glioblastoma where surgical removal is not applicable. Along with these new phenomena, this work provides a general understanding of the cell coupling with RF radiation from the externally stimulated membrane behavior to the cell apoptosis and necrosis. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0743-7463 1520-5827 |
DOI: | 10.1021/acs.langmuir.2c03181 |