Constructing Marine Bacterial Metabolic Chassis for Potential Biorefinery of Red Algal Biomass and Agaropectin Wastes
Marine red algal biomass is a promising feedstock for sustainable production of value-added chemicals. However, the major constituents of red algal biomass, such as agar and carrageenan, are not easily assimilated by most industrial metabolic chassis developed to date. Synthetic biology offers a sol...
Saved in:
Published in: | ACS synthetic biology Vol. 12; no. 6; pp. 1782 - 1793 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
American Chemical Society
16-06-2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Marine red algal biomass is a promising feedstock for sustainable production of value-added chemicals. However, the major constituents of red algal biomass, such as agar and carrageenan, are not easily assimilated by most industrial metabolic chassis developed to date. Synthetic biology offers a solution by utilizing nonmodel organisms as metabolic chassis for consolidated biological processes. In this study, the marine heterotrophic bacterium Pseudoalteromonas atlantica T6c was harnessed as a metabolic chassis to produce value-added chemicals from the affordable red algal galactans or agaropectin, a byproduct of industrial agarose production. To construct a heterologous gene expression device in P. atlantica T6c, promoters related to agar metabolism were screened from the differentially expressed genes using RNA-Seq analysis. The expression device was built and tested with selected promoters fused to a reporter gene and tuned by incorporation of a cognate repressor predicted from the agar-specific polysaccharide utilization locus. The feasibility of the marine bacterial metabolic chassis was examined by introducing the biosynthetic gene clusters of β-carotene and violacein. Our results demonstrate that the metabolic chassis platform enables direct conversion of low-cost red algal galactans or industrial waste agaropectin into valuable bioactive pigments without any pretreatment of biomass. The developed marine bacterial chassis could potentially be used in a biorefinery framework to produce value-added chemicals from marine algal galactans. |
---|---|
AbstractList | Marine red algal biomass is a promising feedstock for sustainable production of value-added chemicals. However, the major constituents of red algal biomass, such as agar and carrageenan, are not easily assimilated by most industrial metabolic chassis developed to date. Synthetic biology offers a solution by utilizing nonmodel organisms as metabolic chassis for consolidated biological processes. In this study, the marine heterotrophic bacterium Pseudoalteromonas atlantica T6c was harnessed as a metabolic chassis to produce value-added chemicals from the affordable red algal galactans or agaropectin, a byproduct of industrial agarose production. To construct a heterologous gene expression device in P. atlantica T6c, promoters related to agar metabolism were screened from the differentially expressed genes using RNA-Seq analysis. The expression device was built and tested with selected promoters fused to a reporter gene and tuned by incorporation of a cognate repressor predicted from the agar-specific