Polymer-Derived Ceramic Nanoparticle/Edge-Functionalized Graphene Oxide Composites for Lithium-Ion Storage

Polymer-derived ceramics demonstrate great potential as lithium-ion battery anode materials with good cycling stability and large capacity. SiCNO ceramic nanoparticles are produced by the pyrolysis of polysilazane nanoparticles that are synthesized via an oil-in-oil emulsion crosslinking and used as...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces Vol. 13; no. 8; pp. 9794 - 9803
Main Authors: Zhang, Zeyang, Calderon, Jean E, Fahad, Saisaban, Ju, Licheng, Antony, Dennis-Xavier, Yang, Yang, Kushima, Akihiro, Zhai, Lei
Format: Journal Article
Language:English
Published: United States American Chemical Society 03-03-2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Polymer-derived ceramics demonstrate great potential as lithium-ion battery anode materials with good cycling stability and large capacity. SiCNO ceramic nanoparticles are produced by the pyrolysis of polysilazane nanoparticles that are synthesized via an oil-in-oil emulsion crosslinking and used as anode materials. The SiCNO nanoparticles have an average particle size of around 9 nm and contain graphitic carbon and Si3N4 and SiO2 domains. Composite anodes are produced by mixing different concentrations of SiCNO nanoparticles, edge-functionalized graphene oxide, polyvinylidenefluoride, and carbon black Super P. The electrochemical behavior of the anode is investigated to evaluate the Li-ion storage performance of the composite anode and understand the mechanism of Li-ion storage. The lithiation of SiCNO is observed at ∼0.385 V versus Li/Li+. The anode has a large capacity of 705 mA h g–1 after 350 cycles at a current density of 0.1 A g–1 and shows an excellent cyclic stability with a capacity decay of 0.049 mA h g–1 (0.0097%) per cycle. SiCNO nanoparticles provide a large specific area that is beneficial to Li+ storage and cyclic stability. In situ transmission electron microscopy analysis demonstrates that the SiCNO nanoparticles exhibit extraordinary structural stability with 9.36% linear expansion in the lithiation process. The X-ray diffraction and X-ray photoelectron spectroscopy investigation of the working electrode before and after cycling suggests that Li+ was stored through two pathways in SiCNO lithiation: (a) Li-ion intercalation of graphitic carbon in free carbon domains and (b) lithiation of the SiO2 and Si3N4 domains through a two-stage process.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.0c19681