Effects of the Initial Gel Fuel Temperature on the Ignition Mechanism and Characteristics of Oil-Filled Cryogel Droplets in the High-Temperature Oxidizer Medium

The ignition mechanism was studied for a group of gel fuel compositions in a high-temperature oxidizer medium. It was determined how the initial temperature of the fuel influences the ignition characteristics. The gel fuel (oil-filled cryogel) was prepared from an oil emulsion based on the mixture o...

Full description

Saved in:
Bibliographic Details
Published in:Energy & fuels Vol. 33; no. 11; pp. 11812 - 11820
Main Authors: Glushkov, Dmitrii O, Nigay, Alexander G, Yanovsky, Vyacheslav A, Yashutina, Olga S
Format: Journal Article
Language:English
Published: American Chemical Society 21-11-2019
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The ignition mechanism was studied for a group of gel fuel compositions in a high-temperature oxidizer medium. It was determined how the initial temperature of the fuel influences the ignition characteristics. The gel fuel (oil-filled cryogel) was prepared from an oil emulsion based on the mixture of a combustible liquid and polyvinyl alcohol. The composition of primary oil emulsions was as follows: the aqueous solution of polyvinyl alcohol (5, 10 wt %) + 40–60 vol % of oil + 2 vol % of emulsifier. The initial temperature of gel fuels ranged from 188 to 293 K. Combustion was initiated in high-temperature motionless air at 873–1273 K. Using a high-speed video recording system, we established that at different initial temperatures of the gel fuel, a set of identical processes occurs during the induction period; these are different from the same physical and chemical processes during the ignition of a combustible liquid. After reaching threshold conditions, the flame spreads in the droplet’s vicinity from a hot spot through the gas mixture. Hot spot is an ignited and a small-sized fragment separating and moving away from the molten fuel droplet as a result of a microexplosion. The values of the main process characteristicignition delay timesdiffer 25–95% for fuel samples with the initial temperature of 293 K and temperatures of 188–233 K because of a long heating and melting stage of the latter. This is explained by a 2.5–3.6-fold difference in the amount of energy, which is necessary to supply to a colder fuel sample for this phase transformation to occur, other things being equal.
AbstractList The ignition mechanism was studied for a group of gel fuel compositions in a high-temperature oxidizer medium. It was determined how the initial temperature of the fuel influences the ignition characteristics. The gel fuel (oil-filled cryogel) was prepared from an oil emulsion based on the mixture of a combustible liquid and polyvinyl alcohol. The composition of primary oil emulsions was as follows: the aqueous solution of polyvinyl alcohol (5, 10 wt %) + 40–60 vol % of oil + 2 vol % of emulsifier. The initial temperature of gel fuels ranged from 188 to 293 K. Combustion was initiated in high-temperature motionless air at 873–1273 K. Using a high-speed video recording system, we established that at different initial temperatures of the gel fuel, a set of identical processes occurs during the induction period; these are different from the same physical and chemical processes during the ignition of a combustible liquid. After reaching threshold conditions, the flame spreads in the droplet’s vicinity from a hot spot through the gas mixture. Hot spot is an ignited and a small-sized fragment separating and moving away from the molten fuel droplet as a result of a microexplosion. The values of the main process characteristicignition delay timesdiffer 25–95% for fuel samples with the initial temperature of 293 K and temperatures of 188–233 K because of a long heating and melting stage of the latter. This is explained by a 2.5–3.6-fold difference in the amount of energy, which is necessary to supply to a colder fuel sample for this phase transformation to occur, other things being equal.
