Effects of the Initial Gel Fuel Temperature on the Ignition Mechanism and Characteristics of Oil-Filled Cryogel Droplets in the High-Temperature Oxidizer Medium
The ignition mechanism was studied for a group of gel fuel compositions in a high-temperature oxidizer medium. It was determined how the initial temperature of the fuel influences the ignition characteristics. The gel fuel (oil-filled cryogel) was prepared from an oil emulsion based on the mixture o...
Saved in:
Published in: | Energy & fuels Vol. 33; no. 11; pp. 11812 - 11820 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
American Chemical Society
21-11-2019
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The ignition mechanism was studied for a group of gel fuel compositions in a high-temperature oxidizer medium. It was determined how the initial temperature of the fuel influences the ignition characteristics. The gel fuel (oil-filled cryogel) was prepared from an oil emulsion based on the mixture of a combustible liquid and polyvinyl alcohol. The composition of primary oil emulsions was as follows: the aqueous solution of polyvinyl alcohol (5, 10 wt %) + 40–60 vol % of oil + 2 vol % of emulsifier. The initial temperature of gel fuels ranged from 188 to 293 K. Combustion was initiated in high-temperature motionless air at 873–1273 K. Using a high-speed video recording system, we established that at different initial temperatures of the gel fuel, a set of identical processes occurs during the induction period; these are different from the same physical and chemical processes during the ignition of a combustible liquid. After reaching threshold conditions, the flame spreads in the droplet’s vicinity from a hot spot through the gas mixture. Hot spot is an ignited and a small-sized fragment separating and moving away from the molten fuel droplet as a result of a microexplosion. The values of the main process characteristicignition delay timesdiffer 25–95% for fuel samples with the initial temperature of 293 K and temperatures of 188–233 K because of a long heating and melting stage of the latter. This is explained by a 2.5–3.6-fold difference in the amount of energy, which is necessary to supply to a colder fuel sample for this phase transformation to occur, other things being equal. |
---|---|
AbstractList | The ignition mechanism was studied for a group of gel fuel compositions in a high-temperature oxidizer medium. It was determined how the initial temperature of the fuel influences the ignition characteristics. The gel fuel (oil-filled cryogel) was prepared from an oil emulsion based on the mixture of a combustible liquid and polyvinyl alcohol. The composition of primary oil emulsions was as follows: the aqueous solution of polyvinyl alcohol (5, 10 wt %) + 40–60 vol % of oil + 2 vol % of emulsifier. The initial temperature of gel fuels ranged from 188 to 293 K. Combustion was initiated in high-temperature motionless air at 873–1273 K. Using a high-speed video recording system, we established that at different initial temperatures of the gel fuel, a set of identical processes occurs during the induction period; these are different from the same physical and chemical processes