polysaccharide utilization locus. The feasibility of the marine bacterial metabolic chassis was examined by introducing the biosynthetic gene clusters of β-carotene and violacein. Our results demonstrate that the metabolic chassis platform enables direct conversion of low-cost red algal galactans or industrial waste agaropectin into valuable bioactive pigments without any pretreatment of biomass. The developed marine bacterial chassis could potentially be used in a biorefinery framework to produce value-added chemicals from marine algal galactans. Marine red algal biomass is a promising feedstock for sustainable production of value-added chemicals. However, the major constituents of red algal biomass, such as agar and carrageenan, are not easily assimilated by most industrial metabolic chassis developed to date. Synthetic biology offers a solution by utilizing nonmodel organisms as metabolic chassis for consolidated biological processes. In this study, the marine heterotrophic bacterium T6c was harnessed as a metabolic chassis to produce value-added chemicals from the affordable red algal galactans or agaropectin, a byproduct of industrial agarose production. To construct a heterologous gene expression device in T6c, promoters related to agar metabolism were screened from the differentially expressed genes using RNA-Seq analysis. The expression device was built and tested with selected promoters fused to a reporter gene and tuned by incorporation of a cognate repressor predicted from the agar-specific polysaccharide utilization locus. The feasibility of the marine bacterial metabolic chassis was examined by introducing the biosynthetic gene clusters of β-carotene and violacein. Our results demonstrate that the metabolic chassis platform enables direct conversion of low-cost red algal galactans or industrial waste agaropectin into valuable bioactive pigments without any pretreatment of biomass. The developed marine bacterial chassis could potentially be used in a biorefinery framework to produce value-added chemicals from marine algal galactans. |
Author | Pathiraja, Duleepa Kim, Bogun Stougaard, Peter Park, Byeonghyeok Choi, In-Geol |
AuthorAffiliation | Department of Environmental Sciences Department of Biotechnology, College of Life Sciences and Biotechnology |
AuthorAffiliation_xml | – name: Department of Environmental Sciences – name: Department of Biotechnology, College of Life Sciences and Biotechnology |
Author_xml | – sequence: 1 givenname: Duleepa orcidid: 0000-0001-6239-5958 surname: Pathiraja fullname: Pathiraja, Duleepa organization: Department of Biotechnology, College of Life Sciences and Biotechnology – sequence: 2 givenname: Byeonghyeok surname: Park fullname: Park, Byeonghyeok organization: Department of Biotechnology, College of Life Sciences and Biotechnology – sequence: 3 givenname: Bogun surname: Kim fullname: Kim, Bogun organization: Department of Biotechnology, College of Life Sciences and Biotechnology – sequence: 4 givenname: Peter orcidid: 0000-0002-2796-7137 surname: Stougaard fullname: Stougaard, Peter organization: Department of Environmental Sciences – sequence: 5 givenname: In-Geol orcidid: 0000-0001-7403-6274 surname: Choi fullname: Choi, In-Geol email: igchoi@korea.ac.kr organization: Department of Biotechnology, College of Life Sciences and Biotechnology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37265394$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kD9PwzAQxS1UREvpB2BBHllSnDhxkrGt-Ce1AiEQY-TYl-IqtYvtDP32uEqpmJjudPd773TvEg200YDQdUymMUniOy6c2-tamSkVhBBGz9AoiVkcZaEf_OmHaOLcJiAky2hGiws0pHnCMlqmI9QtjHbedsIrvcYrbpUGPOfCg1W8xSvwvDatEnjxxZ1TDjfG4lfjQfvDfq6MhSZo7B6bBr-BxLN23S-2QYC5DpM1t2YHhxP4kzsP7gqdN7x1MDnWMfp4uH9fPEXLl8fnxWwZcUpLHzFeUg5JWsg0ZUWdyyLLRVpSJss6IUAKKWrJAguyJjwuMiLzpmGiAZHWAigdo9ved2fNdwfOV1vlBLQt12A6VyVFktCcZYwFNO5RYY1z4alqZ9WW230Vk-oQeHUKvDoGHjQ3R_uu3oI8KX7jDUDUA0FbbUxndfj2H8MfUReRVw |
CitedBy_id | crossref_primary_10_1016_j_biotechadv_2024_108351 |
Cites_doi | 10.1371/journal.pone.0137384 10.1128/msphere.00792-19 10.1128/aem.45.1.64-70.1983 10.1128/aem.00230-21 10.1007/s12257-014-0622-3 10.1128/aem.72.5.3396-3405.2006 10.1074/jbc.m110968200 10.1093/nar/gkaa533 10.1038/nmeth.1923 10.1038/s41467-020-14941-6 10.1093/nar/gkw231 10.1021/acs.jafc.8b01792 10.3390/md17120679 10.1093/bioinformatics/btp616 10.1016/j.cell.2016.02.004 10.1007/s10295-016-1840-9 10.1111/1462-2920.12607 10.1038/s41467-019-10371-1 10.1074/jbc.m112.377184 10.3389/fbioe.2019.00036 10.1007/s00253-014-5557-2 10.1038/nmeth.3252 10.1016/j.csbj.2021.03.007 10.1128/mbio.00314-12 10.1007/s10295-013-1348-5 10.1093/nar/gky418 10.1099/00207713-42-4-621 10.1016/j.ymben.2018.05.006 10.3389/fmicb.2018.00839 10.1111/1751-7915.13292 10.1128/jb.00860-16 10.1111/jfd.12144 10.1016/B978-0-12-417029-2.00002-9 10.1016/j.ymben.2018.04.008 10.1016/j.jbiotec.2016.07.022 10.1111/1462-2920.15128 10.1016/j.tibtech.2021.08.003 10.1016/j.scitotenv.2021.147024 10.1093/nar/gkv416 10.1093/bioinformatics/btp352 10.1016/j.biortech.2011.11.120 10.1016/j.ymben.2018.05.005 10.1007/s10295-011-0970-3 10.1128/aem.64.11.4378-4383.1998 10.1111/j.1365-313x.2004.02309.x 10.3390/microorganisms8101466 |
ContentType | Journal Article |
Copyright | 2023 American Chemical Society |
Copyright_xml | – notice: 2023 American Chemical Society |
DBID | NPM AAYXX CITATION 7X8 |
DOI | 10.1021/acssynbio.3c00063 |
DatabaseName | PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2161-5063 |
EndPage | 1793 |
ExternalDocumentID | 10_1021_acssynbio_3c00063 37265394 a263436187 |
Genre | Journal Article |
GroupedDBID | 53G 55A 7~N AABXI ABFRP ABMVS ABQRX ABUCX ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED~ GGK GNL IH9 JG~ ROL UI2 VF5 VG9 W1F BAANH CUPRZ NPM AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-a339t-6a93ae248d4468b7d857c4936d9b20e08dcbd6a33edb0a1850d7ff6cfec4bce33 |
IEDL.DBID | ACS |
ISSN | 2161-5063 |
IngestDate | Fri Aug 16 05:35:38 EDT 2024 Fri Aug 23 02:57:23 EDT 2024 Wed Oct 16 00:39:17 EDT 2024 Thu Jul 06 08:30:30 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | value-added chemicals marine heterotrophic bacteria metabolic chassis red algal biomass bioconversion Pseudoalteromonas atlantica T6c |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a339t-6a93ae248d4468b7d857c4936d9b20e08dcbd6a33edb0a1850d7ff6cfec4bce33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-7403-6274 0000-0001-6239-5958 0000-0002-2796-7137 |
PMID | 37265394 |