Author Nigay, Alexander G
Yashutina, Olga S
Glushkov, Dmitrii O
Yanovsky, Vyacheslav A
AuthorAffiliation Heat and Mass Transfer Simulation Laboratory
National Research Tomsk Polytechnic University
National Research Tomsk State University
Scientific and Educational Center “Perspective Materials and Technologies in Subsoil Use”
AuthorAffiliation_xml – name: National Research Tomsk State University
– name: National Research Tomsk Polytechnic University
– name: Scientific and Educational Center “Perspective Materials and Technologies in Subsoil Use”
– name: Heat and Mass Transfer Simulation Laboratory
Author_xml – sequence: 1
  givenname: Dmitrii O
  orcidid: 0000-0002-6975-6733
  surname: Glushkov
  fullname: Glushkov, Dmitrii O
  email: dmitriyog@tpu.ru
  organization: National Research Tomsk Polytechnic University
– sequence: 2
  givenname: Alexander G
  surname: Nigay
  fullname: Nigay, Alexander G
  organization: National Research Tomsk Polytechnic University
– sequence: 3
  givenname: Vyacheslav A
  surname: Yanovsky
  fullname: Yanovsky, Vyacheslav A
  organization: National Research Tomsk State University
– sequence: 4
  givenname: Olga S
  surname: Yashutina
  fullname: Yashutina, Olga S
  organization: National Research Tomsk Polytechnic University
BookMark eNqFkE1OwzAQhS0EEm3hDPgCKXZcO8kSlf5JRd2UdeQ4k8RV4lR2IlFOw1FxSBfdsRqN5r3vjd4U3ZvWAEIvlMwpCemrVG4OBmx5KXqo3TzJSMgIuUMTykMScBIm92hC4jgKiAgXj2jq3IkQIljMJ-hnVRSgOofbAncV4J3RnZY13kCN156Hj9Ccwcqut4BbM2rKQeSXD1CVNNo1WJocLytpperAatdp9Uc86DpY67oGf7WXtvS8d9uea_CBeoRtdVkFtyGHL53rb7Cenuu-eUIPhawdPF_nDH2uV8flNtgfNrvl2z6QjMVdQJkqGA0VZXGRKEqTSEopkkwJzgkVYZgTHimRZQuuophlQvBM8BxINIhzYDMUjVxlW-csFOnZ6kbaS0pJOhSd-qLTm6LTa9HeyUbnIDi1vTX-z39dv9XMjKA
CitedBy_id crossref_primary_10_1016_j_fuel_2020_119765
crossref_primary_10_1016_j_fuel_2021_120172
crossref_primary_10_1134_S1990793123010219
crossref_primary_10_1016_j_pecs_2020_100885
crossref_primary_10_3390_en14217083
crossref_primary_10_1016_j_tca_2021_179017
crossref_primary_10_1016_j_actaastro_2020_09_004
crossref_primary_10_1016_j_fuel_2021_123024
crossref_primary_10_31857_S0207401X23020073
crossref_primary_10_3390_gels9110902
Cites_doi 10.3103/S0361521913010060
10.1016/j.fuel.2010.12.021
10.1016/j.fuproc.2012.08.023
10.2514/2.5695
10.1016/j.ijmultiphaseflow.2017.12.003
10.1016/j.fuel.2016.12.020
10.3103/s0361521916020117
10.1115/1.4040532
10.1039/DC9745700007
10.1016/j.apenergy.2018.08.082
10.1002/prep.201600039
10.1039/DC9745700038
10.2514/2.5590
10.1016/j.fuel.2013.03.071
10.1016/j.actaastro.2017.12.015
10.1016/j.applthermaleng.2018.07.010
10.1080/08916152.2018.1434576
10.1021/ef3004009
10.1016/j.applthermaleng.2018.04.095
10.1016/j.fuel.2011.09.041
10.1016/j.jaap.2017.02.016
10.1016/j.pecs.2018.10.001
10.1016/j.cherd.2017.09.008
10.1016/j.ast.2014.07.001
10.1016/j.jnnfm.2011.08.005
10.1016/j.applthermaleng.2014.02.062
10.1016/j.ijhydene.2017.06.190
10.1080/07370650490492824
10.2514/1.B36872
10.1021/acs.iecr.9b00580
10.1021/acs.energyfuels.8b01796
10.1016/j.combustflame.2008.08.008
