Small Impact Crater Populations on Saturn's Moon Tethys and Implications for Source Impactors in the System
Current estimates place the ages of the inner Saturnian satellites (Mimas, Enceladus, Tethys, Dione, and Rhea) between 4.5 Gyr and 100 Myr. These estimates are based on impact crater measurements and dynamical simulations, both of which have uncertainties. Models of satellite evolution are inherentl...
Saved in:
Published in: | Journal of geophysical research. Planets Vol. 125; no. 9 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Washington
Blackwell Publishing Ltd
01-09-2020
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Current estimates place the ages of the inner Saturnian satellites (Mimas, Enceladus, Tethys, Dione, and Rhea) between 4.5 Gyr and 100 Myr. These estimates are based on impact crater measurements and dynamical simulations, both of which have uncertainties. Models of satellite evolution are inherently simplified and rely on uncertain or unknown parameters, which are often difficult to verify, whereas the interpretations of crater densities depend on the source populations of impactors, which are not well‐constrained in the outer solar system. We investigate the cratering history of Tethys, mapping the population of small impact craters, to determine the roles that planetocentric, heliocentric, or other impact debris play in its cratering record. To map the surface of Tethys, we chose five regions that were located in geographically distinct areas and had high‐resolution (~150 m/pix) image coverage by the Cassini ISS camera. We studied all craters that had at least 7 pixels across but mapped down to 5 pixels for completeness in the crater counts. We observe an abundance of small craters (D < 3 km) in the oldest region; this does not appear to be due to secondary cratering effects from the Odysseus impact basin. Fitting the production functions from Zahnle et al. (2003, https://doi.org/10.1016/S0019‐1035(03)00048‐4), we find that neither their Case A nor Case B scenarios align with the observed cratering record at Tethys. We conclude that in addition to the standard outer solar system impactor populations, there is a Saturn‐centric impactor source that is cratering Tethys.
Plain Language Summary
A major outstanding question post‐Cassini is the following: How old are the midsized moons of Saturn (Mimas, Enceladus, Tethys, Dione, and Rhea)? Recent models of their orbital evolution have suggested that they could be as young as 100 Myr. Characterizing the impactor flux and how it has changed with time may help constrain the histories of these moons. We have mapped small craters (diameter <10 km) on Tethys to examine the sources of objects that collide with the moon. We find that the older terrain unit has a surplus of small impact craters that is consistent with a source of Saturn‐orbiting debris. Younger terrain units appear to be more consistent with sun‐orbiting debris at small diameters. This scenario is compatible with both young and old moons but suggests an early source of planetocentric debris. Further study on other satellites in the system is needed to ascertain age relationships.
Key Points
We map small impact craters in high‐resolution (image resolution ~150 m/pix) images on Saturn's moon Tethys
We observe a surplus of small impact craters (1 km < D < 3 km) in the oldest region located near the Saturn facing side of the moon
We interpret the crater records to be representative of an additional source population of Saturn‐centric debris |
---|---|
AbstractList | Current estimates place the ages of the inner Saturnian satellites (Mimas, Enceladus, Tethys, Dione, and Rhea) between 4.5 Gyr and 100 Myr. These estimates are based on impact crater measurements and dynamical simulations, both of which have uncertainties. Models of satellite evolution are inherently simplified and rely on uncertain or unknown parameters, which are often difficult to verify, whereas the interpretations of crater densities depend on the source populations of impactors, which are not well‐constrained in the outer solar system. We investigate the cratering history of Tethys, mapping the population of small impact craters, to determine the roles that planetocentric, heliocentric, or other impact debris play in its cratering record. To map the surface of Tethys, we chose five regions that were located in geographically distinct areas and had high‐resolution (~150 m/pix) image coverage by the Cassini ISS camera. We studied all craters that had at least 7 pixels across but mapped down to 5 pixels for completeness in the crater counts. We observe an abundance of small craters (
D
< 3 km) in the oldest region; this does not appear to be due to secondary cratering effects from the Odysseus impact basin. Fitting the production functions from Zahnle et al. (2003,
https://doi.org/10.1016/S0019‐1035(03)00048‐4
), we find that neither their Case A nor Case B scenarios align with the observed cratering record at Tethys. We conclude that in addition to the standard outer solar system impactor populations, there is a Saturn‐centric impactor source that is cratering Tethys.
A major outstanding question post‐Cassini is the following: How old are the midsized moons of Saturn (Mimas, Enceladus, Tethys, Dione, and Rhea)? Recent models of their orbital evolution have suggested that they could be as young as 100 Myr. Characterizing the impactor flux and how it has changed with time may help constrain the histories of these moons. We have mapped small craters (diameter <10 km) on Tethys to examine the sources of objects that collide with the moon. We find that the older terrain unit has a surplus of small impact craters that is consistent with a source of Saturn‐orbiting debris. Younger terrain units appear to be more consistent with sun‐orbiting debris at small diameters. This scenario is compatible with both young and old moons but suggests an early source of planetocentric debris. Further study on other satellites in the system is needed to ascertain age relationships.
