R2022: A DFT/MRCI Ansatz with Improved Performance for Double Excitations
A reformulation of the combined density functional theory and multireference configuration interaction method (DFT/MRCI) is presented. Expressions for ab initio matrix elements are used to derive correction terms for a new effective Hamiltonian. On the example of diatomic carbon, the correction term...
Saved in:
Published in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Vol. 127; no. 8; pp. 2011 - 2025 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
American Chemical Society
02-03-2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A reformulation of the combined density functional theory and multireference configuration interaction method (DFT/MRCI) is presented. Expressions for ab initio matrix elements are used to derive correction terms for a new effective Hamiltonian. On the example of diatomic carbon, the correction terms are derived, focusing on the doubly excited 1Δg state, which was problematic in previous formulations of the method, as were double excitations in general. The derivation shows that a splitting of the parameters for intra- and interorbital interactions is necessary for a concise description of the underlying physics. Results for 1La and 1Lb states in polyacenes and 1Au and 1Ag states in mini-β-carotenoids suggest that the presented formulation is superior to former effective Hamiltonians. Furthermore, statistical analysis reveals that all the benefits of the previous DFT/MRCI Hamiltonians are retained. Consequently, the here presented formulation should be considered as the new standard for DFT/MRCI calculations. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1089-5639 1520-5215 |
DOI: | 10.1021/acs.jpca.2c07951 |