during the ignition of a combustible liquid. After reaching threshold conditions, the flame spreads in the droplet’s vicinity from a hot spot through the gas mixture. Hot spot is an ignited and a small-sized fragment separating and moving away from the molten fuel droplet as a result of a microexplosion. The values of the main process characteristicignition delay timesdiffer 25–95% for fuel samples with the initial temperature of 293 K and temperatures of 188–233 K because of a long heating and melting stage of the latter. This is explained by a 2.5–3.6-fold difference in the amount of energy, which is necessary to supply to a colder fuel sample for this phase transformation to occur, other things being equal. |
Author | Nigay, Alexander G Yashutina, Olga S Glushkov, Dmitrii O Yanovsky, Vyacheslav A |
AuthorAffiliation | Heat and Mass Transfer Simulation Laboratory National Research Tomsk Polytechnic University National Research Tomsk State University Scientific and Educational Center “Perspective Materials and Technologies in Subsoil Use” |
AuthorAffiliation_xml | – name: National Research Tomsk State University – name: National Research Tomsk Polytechnic University – name: Scientific and Educational Center “Perspective Materials and Technologies in Subsoil Use” – name: Heat and Mass Transfer Simulation Laboratory |
Author_xml | – sequence: 1 givenname: Dmitrii O orcidid: 0000-0002-6975-6733 surname: Glushkov fullname: Glushkov, Dmitrii O email: dmitriyog@tpu.ru organization: National Research Tomsk Polytechnic University – sequence: 2 givenname: Alexander G surname: Nigay fullname: Nigay, Alexander G organization: National Research Tomsk Polytechnic University – sequence: 3 givenname: Vyacheslav A surname: Yanovsky fullname: Yanovsky, Vyacheslav A organization: National Research Tomsk State University – sequence: 4 givenname: Olga S surname: Yashutina fullname: Yashutina, Olga S organization: National Research Tomsk Polytechnic University |
BookMark | eNqFkE1OwzAQhS0EEm3hDPgCKXZcO8kSlf5JRd2UdeQ4k8RV4lR2IlFOw1FxSBfdsRqN5r3vjd4U3ZvWAEIvlMwpCemrVG4OBmx5KXqo3TzJSMgIuUMTykMScBIm92hC4jgKiAgXj2jq3IkQIljMJ-hnVRSgOofbAncV4J3RnZY13kCN156Hj9Ccwcqut4BbM2rKQeSXD1CVNNo1WJocLytpperAatdp9Uc86DpY67oGf7WXtvS8d9uea_CBeoRtdVkFtyGHL53rb7Cenuu-eUIPhawdPF_nDH2uV8flNtgfNrvl2z6QjMVdQJkqGA0VZXGRKEqTSEopkkwJzgkVYZgTHimRZQuuophlQvBM8BxINIhzYDMUjVxlW-csFOnZ6kbaS0pJOhSd-qLTm6LTa9HeyUbnIDi1vTX-z39dv9XMjKA |
CitedBy_id | crossref_primary_10_1016_j_fuel_2020_119765 crossref_primary_10_1016_j_fuel_2021_120172 crossref_primary_10_1134_S1990793123010219 crossref_primary_10_1016_j_pecs_2020_100885 crossref_primary_10_3390_en14217083 crossref_primary_10_1016_j_tca_2021_179017 crossref_primary_10_1016_j_actaastro_2020_09_004 crossref_primary_10_1016_j_fuel_2021_123024 crossref_primary_10_31857_S0207401X23020073 crossref_primary_10_3390_gels9110902 |