We map small impact craters in high‐resolution (image resolution ~150 m/pix) images on Saturn's moon Tethys
We observe a surplus of small impact craters (1 km <
D
< 3 km) in the oldest region located near the Saturn facing side of the moon
We interpret the crater records to be representative of an additional source population of Saturn‐centric debris Current estimates place the ages of the inner Saturnian satellites (Mimas, Enceladus, Tethys, Dione, and Rhea) between 4.5 Gyr and 100 Myr. These estimates are based on impact crater measurements and dynamical simulations, both of which have uncertainties. Models of satellite evolution are inherently simplified and rely on uncertain or unknown parameters, which are often difficult to verify, whereas the interpretations of crater densities depend on the source populations of impactors, which are not well‐constrained in the outer solar system. We investigate the cratering history of Tethys, mapping the population of small impact craters, to determine the roles that planetocentric, heliocentric, or other impact debris play in its cratering record. To map the surface of Tethys, we chose five regions that were located in geographically distinct areas and had high‐resolution (~150 m/pix) image coverage by the Cassini ISS camera. We studied all craters that had at least 7 pixels across but mapped down to 5 pixels for completeness in the crater counts. We observe an abundance of small craters (D < 3 km) in the oldest region; this does not appear to be due to secondary cratering effects from the Odysseus impact basin. Fitting the production functions from Zahnle et al. (2003, https://doi.org/10.1016/S0019‐1035(03)00048‐4), we find that neither their Case A nor Case B scenarios align with the observed cratering record at Tethys. We conclude that in addition to the standard outer solar system impactor populations, there is a Saturn‐centric impactor source that is cratering Tethys. Current estimates place the ages of the inner Saturnian satellites (Mimas, Enceladus, Tethys, Dione, and Rhea) between 4.5 Gyr and 100 Myr. These estimates are based on impact crater measurements and dynamical simulations, both of which have uncertainties. Models of satellite evolution are inherently simplified and rely on uncertain or unknown parameters, which are often difficult to verify, whereas the interpretations of crater densities depend on the source populations of impactors, which are not well‐constrained in the outer solar system. We investigate the cratering history of Tethys, mapping the population of small impact craters, to determine the roles that planetocentric, heliocentric, or other impact debris play in its cratering record. To map the surface of Tethys, we chose five regions that were located in geographically distinct areas and had high‐resolution (~150 m/pix) image coverage by the Cassini ISS camera. We studied all craters that had at least 7 pixels across but mapped down to 5 pixels for completeness in the crater counts. We observe an abundance of small craters (D < 3 km) in the oldest region; this does not appear to be due to secondary cratering effects from the Odysseus impact basin. Fitting the production functions from Zahnle et al. (2003, https://doi.org/10.1016/S0019‐1035(03)00048‐4), we find that neither their Case A nor Case B scenarios align with the observed cratering record at Tethys. We conclude that in addition to the standard outer solar system impactor populations, there is a Saturn‐centric impactor source that is cratering Tethys. Plain Language Summary A major outstanding question post‐Cassini is the following: How old are the midsized moons of Saturn (Mimas, Enceladus, Tethys, Dione, and Rhea)? Recent models of their orbital evolution have suggested that they could be as young as 100 Myr. Characterizing the impactor flux and how it has changed with time may help constrain the histories of these moons. We have mapped small craters (diameter <10 km) on Tethys to examine the sources of objects that collide with the moon. We find that the older terrain unit has a surplus of small impact craters that is consistent with a source of Saturn‐orbiting debris. Younger terrain units appear to be more consistent with sun‐orbiting debris at small diameters. This scenario is compatible with both young and old moons but suggests an early source of planetocentric debris. Further study on other satellites in the system is needed to ascertain age relationships. Key Points We map small impact craters in high‐resolution (image resolution ~150 m/pix) images on Saturn's moon Tethys We observe a surplus of small impact craters (1 km < D < 3 km) in the oldest region located near the Saturn facing side of the moon We interpret the crater records to be representative of an additional source population of Saturn‐centric debris |