PQID | 2822376566 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2822376566 crossref_primary_10_1021_acssynbio_3c00063 pubmed_primary_37265394 acs_journals_10_1021_acssynbio_3c00063 |
PublicationCentury | 2000 |
PublicationDate | 2023-06-16 |
PublicationDateYYYYMMDD | 2023-06-16 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS synthetic biology |
PublicationTitleAlternate | ACS Synth. Biol |
PublicationYear | 2023 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 Cai J. (ref40/cit40) 2021; 63 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref46/cit46 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref24/cit24 ref38/cit38 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref14/cit14 doi: 10.1371/journal.pone.0137384 – ident: ref21/cit21 doi: 10.1128/msphere.00792-19 – ident: ref25/cit25 doi: 10.1128/aem.45.1.64-70.1983 – ident: ref22/cit22 doi: 10.1128/aem.00230-21 – ident: ref29/cit29 doi: 10.1007/s12257-014-0622-3 – ident: ref19/cit19 doi: 10.1128/aem.72.5.3396-3405.2006 – ident: ref30/cit30 doi: 10.1074/jbc.m110968200 – ident: ref32/cit32 doi: 10.1093/nar/gkaa533 – ident: ref43/cit43 doi: 10.1038/nmeth.1923 – ident: ref31/cit31 doi: 10.1038/s41467-020-14941-6 – ident: ref34/cit34 doi: 10.1093/nar/gkw231 – ident: ref48/cit48 doi: 10.1021/acs.jafc.8b01792 – ident: ref38/cit38 doi: 10.3390/md17120679 – ident: ref46/cit46 doi: 10.1093/bioinformatics/btp616 – ident: ref3/cit3 doi: 10.1016/j.cell.2016.02.004 – ident: ref11/cit11 doi: 10.1007/s10295-016-1840-9 – ident: ref35/cit35 doi: 10.1111/1462-2920.12607 – ident: ref18/cit18 doi: 10.1038/s41467-019-10371-1 – ident: ref20/cit20 doi: 10.1074/jbc.m112.377184 – ident: ref1/cit1 doi: 10.3389/fbioe.2019.00036 – ident: ref13/cit13 doi: 10.1007/s00253-014-5557-2 – ident: ref45/cit45 doi: 10.1038/nmeth.3252 – ident: ref17/cit17 doi: 10.1016/j.csbj.2021.03.007 – ident: ref9/cit9 doi: 10.1128/mbio.00314-12 – ident: ref10/cit10 doi: 10.1007/s10295-013-1348-5 – ident: ref42/cit42 doi: 10.1093/nar/gky418 – ident: ref26/cit26 doi: 10.1099/00207713-42-4-621 – ident: ref6/cit6 doi: 10.1016/j.ymben.2018.05.006 – ident: ref24/cit24 doi: 10.3389/fmicb.2018.00839 – ident: ref39/cit39 – ident: ref2/cit2 doi: 10.1111/1751-7915.13292 – ident: ref28/cit28 doi: 10.1128/jb.00860-16 – ident: ref41/cit41 doi: 10.1111/jfd.12144 – ident: ref4/cit4 doi: 10.1016/B978-0-12-417029-2.00002-9 – ident: ref5/cit5 doi: 10.1016/j.ymben.2018.04.008 – ident: ref8/cit8 doi: 10.1016/j.jbiotec.2016.07.022 – ident: ref16/cit16 doi: 10.1111/1462-2920.15128 – ident: ref27/cit27 doi: 10.1016/j.tibtech.2021.08.003 – volume: 63 start-page: 13 year: 2021 ident: ref40/cit40 publication-title: FAO Aquacult. Newsl. contributor: fullname: Cai J. – ident: ref12/cit12 doi: 10.1016/j.scitotenv.2021.147024 – ident: ref47/cit47 doi: 10.1093/nar/gkv416 – ident: ref44/cit44 doi: 10.1093/bioinformatics/btp352 – ident: ref36/cit36 doi: 10.1016/j.biortech.2011.11.120 – ident: ref7/cit7 doi: 10.1016/j.ymben.2018.05.005 – ident: ref37/cit37 doi: 10.1007/s10295-011-0970-3 – ident: ref23/cit23 doi: 10.1128/aem.64.11.4378-4383.1998 – ident: ref33/cit33 doi: 10.1111/j.1365-313x.2004.02309.x – ident: ref15/cit15 doi: 10.3390/microorganisms8101466 |
SSID | ssj0000553538 |
Score | 2.3527477 |