Cites_doi | 10.3103/S0361521913010060 10.1016/j.fuel.2010.12.021 10.1016/j.fuproc.2012.08.023 10.2514/2.5695 10.1016/j.ijmultiphaseflow.2017.12.003 10.1016/j.fuel.2016.12.020 10.3103/s0361521916020117 10.1115/1.4040532 10.1039/DC9745700007 10.1016/j.apenergy.2018.08.082 10.1002/prep.201600039 10.1039/DC9745700038 10.2514/2.5590 10.1016/j.fuel.2013.03.071 10.1016/j.actaastro.2017.12.015 10.1016/j.applthermaleng.2018.07.010 10.1080/08916152.2018.1434576 10.1021/ef3004009 10.1016/j.applthermaleng.2018.04.095 10.1016/j.fuel.2011.09.041 10.1016/j.jaap.2017.02.016 10.1016/j.pecs.2018.10.001 10.1016/j.cherd.2017.09.008 10.1016/j.ast.2014.07.001 10.1016/j.jnnfm.2011.08.005 10.1016/j.applthermaleng.2014.02.062 10.1016/j.ijhydene.2017.06.190 10.1080/07370650490492824 10.2514/1.B36872 10.1021/acs.iecr.9b00580 10.1021/acs.energyfuels.8b01796 10.1016/j.combustflame.2008.08.008 10.1016/j.jhazmat.2011.01.122 10.1016/j.fuel.2016.03.072 10.1016/j.combustflame.2018.05.004 10.1016/j.fuel.2018.02.064 10.1021/ef300990d 10.2514/1.B34853 10.1016/j.apenergy.2018.11.008 10.3390/en5083126 10.1016/j.fuel.2015.06.046 10.1016/j.combustflame.2018.11.001 10.1016/j.jnnfm.2017.08.003 10.1016/j.fuel.2018.02.098 10.2514/1.46531 10.1002/prep.19860110204 10.1016/j.fuel.2016.03.052 10.1016/j.ast.2006.08.006 10.2514/1.B35456 10.1080/00102202.2018.1460599 10.1016/0377-0257(95)01356-Z 10.2514/1.55620 10.1021/acs.energyfuels.8b01562 10.2514/1.B36144 10.1016/j.ijhydene.2018.10.009 10.14429/dsj.46.4315 10.1080/00102200008947300 10.1021/j150521a013 10.1016/j.fuel.2011.11.015 10.1016/j.jclepro.2018.08.126 10.1016/j.fuel.2014.02.051 10.1016/j.fuel.2013.05.033 10.2514/1.34227 10.1016/j.joei.2018.10.017 10.2514/1.B34135 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1021/acs.energyfuels.9b02300 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1520-5029 |
EndPage | 11820 |
ExternalDocumentID | 10_1021_acs_energyfuels_9b02300 b271919368 |
GroupedDBID | 02 55A 5GY 7~N AABXI ABFLS ABMVS ABUCX ACGFS ACJ ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 DU5 EBS ED ED~ F5P GNL IH9 JG JG~ LG6 P2P ROL TAE TN5 UI2 VF5 VG9 W1F X -~X .DC 4.4 5VS AAHBH AAYXX ABJNI ABQRX ACGFO ADHLV AGXLV AHGAQ BAANH CITATION CUPRZ GGK ZCA ~02 |
ID | FETCH-LOGICAL-a338t-13cf312c138f9c1197aaa69bc65501622d057c6bb45c783b665b65de07c119de3 |
IEDL.DBID | ACS |
ISSN | 0887-0624 |
IngestDate | Thu Nov 21 22:06:21 EST 2024 Thu Aug 27 13:43:49 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a338t-13cf312c138f9c1197aaa69bc65501622d057c6bb45c783b665b65de07c119de3 |
ORCID | 0000-0002-6975-6733 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1021_acs_energyfuels_9b02300 acs_journals_10_1021_acs_energyfuels_9b02300 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 2019-11-21 |
PublicationDateYYYYMMDD | 2019-11-21 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-21 day: 21 |
PublicationDecade | 2010 |
PublicationTitle | Energy & fuels |
PublicationTitleAlternate | Energy Fuels |
PublicationYear | 2019 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 Natan B. (ref21/cit21) 2002 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref26/cit26 doi: 10.3103/S0361521913010060 – ident: ref22/cit22 doi: 10.1016/j.fuel.2010.12.021 – ident: ref34/cit34 doi: 10.1016/j.fuproc.2012.08.023 – ident: ref38/cit38 doi: 10.2514/2.5695 – ident: ref43/cit43 doi: 10.1016/j.ijmultiphaseflow.2017.12.003 – ident: ref56/cit56 doi: 10.1016/j.fuel.2016.12.020 – ident: ref16/cit16 doi: 10.3103/s0361521916020117 – ident: ref14/cit14 doi: 10.1115/1.4040532 – ident: ref31/cit31 doi: 10.1039/DC9745700007 – ident: ref1/cit1 doi: 10.1016/j.apenergy.2018.08.082 – ident: ref24/cit24 doi: 10.1002/prep.201600039 – ident: ref30/cit30 doi: 10.1039/DC9745700038 – ident: ref37/cit37 doi: 10.2514/2.5590 – ident: ref23/cit23 doi: 10.1016/j.fuel.2013.03.071 – ident: ref44/cit44 doi: 10.1016/j.actaastro.2017.12.015 – ident: ref11/cit11 doi: 10.1016/j.applthermaleng.2018.07.010 – ident: ref63/cit63 doi: 10.1080/08916152.2018.1434576 – ident: ref57/cit57 doi: 10.1021/ef3004009 – ident: ref62/cit62 doi: 10.1016/j.applthermaleng.2018.04.095 – ident: ref54/cit54 doi: 10.1016/j.fuel.2011.09.041 – ident: ref20/cit20 doi: 10.1016/j.jaap.2017.02.016 – ident: ref7/cit7 doi: 10.1016/j.pecs.2018.10.001 – ident: ref18/cit18 doi: 10.1016/j.cherd.2017.09.008 – ident: ref41/cit41 doi: 10.1016/j.ast.2014.07.001 – ident: ref39/cit39 doi: 10.1016/j.jnnfm.2011.08.005 – ident: ref12/cit12 doi: 10.1016/j.applthermaleng.2014.02.062 – ident: ref15/cit15 doi: 10.1016/j.ijhydene.2017.06.190 – ident: ref35/cit35 doi: 10.1080/07370650490492824 – ident: ref53/cit53 doi: 10.2514/1.B36872 – ident: ref61/cit61 doi: 10.1021/acs.iecr.9b00580 – ident: ref59/cit59 doi: 10.1021/acs.energyfuels.8b01796 – ident: ref45/cit45 doi: 10.1016/j.combustflame.2008.08.008 – ident: ref65/cit65 doi: 10.1016/j.jhazmat.2011.01.122 – ident: ref64/cit64 doi: 10.1016/j.fuel.2016.03.072 – ident: ref3/cit3 doi: 10.1016/j.combustflame.2018.05.004 – ident: ref6/cit6 doi: 10.1016/j.fuel.2018.02.064 – ident: ref49/cit49 doi: 10.1021/ef300990d – ident: ref50/cit50 doi: 10.2514/1.B34853 – ident: ref60/cit60 doi: 10.1016/j.apenergy.2018.11.008 – ident: ref48/cit48 doi: 10.3390/en5083126 – ident: ref10/cit10 doi: 10.1016/j.fuel.2015.06.046 – ident: ref8/cit8 doi: 10.1016/j.combustflame.2018.11.001 – ident: ref42/cit42 doi: 10.1016/j.jnnfm.2017.08.003 – ident: ref2/cit2 doi: 10.1016/j.fuel.2018.02.098 – ident: ref46/cit46 doi: 10.2514/1.46531 – ident: ref32/cit32 doi: 10.1002/prep.19860110204 – ident: ref52/cit52 doi: 10.1016/j.fuel.2016.03.052 – ident: ref27/cit27 doi: 10.1016/j.ast.2006.08.006 – ident: ref51/cit51 doi: 10.2514/1.B35456 – ident: ref13/cit13 doi: 10.1080/00102202.2018.1460599 – ident: ref36/cit36 doi: 10.1016/0377-0257(95)01356-Z – start-page: 172 volume-title: Combustion of Energetic Materials year: 2002 ident: ref21/cit21 contributor: fullname: Natan B. – ident: ref28/cit28 doi: 10.2514/1.55620 – ident: ref17/cit17 doi: 10.1021/acs.energyfuels.8b01562 – ident: ref9/cit9 doi: 10.2514/1.B36144 – ident: ref5/cit5 doi: 10.1016/j.ijhydene.2018.10.009 – ident: ref33/cit33 doi: 10.14429/dsj.46.4315 – ident: ref47/cit47 doi: 10.1080/00102200008947300 – ident: ref29/cit29 doi: 10.1021/j150521a013 – ident: ref55/cit55 doi: 10.1016/j.fuel.2011.11.015 – ident: ref66/cit66 doi: 10.1016/j.jclepro.2018.08.126 – ident: ref25/cit25 doi: 10.1016/j.fuel.2014.02.051 – ident: ref4/cit4 doi: 10.1016/j.fuel.2013.05.033 – ident: ref58/cit58 doi: 10.2514/1.34227 – ident: ref19/cit19 doi: 10.1016/j.joei.2018.10.017 – ident: ref40/cit40 doi: 10.2514/1.B34135 |
SSID | ssj0006385 |
Score | 2.4071264 |
Snippet | The ignition mechanism was studied for a group of gel fuel compositions in a high-temperature oxidizer medium. It was determined how the initial temperature of... |