Author | Kirchoff, M. R. Rhoden, A. R. Ferguson, S. N. |
Author_xml | – sequence: 1 givenname: S. N. orcidid: 0000-0003-4674-0381 surname: Ferguson fullname: Ferguson, S. N. email: sierra.ferguson@asu.edu organization: Arizona State University – sequence: 2 givenname: A. R. surname: Rhoden fullname: Rhoden, A. R. organization: Southwest Research Institute – sequence: 3 givenname: M. R. orcidid: 0000-0002-3367-2730 surname: Kirchoff fullname: Kirchoff, M. R. organization: Southwest Research Institute |
BookMark | eNp9kE1Lw0AQhhepYK29-QMWPHgxOvuRTXKUUmtLRTH1HDbpLk1NsnF3g-Tfm9IKnpzLfPDMO8N7iUaNaRRC1wTuCdDkgQKF1RxAcIAzNKZEJEFCAEa_NSTRBZo6t4ch4mFE2Bh9prWsKrysW1l4PLPSK4vfTNtV0pemcdg0OJW-s82twy9m6DbK73qHZbM9bFVlcQK1sTg1nS3USc1Yh8sG-53Cae-8qq_QuZaVU9NTnqCPp_lm9hysXxfL2eM6kIwBDbQmRZ7nIWMJT7QW2zAGQQUoFhHOoy1JSMjiIi64AEpCraTkTADL44LpKFJsgm6Ouq01X51yPtsPfzXDyYxyLiKIaRQO1N2RKqxxziqdtbaspe0zAtnB0eyvowPOjvh3Wan-XzZbLd7nlHBB2Q9mcnfX |
CitedBy_id | crossref_primary_10_1016_j_jag_2024_103831 crossref_primary_10_1146_annurev_earth_031621_061221 crossref_primary_10_1016_j_epsl_2022_117652 crossref_primary_10_3847_PSJ_ad29f4 crossref_primary_10_1016_j_icarus_2021_114343 crossref_primary_10_1111_maps_14138 crossref_primary_10_1007_s11214_024_01049_2 crossref_primary_10_3847_PSJ_ac42d7 crossref_primary_10_3847_PSJ_acde80 crossref_primary_10_3847_PSJ_ad05ce crossref_primary_10_3847_PSJ_ace7cd crossref_primary_10_3847_1538_4357_acf613 crossref_primary_10_1029_2022GL100516 crossref_primary_10_3847_PSJ_acbef7 crossref_primary_10_1029_2022JE007204 crossref_primary_10_1038_d41586_024_00194_6 |
Cites_doi | 10.1038/nature09661 10.1016/B978-0-444-53802-4.00177-9 10.1029/JB090iB02p02029 10.1016/j.icarus.2016.07.014 10.1016/j.icarus.2015.05.026 10.1126/science.212.4491.163 10.1006/icar.1999.6323 10.1038/ncomms12591 10.1086/379554 10.1146/annurev.astro.37.1.533 10.1016/j.icarus.2015.09.012 10.2307/j.ctv1v3gr3r.15 10.1029/2007GL031467 10.1023/A:1011989004263 10.1016/j.icarus.2016.10.028 10.1016/j.icarus.2005.04.017 10.1038/nature09096 10.1016/j.icarus.2009.12.007 10.1111/maps.12990 10.1126/science.aap8628 10.1111/j.1365-2966.2012.20954.x 10.1002/2013JE004477 10.1016/j.icarus.2011.09.017 10.1016/j.icarus.2010.06.023 10.1016/j.pss.2008.10.014 10.1016/S0019-1035(03)00048-4 10.1016/j.icarus.2010.08.016 10.2458/azu_uapress_9780816537075-ch013 10.1016/j.icarus.2009.07.029 10.1016/j.icarus.2016.03.020 10.1086/591839 10.3847/1538-4357/836/1/109 10.1088/0004-637X/752/1/14 10.1038/295285a0 10.1029/JB093iB11p13776 10.1016/j.icarus.2004.05.009 10.1038/s41550-019-0726-y 10.1029/JB089iB12p10405 10.1016/j.icarus.2012.12.009 10.1088/0004-6256/137/6/4936 10.1088/0004-6256/141/5/159 10.1029/2007GL033077 10.1126/science.1113544 10.1126/science.215.4532.504 10.1016/j.icarus.2007.02.012 10.1016/j.icarus.2010.01.025 10.1016/j.icarus.2017.01.025 10.1002/2016JE005094 10.1111/maps.13057 10.3847/0004-637X/820/2/97 10.1016/0019-1035(79)90009-5 10.1016/0019-1035(84)90175-1 10.1007/s11214-004-1456-7 10.1006/icar.2001.6668 10.1126/science.1121661 10.1007/978-1-4020-9217-6_19 10.1016/j.icarus.2015.04.010 10.1093/mnras/stw609 10.1016/j.icarus.2017.08.037 10.1038/nature04860 10.1002/2015JE004940 10.1016/j.icarus.2011.12.011 10.1016/j.icarus.2014.02.022 10.1126/science.1226477 |
ContentType | Journal Article |
Copyright | 2020. American Geophysical Union. All Rights Reserved. |
Copyright_xml | – notice: 2020. American Geophysical Union. All Rights Reserved. |
DBID | AAYXX CITATION 7TG 8FD H8D KL. L7M |
DOI | 10.1029/2020JE006400 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics |
EISSN | 2169-9100 |
EndPage | n/a |
ExternalDocumentID | 10_1029_2020JE006400 JGRE21462 |
Genre | article |
GrantInformation_xml | – fundername: National Aeronautics and Space Administration (NASA) funderid: NNX16AI42G; 80NSSC19K1532; NNX17AG01G |
GroupedDBID | 05W 0R~ 1OC 24P 31~ 33P 3V. 50Y 52M 702 8-1 88I 8FE 8FG 8FH A00 AAESR AAHHS AANLZ AASGY AAXRX AAZKR ABCUV ABJNI ABUWG ACAHQ ACCFJ ACCZN ACGFS ACGOD ACPOU ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEQDE AEUYR AFBPY AFFPM AFGKR AFKRA AFPWT AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ARAPS ASPBG AVWKF AZFZN AZQEC AZVAB BENPR BFHJK BGLVJ BHPHI BKSAR BMXJE BPHCQ BRXPI CCPQU D1K DPXWK DRFUL DRSTM DWQXO EBS EJD FEDTE G-S GNUQQ GODZA HCIFZ HGLYW HVGLF HZ~ K6- LATKE LEEKS LITHE LK5 LOXES LUTES LYRES M2P M7R MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- P-X P2W P62 PCBAR PQQKQ PROAC R.K RJQFR RNS ROL SUPJJ WBKPD WIN WXSBR WYJ ~OA AAMNL AAYXX CITATION 7TG 8FD H8D KL. L7M |
