Small Impact Crater Populations on Saturn's Moon Tethys and Implications for Source Impactors in the System

Current estimates place the ages of the inner Saturnian satellites (Mimas, Enceladus, Tethys, Dione, and Rhea) between 4.5 Gyr and 100 Myr. These estimates are based on impact crater measurements and dynamical simulations, both of which have uncertainties. Models of satellite evolution are inherentl...

Full description

Saved in:
Bibliographic Details
Published in:Journal of geophysical research. Planets Vol. 125; no. 9
Main Authors: Ferguson, S. N., Rhoden, A. R., Kirchoff, M. R.
Format: Journal Article
Language:English
Published: Washington Blackwell Publishing Ltd 01-09-2020
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Current estimates place the ages of the inner Saturnian satellites (Mimas, Enceladus, Tethys, Dione, and Rhea) between 4.5 Gyr and 100 Myr. These estimates are based on impact crater measurements and dynamical simulations, both of which have uncertainties. Models of satellite evolution are inherently simplified and rely on uncertain or unknown parameters, which are often difficult to verify, whereas the interpretations of crater densities depend on the source populations of impactors, which are not well‐constrained in the outer solar system. We investigate the cratering history of Tethys, mapping the population of small impact craters, to determine the roles that planetocentric, heliocentric, or other impact debris play in its cratering record. To map the surface of Tethys, we chose five regions that were located in geographically distinct areas and had high‐resolution (~150 m/pix) image coverage by the Cassini ISS camera. We studied all craters that had at least 7 pixels across but mapped down to 5 pixels for completeness in the crater counts. We observe an abundance of small craters (D < 3 km) in the oldest region; this does not appear to be due to secondary cratering effects from the Odysseus impact basin. Fitting the production functions from Zahnle et al. (2003, https://doi.org/10.1016/S0019‐1035(03)00048‐4), we find that neither their Case A nor Case B scenarios align with the observed cratering record at Tethys. We conclude that in addition to the standard outer solar system impactor populations, there is a Saturn‐centric impactor source that is cratering Tethys. Plain Language Summary A major outstanding question post‐Cassini is the following: How old are the midsized moons of Saturn (Mimas, Enceladus, Tethys, Dione, and Rhea)? Recent models of their orbital evolution have suggested that they could be as young as 100 Myr. Characterizing the impactor flux and how it has changed with time may help constrain the histories of these moons. We have mapped small craters (diameter <10 km) on Tethys to examine the sources of objects that collide with the moon. We find that the older terrain unit has a surplus of small impact craters that is consistent with a source of Saturn‐orbiting debris. Younger terrain units appear to be more consistent with sun‐orbiting debris at small diameters. This scenario is compatible with both young and old moons but suggests an early source of planetocentric debris. Further study on other satellites in the system is needed to ascertain age relationships. Key Points We map small impact craters in high‐resolution (image resolution ~150 m/pix) images on Saturn's moon Tethys We observe a surplus of small impact craters (1 km < D < 3 km) in the oldest region located near the Saturn facing side of the moon We interpret the crater records to be representative of an additional source population of Saturn‐centric debris
AbstractList Current estimates place the ages of the inner Saturnian satellites (Mimas, Enceladus, Tethys, Dione, and Rhea) between 4.5 Gyr and 100 Myr. These estimates are based on impact crater measurements and dynamical simulations, both of which have uncertainties. Models of satellite evolution are inherently simplified and rely on uncertain or unknown parameters, which are often difficult to verify, whereas the interpretations of crater densities depend on the source populations of impactors, which are not well‐constrained in the outer solar system. We investigate the cratering history of Tethys, mapping the population of small impact craters, to determine the roles that planetocentric, heliocentric, or other impact debris play in its cratering record. To map the surface of Tethys, we chose five regions that were located in geographically distinct areas and had high‐resolution (~150 m/pix) image coverage by the Cassini ISS camera. We studied all craters that had at least 7 pixels across but mapped down to 5 pixels for completeness in the crater counts. We observe an abundance of small craters ( D  < 3 km) in the oldest region; this does not appear to be due to secondary cratering effects from the Odysseus impact basin. Fitting the production functions from Zahnle et al. (2003, https://doi.org/10.1016/S0019‐1035(03)00048‐4 ), we find that neither their Case A nor Case B scenarios align with the observed cratering record at Tethys. We conclude that in addition to the standard