SourceID | crossref acs |
SourceType | Aggregation Database Publisher |
StartPage | 11812 |
Title | Effects of the Initial Gel Fuel Temperature on the Ignition Mechanism and Characteristics of Oil-Filled Cryogel Droplets in the High-Temperature Oxidizer Medium |
URI | http://dx.doi.org/10.1021/acs.energyfuels.9b02300 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagDMDAo4AoL3lgJKVxbCcZUdtQBujQIrFFseOgSG2KEiIBv4afyl3TojBUCMYk9tnKObnvdHffEXLJVcy1EdLiwtcWj7S2IuVqy2VacSOZURyrkQcj9-HJ6_WRJsdeEcFn9nWki7aZ18ElJZiLtq8QNoOXvsFcwAuIhrqj758vHCexJPfsSMaXKV2rBaFZ0kXNLNXsS7D7j53tkZ0FmKQ3lfb3yZrJmmSzu-zh1iTbNbrBA_JZURUXdJZQwH30DhOHYP6tmdAAZNOxARBdkSzTWVaNmWcXwcW9wRrhtJjSKItp9yfPM0ocphMrwMpCeJq_z55BXi_H9HRYMK2EYVKJVV9k-JbG6YfJKcaLyukheQz64-7AWnRosCJwbbGPvU4cm2nb8RJfY0QyiiLpKy3B8bElYzHAQS2V4kK7nqOkFEqK2HRcHBwb54g0sllmjgnl0mMGjk2ihORKCC9OXM5dpjR6PdprkSt43-HiCyvCefCc2SHerCkhXCihRTpLfYYvFW_Hb1NO_rbCKdkC8ORjXSKzz0jjNS_NOVkv4vJifiS_ANhl5ZM |
link.rule.ids | 315,782,786,2769,27085,27933,27934,56747,56797 |
linkProvider | American Chemical Society |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagDIWBRwHxxgMjgca1nWREhdKKlg4tElsUOw6KVFLUEAn4NfxU7pIGwoAQjHHss2Vfct_p7j4TcsJVyLUR0uLC0xYPtLYC5WjLYVpxI5lRHKuRuyPn9t69vEKaHLeshYFFpCApzYP4X-wC9jm2mbwcLsrAapx5CtEzOOtLQgIkRlDUHn3-g0GrRMnx2ZSMl5ldPwtC66TTinWqmJnO2v8XuE5W59CSXhS6sEEWTNIg9XZ5o1uDrFTIBzfJe0FcnNJpRAEF0h6mEcH4azOhHZBNxwYgdUG5TKdJ0SfPNYKHgcGK4Th9pEES0vZ31meUOIwnVgfrDOHt7HX6APIuZ5isDhPGhTBMMbGqkwxf4jB-MzOK0aPscYvcda7G7a41v6_BCsDRxVvtddSymbZbbuRpjE8GQSA9pSW4QbZkLARwqKVSXGjHbSkphZIiNE0HO4emtU1qyTQxO4Ry6TIDShQpIbkSwg0jh3OHKY0-kHZ3ySnstz__3lI_D6Uz28fGyiH480PYJc3yWP2ngsXjtyF7f5vhmNS740Hf7_dub_bJMsAqDysWmX1Aas-zzBySxTTMjnIt_QDNr-4A |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEA4e4PHgLa5nHny0us0maQu-LLtWxRNU8K00R6WgXdm6oP4af6ozPaQ-iIiPTZNJ6Ew6M8zMN4TscmW4tkI6XATa4bHWTqw87XhMK24ls4pjNfLJjXd57_ePECbnsK6FgUPkQCkvgvh4q59NUiEMuAc4bouSuGQEmmM_UGhBg8M-KaQXoOvV7d18_YdBskSN89mWjNfZXT8TQg2l84aGaqiacP5_h1wgc5WJSbulTCySMZstkele3dlticw2QAiXyUcJYJzTQULBGqSnmE4E64_tIw2BNr21YFqX0Mt0kJVzipwjeLiwWDmc5k80zgztfUd_RopX6aMTYr0hvB2-DR6AXn-ISeuwYVoSw1QTp7nJ1Wtq0nc7pBhFGj2tkLvw6LZ34lR9G5wYHF7sbq-Tjsu02_GTQGOcMo5jGSgtwR1yJWMGjEQtleJCe35HSSmUFMa2PZxsbGeVTGSDzK4RyqXPLAhTooTkSgjfJB7nHlMafSHtt8gefO-ound5VITUmRvhYIMJUcWEFmnXrI2eSzSP35as_22HHTJ13Q-j89PLsw0yA9ZVgIWLzN0kEy_Dkd0i47kZbReC-glwL_CD |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+the+Initial+Gel+Fuel+Temperature+on+the+Ignition+Mechanism+and+Characteristics+of+Oil-Filled+Cryogel+Droplets+in+the+High-Temperature+Oxidizer+Medium&rft.jtitle=Energy+%26+fuels&rft.au=Glushkov%2C+Dmitrii+O.&rft.au=Nigay%2C+Alexander+G.&rft.au=Yanovsky%2C+Vyacheslav+A.&rft.au=Yashutina%2C+Olga+S.&rft.date=2019-11-21&rft.issn=0887-0624&rft.eissn=1520-5029&rft.volume=33&rft.issue=11&rft.spage=11812&rft.epage=11820&rft_id=info:doi/10.1021%2Facs.energyfuels.9b02300&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_energyfuels_9b02300 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-0624&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-0624&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-0624&client=summon |