ID | FETCH-LOGICAL-a3302-ff1cbbb533949ff6d5806260e371447d191538c8c460215feaa43603b8c3f77e3 |
IEDL.DBID | 33P |
ISSN | 2169-9097 |
IngestDate | Tue Nov 19 06:57:38 EST 2024 Thu Nov 21 23:23:42 EST 2024 Sat Aug 24 01:05:16 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a3302-ff1cbbb533949ff6d5806260e371447d191538c8c460215feaa43603b8c3f77e3 |
ORCID | 0000-0003-4674-0381 0000-0002-3367-2730 |
PQID | 2446708275 |
PQPubID | 54729 |
PageCount | 21 |
ParticipantIDs | proquest_journals_2446708275 crossref_primary_10_1029_2020JE006400 wiley_primary_10_1029_2020JE006400_JGRE21462 |
PublicationCentury | 2000 |
PublicationDate | September 2020 2020-09-00 20200901 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: September 2020 |
PublicationDecade | 2020 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Journal of geophysical research. Planets |
PublicationYear | 2020 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 2017; 836 1979; 37 2005; 178 2010; 468 1974; V1 2010; 465 1984b; 89 2008; 35 2016; 264 2007; 190 2016; 820 2007; 34 1978 2009; 57 1990 2019; 959 2015; 258 2015; 256 2013; 118 2004; 171 1986 2020b 2020a 2017; 281 1985; 90 2005; 309 2017; 284 1982; 215 1981 2003; 126 2017; 288 1984a; 60 2016; 274 2012; 338 2012; 218 2006; 441 2001; 96 1982; 295 1989 2009; 204 2003; 163 2019; 3 2010; 208 2011; 216 2010; 206 2010 2018; 300 2015; 10 2009 2013; 223 2016; 121 2005 2004 2008; 687 2012; 423 1988; 93 2011; 211 2009; 137 2014; 234 2006; 311 2016; 7 2018; 2018 2004; 115 2001; 153 1981; 212 1999; 37 2010; 210 2018 2016; 458 2013 2000; 145 2012; 752 2011; 141 2018; 53 e_1_2_8_28_1 Nava R. A. (e_1_2_8_51_1) 2010 e_1_2_8_24_1 Ferguson S. N. (e_1_2_8_31_1) 2018 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_81_1 Kattenhorn S. A. (e_1_2_8_40_1) 2009 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 Di Sisto R. P. (e_1_2_8_23_1) 2013 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_74_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_2_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_65_1 Schultz P. (e_1_2_8_69_1) 1990 Melosh H. J. (e_1_2_8_48_1) 1989 Castillo‐Rogez J. C. (e_1_2_8_14_1) 2018 e_1_2_8_63_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_79_1 Öhman T. (e_1_2_8_57_1) 2010; 465 Moore H. J. (e_1_2_8_49_1) 1974 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_71_1 |
References_xml | – year: 2009 – volume: 211 start-page: 740 issue: 1 year: 2011 end-page: 757 article-title: Plasma, plumes and rings: Saturn system dynamics as recorded in global color patterns on its midsize icy satellites publication-title: Icarus – volume: 441 start-page: 834 issue: 7095 year: 2006 end-page: 839 article-title: A common mass scaling for satellite systems of gaseous planets publication-title: Nature – volume: 90 start-page: 2029 issue: B2 year: 1985 article-title: Impact cratering history of the Saturnian satellites publication-title: Journal of Geophysical Research – year: 1981 – start-page: 267 year: 2018 end-page: 284 – year: 2005 – volume: 309 start-page: 1847 year: 2005 end-page: 1851 article-title: The origin of planetary Impactors in the inner solar system publication-title: Science (80‐.) – start-page: 3843 year: 1978 end-page: 3875 – volume: 468 start-page: 943 issue: 7326 year: 2010 end-page: 946 article-title: Origin of Saturn's rings and inner moons by mass removal from a lost titan‐sized satellite publication-title: Nature – year: 1989 – volume: 3 start-page: 543 issue: 6 year: 2019 end-page: 552 article-title: Evolution of Saturn' s mid‐sized moons publication-title: Nature Astronomy – volume: 37 start-page: 533 issue: 1 year: 1999 end-page: 602 article-title: Origin and evolution of the natural satellites publication-title: Annual Review of Astronomy and Astrophysics – volume: 35 start-page: 1 year: 2008 end-page: 4 article-title: Implications from Ithaca Chasma for thermal and orbital history of Tethys publication-title: Geophysical Research Letters – volume: 60 start-page: 710 issue: 3 year: 1984a end-page: 717 article-title: Cratering rate over the surface of a synchronous satellite publication-title: Icarus – volume: 258 start-page: 267 year: 2015 end-page: 288 article-title: Impact and cratering rates onto Pluto publication-title: Icarus – volume: 423 start-page: 1254 issue: 2 year: 2012 end-page: 1266 article-title: Collisional evolution of trans‐Neptunian object populations in a Nice model environment publication-title: Monthly Notices of the Royal Astronomical Society – volume: 687 start-page: 714 