10.1016/j.jhazmat.2011.01.122
10.1016/j.fuel.2016.03.072
10.1016/j.combustflame.2018.05.004
10.1016/j.fuel.2018.02.064
10.1021/ef300990d
10.2514/1.B34853
10.1016/j.apenergy.2018.11.008
10.3390/en5083126
10.1016/j.fuel.2015.06.046
10.1016/j.combustflame.2018.11.001
10.1016/j.jnnfm.2017.08.003
10.1016/j.fuel.2018.02.098
10.2514/1.46531
10.1002/prep.19860110204
10.1016/j.fuel.2016.03.052
10.1016/j.ast.2006.08.006
10.2514/1.B35456
10.1080/00102202.2018.1460599
10.1016/0377-0257(95)01356-Z
10.2514/1.55620
10.1021/acs.energyfuels.8b01562
10.2514/1.B36144
10.1016/j.ijhydene.2018.10.009
10.14429/dsj.46.4315
10.1080/00102200008947300
10.1021/j150521a013
10.1016/j.fuel.2011.11.015
10.1016/j.jclepro.2018.08.126
10.1016/j.fuel.2014.02.051
10.1016/j.fuel.2013.05.033
10.2514/1.34227
10.1016/j.joei.2018.10.017
10.2514/1.B34135
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1021/acs.energyfuels.9b02300
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1520-5029
EndPage 11820
ExternalDocumentID 10_1021_acs_energyfuels_9b02300
b271919368
GroupedDBID 02
55A
5GY
7~N
AABXI
ABFLS
ABMVS
ABUCX
ACGFS
ACJ
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
DU5
EBS
ED
ED~
F5P
GNL
IH9
JG
JG~
LG6
P2P
ROL
TAE
TN5
UI2
VF5
VG9
W1F
X
-~X
.DC
4.4
5VS
AAHBH
AAYXX
ABJNI
ABQRX
ACGFO
ADHLV
AGXLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
ZCA
~02
ID FETCH-LOGICAL-a338t-13cf312c138f9c1197aaa69bc65501622d057c6bb45c783b665b65de07c119de3
IEDL.DBID ACS
ISSN 0887-0624
IngestDate Thu Nov 21 22:06:21 EST 2024
Thu Aug 27 13:43:49 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a338t-13cf312c138f9c1197aaa69bc65501622d057c6bb45c783b665b65de07c119de3
ORCID 0000-0002-6975-6733
PageCount 9
ParticipantIDs crossref_primary_10_1021_acs_energyfuels_9b02300
acs_journals_10_1021_acs_energyfuels_9b02300
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2019-11-21
PublicationDateYYYYMMDD 2019-11-21
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-21
  day: 21
PublicationDecade 2010
PublicationTitle Energy & fuels
PublicationTitleAlternate Energy Fuels
PublicationYear 2019
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
Natan B. (ref21/cit21) 2002
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref26/cit26
  doi: 10.3103/S0361521913010060
– ident: ref22/cit22
  doi: 10.1016/j.fuel.2010.12.021
– ident: ref34/cit34
  doi: 10.1016/j.fuproc.2012.08.023
– ident: ref38/cit38
  doi: 10.2514/2.5695
– ident: ref43/cit43
  doi: 10.1016/j.ijmultiphaseflow.2017.12.003
– ident: ref56/cit56
  doi: 10.1016/j.fuel.2016.12.020
– ident: ref16/cit16
  doi: 10.3103/s0361521916020117
– ident: ref14/cit14
  doi: 10.1115/1.4040532
– ident: ref31/cit31
  doi: 10.1039/DC9745700007
– ident: ref1/cit1
  doi: 10.1016/j.apenergy.2018.08.082
– ident: ref24/cit24
  doi: 10.1002/prep.201600039
– ident: ref30/cit30
  doi: 10.1039/DC9745700038
– ident: ref37/cit37
  doi: 10.2514/2.5590
– ident: ref23/cit23
  doi: 10.1016/j.fuel.2013.03.071
– ident: ref44/cit44
  doi: 10.1016/j.actaastro.2017.12.015
– ident: ref11/cit11