Snippet | Marine red algal biomass is a promising feedstock for sustainable production of value-added chemicals. However, the major constituents of red algal biomass,... |
SourceID | proquest crossref pubmed acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1782 |
Title | Constructing Marine Bacterial Metabolic Chassis for Potential Biorefinery of Red Algal Biomass and Agaropectin Wastes |
URI | http://dx.doi.org/10.1021/acssynbio.3c00063 https://www.ncbi.nlm.nih.gov/pubmed/37265394 https://search.proquest.com/docview/2822376566 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVYLnBgX8omIyEOSIEkdrYjFCouIMQiuEXjrVSCBCntoX_PTNJWgADBNR47lmecefF43jB24DurAK3Xg0BEngSXeSmA9USoTeKcH4Cj5OTLu-T6KT2_kB94tr9G8MPgBHRVDQvVK4-Frj3qNJsNE0QKhIPad5MDFT-KRFRXrg4RxXgRSo6jmN-NQt5IV5-90Q8Qs3Y1ncV_TXKJLYwQJT9tTGCZTdlihc1_4BlcZQMqy9kQxRZdfgWU8cfPGp5m7Hpl-2gKLz3N28-IpXsVRyTLb8o-3STC9rMeVSOhLMEhLx2_tYafUsSeGl6xA4cCn3SBzvXpFfwR0HaqNfbQubhvX3qjegseCJH1vRgyATaUqcF_xFQlJo0SLTMRm0yFvvVTo5WJUdYa5QM6ep_UGWtntVTaCrHOZoqysJuMQxIZgibWSSWtzBT6QEdMMpACIjJosUNcsny0X6q8DoWHQT5Zx3y0ji12NFZQ_tbwb_wmvD9WYY67hEIfUNhyUOV0WRY_pYhdW2yj0e1kOJGExM8rt_46p202R0Xn6cJYEO-wGdSf3WXTlRns1Sb5DmEc4EI |
link.rule.ids | 315,782,786,2769,27085,27933,27934,56747,56797 |
linkProvider | American Chemical Society |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxRBEK7wOAAHBURcFWgSw4FkdGZ6nkdYIEtgiRGM3ibVL9wEZkx698C_t2pmd5VEieHar-l0VXd909X1FcCH0FmFpL0BRjINEnRlUCDaQMba5M6FEToOTh5c51ffi5NTpsmJZ7EwNAlPI_nWif-bXSD6RGX-oVaj5qPUrWFdhOU0IzDMcKh_Pb9XCdNUpm0C65jATJBSy5kz82-jsFHS_rFR-gfSbC3O2cvnzHUdXkzxpTjqFGIDFmy9CWt_sA6-ggkn6exoY-tbMUSO_xPHHWszdR3aMSnG3UiL_g9C1iMvCNeKz82Y3xVR_fGIc5NwzOCDaJz4Yo04Yv89V9xTB4E1ldwi3_LzJ8Q3JE3yW_D17PSmPwim2RcClLIcBxmWEm2cFIb-GAuVmyLNdVLKzJQqDm1YGK1MRm2tUSGS2Q9ZuJl2VidKWylfw1Ld1PYNCMxTw0DFukQlNikVWUTHvDJYIOEz7MEBLVk13T2-ah3jcVTN17GarmMPDmdyqn52bBxPNd6fSbKiPcOOEKxtM_EVP52lg5WQbA-2OxHPh5N5zGy9ydv_ndMerAxuhpfV5fnVxTtY5XT0_JQsyt7DEsnS7sCiN5PdVkt_AeWU6K8 |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSxxBEC6igWAOeanJJiZ2IHgQRmem53lcVxclUSRG9DZUv9aFZEbo3YP_PlUzs0sEIyHXfk3TVT31dVfXVwBfQmcVkvYGGMk0SNCVQYFoAxlrkzsXRug4OPn4Ij-7Lg6PmCYnW8TC0CQ8jeRbJz7v6lvjeoaBaJ_K_V2tps2e1K1xXYGnaZaXfOgaji6Wdythmsq0TWIdE6AJUmq5cGg-NAobJu3vG6a_oM3W6oxf_u98X8GLHmeKYacYr-GJrd_A8z_YB9dhzsk6O_rYeiJOkeMAxUHH3kxdT-2MFOTnVIvRDSHsqReEb8V5M-P3RVR_MOUcJRw7eCcaJ75bI4bsx-eKX9RBYE0lE-Tbfv6EuELSKL8Bl-OjH6PjoM_CEKCU5SzIsJRo46QwdHIsVG6KNNdJKTNTqji0YWG0Mhm1tUaFSOY_ZCFn2lmdKG2l3ITVuqntOxCYp4YBi3WJSmxSKrKMjvllsEDCaTiAHVqyqt9Fvmod5HFULdex6tdxALsLWVW3HSvHY40_L6RZ0d5hhwjWtpn7ip_Q0g-WEO0A3nZiXg4n85hZe5P3_zqnbXh2fjiuvp2cff0Aa5yVnl-URdkWrJIo7UdY8Wb-qVXU33TB6zI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constructing+Marine+Bacterial+Metabolic+Chassis+for+Potential+Biorefinery+of+Red+Algal+Biomass+and+Agaropectin+Wastes&rft.jtitle=ACS+synthetic+biology&rft.au=Pathiraja%2C+Duleepa&rft.au=Park%2C+Byeonghyeok&rft.au=Kim%2C+Bogun&rft.au=Stougaard%2C+Peter&rft.date=2023-06-16&rft.eissn=2161-5063&rft.volume=12&rft.issue=6&rft.spage=1782&rft.epage=1793&rft_id=info:doi/10.1021%2Facssynbio.3c00063&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-5063&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-5063&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-5063&client=summon |