year: 2008 end-page: 725 article-title: The scattered disk as the source of the Jupiter family comets publication-title: The Astrophysical Journal – volume: 171 start-page: 421 issue: 2 year: 2004 end-page: 443 article-title: Large impact features on middle‐sized icy satellites publication-title: Icarus – year: 2018 – year: 1990 – volume: 288 start-page: 37 year: 2017 end-page: 52 article-title: Impact crater relaxation on Dione and Tethys and relation to past heat flow publication-title: Icarus – volume: 10 start-page: 559 issue: 215 year: 2015 end-page: 604 article-title: The origin of the natural satellites publication-title: Treatise on Geophysics: Second Edition – volume: 264 start-page: 90 year: 2016 end-page: 101 article-title: Surface ages of mid‐size saturnian satellites publication-title: Icarus – year: 2004 – volume: 274 start-page: 163 year: 2016 end-page: 194 article-title: Polygonal impact craters on Dione: Evidence for tectonic structures outside the wispy terrain publication-title: Icarus – volume: 115 start-page: 363 year: 2004 end-page: 497 article-title: Cassini imaging science: instrument characteristics and anticipated scientific investigations at Saturn publication-title: Space Science Reviews – volume: 300 start-page: 103 year: 2018 end-page: 114 article-title: Icy Saturnian satellites: Disk‐integrated UV‐IR characteristics and links to exogenic processes publication-title: Icarus – volume: 212 start-page: 163 year: 1981 end-page: 191 article-title: Encounter with Saturn: Voyager 1 imaging science results publication-title: Science (80‐.) – volume: 34 start-page: 1 year: 2007 end-page: 5 article-title: Tethys: Lithospheric thickness and heat flux from flexurally supported topography at Ithaca Chasma publication-title: Geophysical Research Letters – volume: 465 start-page: 51 year: 2010 end-page: 65 article-title: Polygonal impact craters in the solar system: Observations and implications publication-title: Special Papers—Geological Society of America – start-page: 492 year: 1986 end-page: 580 – volume: 256 start-page: 78 year: 2015 end-page: 89 article-title: Dione's resurfacing history as determined from a global impact crater database publication-title: Icarus – volume: 163 start-page: 263 issue: 2 year: 2003 end-page: 289 article-title: Cratering rates in the outer solar system publication-title: Icarus – volume: 118 start-page: 2295 year: 2013 end-page: 2309 article-title: The transition from circular to elliptical impact craters publication-title: Journal of Geophysical Research: Planets – volume: V1 start-page: 71 year: 1974 end-page: 100 – volume: 178 start-page: 104 issue: 1 year: 2005 end-page: 123 article-title: Fates of satellite ejecta in the Saturn system publication-title: Icarus – volume: 234 start-page: 109 year: 2014 end-page: 131 article-title: The variability of crater identification among expert and community crater analysts publication-title: Icarus – volume: 93 start-page: 13776 issue: B11 year: 1988 end-page: 13804 article-title: Bombardment history of the Saturn system publication-title: Journal of Geophysical Research – volume: 836 start-page: 109 issue: 1 year: 2017 article-title: Accretion of Saturn's inner mid‐sized moons from a massive primordial ice ring publication-title: The Astrophysical Journal – volume: 959 start-page: 955 year: 2019 end-page: 959 article-title: Impact craters on Pluto and Charon indicate a deficit of small Kuiper belt objects publication-title: Science (80‐.) – volume: 37 start-page: 467 issue: 2 year: 1979 end-page: 474 article-title: Standard techniques for presentation and analysis of crater size‐frequency data publication-title: Icarus – volume: 121 start-page: 111 year: 2016 end-page: 117 article-title: Differential impact cratering of Saturn's satellites by heliocentric impactors publication-title: Journal of Geophysical Research: Planets – volume: 215 start-page: 504 year: 1982 end-page: 537 article-title: A new look at the Saturn system: The voyager 2 images publication-title: Science (80‐.) – volume: 137 start-page: 4936 issue: 6 year: 2009 end-page: 4948 article-title: A new chronology for the moon and mercury publication-title: Astronomy Journal – volume: 458 start-page: 3867 issue: 4 year: 2016 end-page: 3879 article-title: Resonance locking as the source of rapid tidal migration in the Jupiter and Saturn moon systems publication-title: Monthly Notices of the Royal Astronomical Society – volume: 281 start-page: 286 year: 2017 end-page: 296 article-title: New constraints on Saturn's interior from Cassini astrometric data publication-title: Icarus – volume: 311 