  doi: 10.1016/j.applthermaleng.2018.07.010
– ident: ref63/cit63
  doi: 10.1080/08916152.2018.1434576
– ident: ref57/cit57
  doi: 10.1021/ef3004009
– ident: ref62/cit62
  doi: 10.1016/j.applthermaleng.2018.04.095
– ident: ref54/cit54
  doi: 10.1016/j.fuel.2011.09.041
– ident: ref20/cit20
  doi: 10.1016/j.jaap.2017.02.016
– ident: ref7/cit7
  doi: 10.1016/j.pecs.2018.10.001
– ident: ref18/cit18
  doi: 10.1016/j.cherd.2017.09.008
– ident: ref41/cit41
  doi: 10.1016/j.ast.2014.07.001
– ident: ref39/cit39
  doi: 10.1016/j.jnnfm.2011.08.005
– ident: ref12/cit12
  doi: 10.1016/j.applthermaleng.2014.02.062
– ident: ref15/cit15
  doi: 10.1016/j.ijhydene.2017.06.190
– ident: ref35/cit35
  doi: 10.1080/07370650490492824
– ident: ref53/cit53
  doi: 10.2514/1.B36872
– ident: ref61/cit61
  doi: 10.1021/acs.iecr.9b00580
– ident: ref59/cit59
  doi: 10.1021/acs.energyfuels.8b01796
– ident: ref45/cit45
  doi: 10.1016/j.combustflame.2008.08.008
– ident: ref65/cit65
  doi: 10.1016/j.jhazmat.2011.01.122
– ident: ref64/cit64
  doi: 10.1016/j.fuel.2016.03.072
– ident: ref3/cit3
  doi: 10.1016/j.combustflame.2018.05.004
– ident: ref6/cit6
  doi: 10.1016/j.fuel.2018.02.064
– ident: ref49/cit49
  doi: 10.1021/ef300990d
– ident: ref50/cit50
  doi: 10.2514/1.B34853
– ident: ref60/cit60
  doi: 10.1016/j.apenergy.2018.11.008
– ident: ref48/cit48
  doi: 10.3390/en5083126
– ident: ref10/cit10
  doi: 10.1016/j.fuel.2015.06.046
– ident: ref8/cit8
  doi: 10.1016/j.combustflame.2018.11.001
– ident: ref42/cit42
  doi: 10.1016/j.jnnfm.2017.08.003
– ident: ref2/cit2
  doi: 10.1016/j.fuel.2018.02.098
– ident: ref46/cit46
  doi: 10.2514/1.46531
– ident: ref32/cit32
  doi: 10.1002/prep.19860110204
– ident: ref52/cit52
  doi: 10.1016/j.fuel.2016.03.052
– ident: ref27/cit27
  doi: 10.1016/j.ast.2006.08.006
– ident: ref51/cit51
  doi: 10.2514/1.B35456
– ident: ref13/cit13
  doi: 10.1080/00102202.2018.1460599
– ident: ref36/cit36
  doi: 10.1016/0377-0257(95)01356-Z
– start-page: 172
  volume-title: Combustion of Energetic Materials
  year: 2002
  ident: ref21/cit21
  contributor:
    fullname: Natan B.
– ident: ref28/cit28
  doi: 10.2514/1.55620
– ident: ref17/cit17
  doi: 10.1021/acs.energyfuels.8b01562
– ident: ref9/cit9
  doi: 10.2514/1.B36144
– ident: ref5/cit5
  doi: 10.1016/j.ijhydene.2018.10.009
– ident: ref33/cit33
  doi: 10.14429/dsj.46.4315
– ident: ref47/cit47
  doi: 10.1080/00102200008947300
– ident: ref29/cit29
  doi: 10.1021/j150521a013
– ident: ref55/cit55
  doi: 10.1016/j.fuel.2011.11.015
– ident: ref66/cit66
  doi: 10.1016/j.jclepro.2018.08.126
– ident: ref25/cit25
  doi: 10.1016/j.fuel.2014.02.051
– ident: ref4/cit4
  doi: 10.1016/j.fuel.2013.05.033
– ident: ref58/cit58
  doi: 10.2514/1.34227
– ident: ref19/cit19
  doi: 10.1016/j.joei.2018.10.017
– ident: ref40/cit40
  doi: 10.2514/1.B34135
SSID ssj0006385
Score 2.4071264
Snippet The ignition mechanism was studied for a group of gel fuel compositions in a high-temperature oxidizer medium. It was determined how the initial temperature of...