start-page: 1401 year: 2006 end-page: 1405 article-title: Cassini encounters Enceladus: Background and the discovery of a south polar hot spot publication-title: Science (80‐.) – volume: 465 start-page: 752 issue: 7299 year: 2010 end-page: 754 article-title: The recent formation of Saturn's moonlets from viscous spreading of the main rings publication-title: Nature – volume: 190 start-page: 224 issue: 1 year: 2007 end-page: 235 article-title: The origin and distribution of the Centaur population publication-title: Icarus – volume: 223 start-page: 544 issue: 1 year: 2013 end-page: 565 article-title: Late origin of the Saturn system publication-title: Icarus – volume: 57 start-page: 83 issue: 1 year: 2009 end-page: 92 article-title: High‐resolution atlases of Mimas, Tethys, and Iapetus derived from Cassini‐ISS images publication-title: Planetary and Space Science – volume: 206 start-page: 485 issue: 2 year: 2010 end-page: 497 article-title: Impact cratering records of the mid‐sized, icy Saturnian satellites publication-title: Icarus – volume: 53 start-page: 638 issue: 4 year: 2018 end-page: 671 article-title: Secondary craters and ejecta across the solar system: Populations and effects on impact‐crater–based chronologies publication-title: Meteoritics and Planetary Science – volume: 2018 start-page: 3 year: 2018 end-page: 4 – volume: 295 start-page: 285 issue: 5847 year: 1982 end-page: 290 article-title: Crater densities and geological histories of Rhea, Dione, Mimas and Tethys publication-title: Nature – year: 2020a – volume: 153 start-page: 111 issue: 1 year: 2001 end-page: 129 article-title: Differential cratering of synchronously rotating satellites by ecliptic comets publication-title: Icarus – volume: 7 year: 2016 article-title: Sesquinary catenae on the Martian satellite Phobos from reaccretion of escaping Ejecta publication-title: Nature Communications – volume: 53 start-page: 891 issue: 4 year: 2018 end-page: 931 article-title: Revised recommended methods for analyzing crater size‐frequency distributions publication-title: Meteoritics and Planetary Science – year: 2010 – volume: 126 start-page: 3122 year: 2003 end-page: 3131 article-title: The dynamics of known centaurs publication-title: Astronomy Journal – volume: 338 start-page: 1196 year: 2012 end-page: 1199 article-title: Formation of regular satellites from ancient massive rings in the solar system publication-title: Science (80‐.) – volume: 752 start-page: 14 issue: 1 year: 2012 article-title: Strong tidal dissipation in Saturn and constraints on Enceladus' thermal state from astrometry publication-title: The Astrophysical Journal – volume: 284 start-page: 70 year: 2017 end-page: 89 article-title: Fates of satellite ejecta in the Saturn system, II publication-title: Icarus – volume: 210 start-page: 436 issue: 1 year: 2010 end-page: 445 article-title: Exchange of ejecta between Telesto and Calypso: Tadpoles, horseshoes, and passing orbits publication-title: Icarus – start-page: 613 year: 2009 end-page: 635 – volume: 216 start-page: 535 issue: 2 year: 2011 end-page: 550 article-title: Accretion of Saturn's mid‐sized moons during the viscous spreading of young massive rings: Solving the paradox of silicate‐poor rings versus silicate‐rich moons publication-title: Icarus – volume: 145 start-page: 108 issue: 1 year: 2000 end-page: 121 article-title: Interpreting the elliptical crater populations on Mars, Venus, and the Moon publication-title: Icarus – volume: 204 start-page: 697 issue: 2 year: 2009 end-page: 715 article-title: Cratering saturation and equilibrium: A new model looks at an old problem publication-title: Icarus – year: 2013 article-title: The production of craters on the mid‐sized saturnian satellites by Centaur objects publication-title: Astronomy & Astrophysics – volume: 208 start-page: 395 issue: 1 year: 2010 end-page: 401 article-title: Sizes, shapes, and derived properties of the Saturnian satellites after the Cassini nominal mission publication-title: Icarus – volume: 820 start-page: 97 issue: 2 year: 2016 article-title: Dynamical evidence for a late formation of Saturn's moons publication-title: The Astrophysical Journal – volume: 218 start-page: 602 issue: 1 year: 2012 end-page: 621 article-title: The role of ejecta in the small crater populations on the mid‐sized saturnian satellites publication-title: Icarus – volume: 121 start-page: 1900 year: 2016 end-page: 1926 article-title: Analysis of impact crater populations and the geochronology of planetary surfaces in the inner solar system publication-title: Journal of Geophysical Research: Planets – year: 2020b – volume: 141 start-page: 159 issue: 5 year: 2011 article-title: Observed binary fraction sets limits on the extent of collisional grinding in the Kuiper Belt publication-title: Astronomy Journal – volume: 96 start-page: 55 issue: 1/4 year: 2001 end-page: 86 article-title: Cratering records in the inner solar system in relation to the lunar reference system publication-title: Space Science Reviews – volume: 89 start-page: 10405 issue: B12 year: 1984b end-page: 10410 article-title: Planetocentric versus heliocentric impacts in the Jovian and Saturnian satellite system publication-title: Journal of Geophysical Research – year: 2013 – ident: e_1_2_8_12_1 doi: 10.1038/nature09661 – ident: e_1_2_8_70_1 – ident: e_1_2_8_59_1 doi: 10.1016/B978-0-444-53802-4.00177-9 – ident: e_1_2_8_61_1 doi: 10.1029/JB090iB02p02029 – ident: e_1_2_8_44_1 doi: 10.1016/j.icarus.2016.07.014 – ident: e_1_2_8_35_1 doi: 10.1016/j.icarus.2015.05.026 – ident: e_1_2_8_73_1 doi: 10.1126/science.212.4491.163 – ident: e_1_2_8_10_1 doi: 10.1006/icar.1999.6323 – ident: e_1_2_8_52_1 doi: 10.1038/ncomms12591 – ident: e_1_2_8_77_1 doi: 10.1086/379554 – ident: e_1_2_8_58_1 doi: 10.1146/annurev.astro.37.1.533 – ident: e_1_2_8_24_1 doi: 10.1016/j.icarus.2015.09.012 – year: 2013 ident: e_1_2_8_23_1 article-title: The production of craters on the mid‐sized saturnian satellites by Centaur objects publication-title: Astronomy & Astrophysics contributor: fullname: Di Sisto R. P. – ident: e_1_2_8_15_1 doi: 10.2307/j.ctv1v3gr3r.15 – ident: e_1_2_8_34_1 doi: 10.1029/2007GL031467 – ident: e_1_2_8_54_1 doi: 10.1023/A:1011989004263 – ident: e_1_2_8_4_1 – ident: e_1_2_8_2_1 doi: 10.1016/j.icarus.2016.10.028 – ident: e_1_2_8_3_1 doi: 10.1016/j.icarus.2005.04.017 – ident: e_1_2_8_17_1 doi: 10.1038/nature09096 – ident: e_1_2_8_42_1 doi: 10.1016/j.icarus.2009.12.007 – ident: e_1_2_8_66_1 doi: 10.1111/maps.12990 – volume-title: Decapitated impactors in the laboratory and on the planets year: 1990 ident: e_1_2_8_69_1 contributor: fullname: Schultz P. – ident: e_1_2_8_71_1 doi: 10.1126/science.aap8628 – ident: e_1_2_8_11_1 doi: 10.1111/j.1365-2966.2012.20954.x – ident: e_1_2_8_27_1 doi: 10.1002/2013JE004477 – ident: e_1_2_8_16_1 doi: 10.1016/j.icarus.2011.09.017 – ident: e_1_2_8_25_1 doi: 10.1016/j.icarus.2010.06.023 – ident: e_1_2_8_64_1 doi: 10.1016/j.pss.2008.10.014 – ident: e_1_2_8_80_1 doi: 10.1016/S0019-1035(03)00048-4 – ident: e_1_2_8_68_1 doi: 10.1016/j.icarus.2010.08.016 – ident: e_1_2_8_41_1 doi: 10.2458/azu_uapress_9780816537075-ch013 – ident: e_1_2_8_63_1 doi: 10.1016/j.icarus.2009.07.029 – ident: e_1_2_8_7_1 doi: 10.1016/j.icarus.2016.03.020 – ident: e_1_2_8_78_1 doi: 10.1086/591839 – ident: e_1_2_8_67_1 doi: 10.3847/1538-4357/836/1/109 – volume-title: Origin and evolution of Saturn's mid‐sized moons, Enceladus and the icy moons of Saturn year: 2018 ident: e_1_2_8_14_1 contributor: fullname: Castillo‐Rogez J. C. – ident: e_1_2_8_29_1 – ident: e_1_2_8_45_1 doi: 10.1088/0004-637X/752/1/14 – ident: e_1_2_8_60_1 doi: 10.1038/295285a0 – ident: e_1_2_8_46_1 doi: 10.1029/JB093iB11p13776 – ident: e_1_2_8_50_1 doi: 10.1016/j.icarus.2004.05.009 – ident: e_1_2_8_56_1 doi: 10.1038/s41550-019-0726-y – volume-title: Impact cratering a geologic process year: 1989 ident: e_1_2_8_48_1 contributor: fullname: Melosh H. J. – ident: e_1_2_8_6_1 – ident: e_1_2_8_39_1 doi: 10.1029/JB089iB12p10405 – ident: e_1_2_8_5_1 doi: 10.1016/j.icarus.2012.12.009 – ident: e_1_2_8_47_1 doi: 10.1088/0004-6256/137/6/4936 – ident: e_1_2_8_53_1 doi: 10.1088/0004-6256/141/5/159 – ident: e_1_2_8_18_1 doi: 10.1029/2007GL033077 – ident: e_1_2_8_75_1 doi: 10.1126/science.1113544 – ident: e_1_2_8_72_1 doi: 10.1126/science.215.4532.504 – ident: e_1_2_8_22_1 doi: 10.1016/j.icarus.2007.02.012 – ident: e_1_2_8_33_1 – volume-title: Tectonics of Europa, Europa year: 2009 ident: e_1_2_8_40_1 contributor: fullname: Kattenhorn S. A. – ident: e_1_2_8_76_1 doi: 10.1016/j.icarus.2010.01.025 – ident: e_1_2_8_79_1 doi: 10.1016/j.icarus.2017.01.025 – ident: e_1_2_8_28_1 doi: 10.1002/2016JE005094 – ident: e_1_2_8_9_1 doi: 10.1111/maps.13057 – start-page: 71 volume-title: Multiringed basins‐illustrated by Orientale and associated features year: 1974 ident: e_1_2_8_49_1 contributor: fullname: Moore H. J. – volume: 465 start-page: 51 year: 2010 ident: e_1_2_8_57_1 article-title: Polygonal impact craters in the solar system: Observations and implications publication-title: Special Papers—Geological Society of America contributor: fullname: Öhman T. – ident: e_1_2_8_55_1 – ident: e_1_2_8_21_1 doi: 10.3847/0004-637X/820/2/97 – ident: e_1_2_8_19_1 doi: 10.1016/0019-1035(79)90009-5 – ident: e_1_2_8_38_1 doi: 10.1016/0019-1035(84)90175-1 – ident: e_1_2_8_62_1 doi: 10.1007/s11214-004-1456-7 – ident: e_1_2_8_81_1 doi: 10.1006/icar.2001.6668 – ident: e_1_2_8_74_1 doi: 10.1126/science.1121661 – ident: e_1_2_8_26_1 doi: 10.1007/978-1-4020-9217-6_19 – ident: e_1_2_8_43_1 doi: 10.1016/j.icarus.2015.04.010 – ident: e_1_2_8_32_1 doi: 10.1093/mnras/stw609 – ident: e_1_2_8_36_1 doi: 10.1016/j.icarus.2017.08.037 – ident: e_1_2_8_13_1 doi: 10.1038/nature04860 – ident: e_1_2_8_30_1 – ident: e_1_2_8_37_1 doi: 10.1002/2015JE004940 – ident: e_1_2_8_8_1 doi: 10.1016/j.icarus.2011.12.011 – volume-title: Crater helper tools—Manual year: 2010 ident: e_1_2_8_51_1 contributor: fullname: Nava R. A. – ident: e_1_2_8_65_1 doi: 10.1016/j.icarus.2014.02.022 – ident: e_1_2_8_20_1 doi: 10.1126/science.1226477 – start-page: 3 volume-title: Interpreting the small crater record of Tethys and the role of secondary craters year: 2018 ident: e_1_2_8_31_1 contributor: fullname: Ferguson S. N. |
SSID | ssj0000816913 |
Score | 2.298905 |
Snippet | Current estimates place the ages of the inner Saturnian satellites (Mimas, Enceladus, Tethys, Dione, and Rhea) between 4.5 Gyr and 100 Myr. These estimates are... Current estimates place the ages of the inner Saturnian satellites (Mimas, Enceladus, Tethys, Dione, and Rhea) between 4.5 Gyr and 100 Myr. These estimates are... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Computer simulation Craters Detritus Diameters Dione Enceladus Evolution icy satellites impact cratering impactor populations Impactors Lunar surface Mapping Mimas Moon Moons Orbital mechanics Outer solar system Parameter uncertainty Pixels Populations Rhea (astronomy) Satellites Saturn Saturn satellites Solar system Terrain Tethys |
Title | Small Impact Crater Populations on Saturn's Moon Tethys and Implications for Source Impactors in the System |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2020JE006400 https://www.proquest.com/docview/2446708275 |
Volume | 125 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8MwGA66kxe_ZdMpOfhxsdglWdJchDE7daAMN8FbSZoExK2V1R389yZpV-dFEG8pbULJm4_ned_keQE4RUghy6xUQIkJA2KUCiQSUcC0kB0sGE-NT2I7Zo8v0U3sZHKul3dhSn2I2uHmZoZfr90EF7KoxAacRqZl7eEw9pEoR9ktUfA3OPCodrG4nBLcJ0hGthDwkLPq6Ltt4Wq1_s9N6RtpruJVv-EMtv77q9tgs4KasFeOjR2wprNd0OwVzvmdzz7hOfTl0rdR7IG38UxMp_De35uEfachMYejOsFXAfMMjp0OaHZRwIfcPk20MzMUmXK1avcftEAYjn1UoGotnxfwNYMWbMJSIn0fPA_iSf8uqHIxBAJju2ga00mllBYccsKNoaobhY4Laaf4R5iytM8unWmUEupQhNFCEExDLKMUG8Y0PgCNLM90E0BBNacqQoZbdslkKChThlJCZUoMQ6QFzpbGSN5LyY3Eh8oRT1Z7sgXaS0sl1cQrEotWKLOwhnVb4NLb5Nc2kuHtU-xym6PDv31-BDbci_K0WRs0PuYLfQzWC7U48YPwC6KM2Sw |
link.rule.ids | 315,782,786,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZ4DLDwRi1PDzwWIlLH2PGEUGmhpa0qWiS2yIltCQEJamDg3-Nz0lAWJMTmSM4pytnn7-583yF0RIgi1rNSHqPG96hRyouJDD2uZdwIJBeJcU1sR3zwGF63gCbncloLU_BDVAE32BnOXsMGh4B0yTYAJJnWbfe7LZeKsj77ImV2LUINRzCsgizQVUK4FsnEDjzhC15efrcizmcF_DyWvrHmLGJ1R0579d8fu4ZWSrSJr4rlsY7mdLqBalc5xL-z1098gt24CG_km-h59CpfXnDHlU7iJtBITPCw6vGV4yzFI6ACTU9z3M_s01iDprFMFbxVRQCxxcJ45BIDpbRskuOnFFu8iQuW9C300G6Nm7de2Y7Bk0Fg7aYxjSSOY4sPBRXGMHUR-uAOaSD9o1xZz89azyRMKAMgYbSUNGB-EIdJYDjXwTZaSLNU1xCWTAumQmKEdTB57EvGlWGMsjihhhNaR8dTbURvBetG5LLlRESzf7KO9qaqisq9l0cWsDBukQ2_qKMzp5RfZUTdm_sWtDcnO3-bfoiWbsf9XtTrDO520TJMKi6f7aGF98mH3kfzufo4cCvyC3q63VQ |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA86QXzxW5yfefDjxWKXZEnzIgzddFPHcAq-lbRJQNRWVn3wv_eSdnO-COJbCulRernL7-6S3yF0QIgmEFnpgDMbBsxqHSRERYEwKmlQJWRqfRPboeg_RhdtR5NzNr4LU_JDTBJuzjK8v3YG_qZtRTbgODIhag97bV-JgpB9jgESd9z5lA4mORbXVEL6DskEBoEMpajOvoOI02kBP3elb6g5DVj9jtNZ-u-3LqPFCmviVrk4VtCMyVbRZqtw2e_89RMfYT8ukxvFGnoevqqXF9z1FyfxuSORGOHBpMNXgfMMDx0RaHZc4Nscnu6N0zNWmXZvTfJ_GJAwHvqyQCUtHxX4KcOANnHJkb6OHjrt-_OroGrGEChKwWta20iTJAF0KJm0lutmFLpgyDjKPyY0xH3gO9MoBUUAjLBGKUZ5SJMopVYIQzdQLcszs4mw4kZyHRErIbwUSai40JZzxpOUWUFYHR2OlRG_lZwbsa-VExlP_8k62hlrKq4sr4gBrnABuEY06-jE6-RXGXHv8q7tmpuTrb9N30fzg4tOfNPtX2-jBTenPHm2g2rvow-zi2YL_bHn1-MX1_zb-g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Small+Impact+Crater+Populations+on+Saturn%27s+Moon+Tethys+and+Implications+for+Source+Impactors+in+the+System&rft.jtitle=Journal+of+geophysical+research.+Planets&rft.au=Ferguson%2C+S.+N.&rft.au=Rhoden%2C+A.+R.&rft.au=Kirchoff%2C+M.+R.&rft.date=2020-09-01&rft.issn=2169-9097&rft.eissn=2169-9100&rft.volume=125&rft.issue=9&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2020JE006400&rft.externalDBID=10.1029%252F2020JE006400&rft.externalDocID=JGRE21462 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-9097&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-9097&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-9097&client=summon |