SourceID crossref
acs
SourceType Aggregation Database
Publisher
StartPage 11812
Title Effects of the Initial Gel Fuel Temperature on the Ignition Mechanism and Characteristics of Oil-Filled Cryogel Droplets in the High-Temperature Oxidizer Medium
URI http://dx.doi.org/10.1021/acs.energyfuels.9b02300
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagDMDAo4AoL3lgJKVxbCcZUdtQBujQIrFFseOgSG2KEiIBv4afyl3TojBUCMYk9tnKObnvdHffEXLJVcy1EdLiwtcWj7S2IuVqy2VacSOZURyrkQcj9-HJ6_WRJsdeEcFn9nWki7aZ18ElJZiLtq8QNoOXvsFcwAuIhrqj758vHCexJPfsSMaXKV2rBaFZ0kXNLNXsS7D7j53tkZ0FmKQ3lfb3yZrJmmSzu-zh1iTbNbrBA_JZURUXdJZQwH30DhOHYP6tmdAAZNOxARBdkSzTWVaNmWcXwcW9wRrhtJjSKItp9yfPM0ocphMrwMpCeJq_z55BXi_H9HRYMK2EYVKJVV9k-JbG6YfJKcaLyukheQz64-7AWnRosCJwbbGPvU4cm2nb8RJfY0QyiiLpKy3B8bElYzHAQS2V4kK7nqOkFEqK2HRcHBwb54g0sllmjgnl0mMGjk2ihORKCC9OXM5dpjR6PdprkSt43-HiCyvCefCc2SHerCkhXCihRTpLfYYvFW_Hb1NO_rbCKdkC8ORjXSKzz0jjNS_NOVkv4vJifiS_ANhl5ZM
link.rule.ids 315,782,786,2769,27085,27933,27934,56747,56797
linkProvider American Chemical Society
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagDIWBRwHxxgMjgca1nWREhdKKlg4tElsUOw6KVFLUEAn4NfxU7pIGwoAQjHHss2Vfct_p7j4TcsJVyLUR0uLC0xYPtLYC5WjLYVpxI5lRHKuRuyPn9t69vEKaHLeshYFFpCApzYP4X-wC9jm2mbwcLsrAapx5CtEzOOtLQgIkRlDUHn3-g0GrRMnx2ZSMl5ldPwtC66TTinWqmJnO2v8XuE5W59CSXhS6sEEWTNIg9XZ5o1uDrFTIBzfJe0FcnNJpRAEF0h6mEcH4azOhHZBNxwYgdUG5TKdJ0SfPNYKHgcGK4Th9pEES0vZ31meUOIwnVgfrDOHt7HX6APIuZ5isDhPGhTBMMbGqkwxf4jB-MzOK0aPscYvcda7G7a41v6_BCsDRxVvtddSymbZbbuRpjE8GQSA9pSW4QbZkLARwqKVSXGjHbSkphZIiNE0HO4emtU1qyTQxO4Ry6TIDShQpIbkSwg0jh3OHKY0-kHZ3ySnstz__3lI_D6Uz28fGyiH480PYJc3yWP2ngsXjtyF7f5vhmNS740Hf7_dub_bJMsAqDysWmX1Aas-zzBySxTTMjnIt_QDNr-4A
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEA4e4PHgLa5nHny0us0maQu-LLtWxRNU8K00R6WgXdm6oP4af6ozPaQ-iIiPTZNJ6Ew6M8zMN4TscmW4tkI6XATa4bHWTqw87XhMK24ls4pjNfLJjXd57_ePECbnsK6FgUPkQCkvgvh4q59NUiEMuAc4bouSuGQEmmM_UGhBg8M-KaQXoOvV7d18_YdBskSN89mWjNfZXT8TQg2l84aGaqiacP5_h1wgc5WJSbulTCySMZstkele3dlticw2QAiXyUcJYJzTQULBGqSnmE4E64_tIw2BNr21YFqX0Mt0kJVzipwjeLiwWDmc5k80zgztfUd_RopX6aMTYr0hvB2-DR6AXn-ISeuwYVoSw1QTp7nJ1Wtq0nc7pBhFGj2tkLvw6LZ34lR9G5wYHF7sbq-Tjsu02_GTQGOcMo5jGSgtwR1yJWMGjEQtleJCe35HSSmUFMa2PZxsbGeVTGSDzK4RyqXPLAhTooTkSgjfJB7nHlMafSHtt8gefO-ound5VITUmRvhYIMJUcWEFmnXrI2eSzSP35as_22HHTJ13Q-j89PLsw0yA9ZVgIWLzN0kEy_Dkd0i47kZbReC-glwL_CD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+the+Initial+Gel+Fuel+Temperature+on+the+Ignition+Mechanism+and+Characteristics+of+Oil-Filled+Cryogel+Droplets+in+the+High-Temperature+Oxidizer+Medium&rft.jtitle=Energy+%26+fuels&rft.au=Glushkov%2C+Dmitrii+O.&rft.au=Nigay%2C+Alexander+G.&rft.au=Yanovsky%2C+Vyacheslav+A.&rft.au=Yashutina%2C+Olga+S.&rft.date=2019-11-21&rft.issn=0887-0624&rft.eissn=1520-5029&rft.volume=33&rft.issue=11&rft.spage=11812&rft.epage=11820&rft_id=info:doi/10.1021%2Facs.energyfuels.9b02300&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_energyfuels_9b02300
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-0624&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-0624&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-0624&client=summon