outer solar system impactor populations, there is a Saturn‐centric impactor source that is cratering Tethys. A major outstanding question post‐Cassini is the following: How old are the midsized moons of Saturn (Mimas, Enceladus, Tethys, Dione, and Rhea)? Recent models of their orbital evolution have suggested that they could be as young as 100 Myr. Characterizing the impactor flux and how it has changed with time may help constrain the histories of these moons. We have mapped small craters (diameter <10 km) on Tethys to examine the sources of objects that collide with the moon. We find that the older terrain unit has a surplus of small impact craters that is consistent with a source of Saturn‐orbiting debris. Younger terrain units appear to be more consistent with sun‐orbiting debris at small diameters. This scenario is compatible with both young and old moons but suggests an early source of planetocentric debris. Further study on other satellites in the system is needed to ascertain age relationships. We map small impact craters in high‐resolution (image resolution ~150 m/pix) images on Saturn's moon Tethys We observe a surplus of small impact craters (1 km <  D  < 3 km) in the oldest region located near the Saturn facing side of the moon We interpret the crater records to be representative of an additional source population of Saturn‐centric debris
Current estimates place the ages of the inner Saturnian satellites (Mimas, Enceladus, Tethys, Dione, and Rhea) between 4.5 Gyr and 100 Myr. These estimates are based on impact crater measurements and dynamical simulations, both of which have uncertainties. Models of satellite evolution are inherently simplified and rely on uncertain or unknown parameters, which are often difficult to verify, whereas the interpretations of crater densities depend on the source populations of impactors, which are not well‐constrained in the outer solar system. We investigate the cratering history of Tethys, mapping the population of small impact craters, to determine the roles that planetocentric, heliocentric, or other impact debris play in its cratering record. To map the surface of Tethys, we chose five regions that were located in geographically distinct areas and had high‐resolution (~150 m/pix) image coverage by the Cassini ISS camera. We studied all craters that had at least 7 pixels across but mapped down to 5 pixels for completeness in the crater counts. We observe an abundance of small craters (D < 3 km) in the oldest region; this does not appear to be due to secondary cratering effects from the Odysseus impact basin. Fitting the production functions from Zahnle et al. (2003, https://doi.org/10.1016/S0019‐1035(03)00048‐4), we find that neither their Case A nor Case B scenarios align with the observed cratering record at Tethys. We conclude that in addition to the standard outer solar system impactor populations, there is a Saturn‐centric impactor source that is cratering Tethys.
Current estimates place the ages of the inner Saturnian satellites (Mimas, Enceladus, Tethys, Dione, and Rhea) between 4.5 Gyr and 100 Myr. These estimates are based on impact crater measurements and dynamical simulations, both of which have uncertainties. Models of satellite evolution are inherently simplified and rely on uncertain or unknown parameters, which are often difficult to verify, whereas the interpretations of crater densities depend on the source populations of impactors, which are not well‐constrained in the outer solar system. We investigate the cratering history of Tethys, mapping the population of small impact craters, to determine the roles that planetocentric, heliocentric, or other impact debris play in its cratering record. To map the surface of Tethys, we chose five regions that were located in geographically distinct areas and had high‐resolution (~150 m/pix) image coverage by the Cassini ISS camera. We studied all craters that had at least 7 pixels across but mapped down to 5 pixels for completeness in the crater counts. We observe an abundance of small craters (D < 3 km) in the oldest region; this does not appear to be due to secondary cratering effects from the Odysseus impact basin. Fitting the production functions from Zahnle et al. (2003, https://doi.org/10.1016/S0019‐1035(03)00048‐4), we find that neither their Case A nor Case B scenarios align with the observed cratering record at Tethys. We conclude that in addition to the standard outer solar system impactor populations, there is a Saturn‐centric impactor source that is cratering Tethys. Plain Language Summary A major outstanding question post‐Cassini is the following: How old are the midsized moons of Saturn (Mimas, Enceladus, Tethys, Dione, and Rhea)? Recent models of their orbital evolution have suggested that they could be as young as 100 Myr. Characterizing the impactor flux and how it has changed with time may help constrain the histories of these moons. We have mapped small craters (diameter <10 km) on Tethys to examine the sources of objects that collide with the moon. We find that the older terrain unit has a surplus of small impact craters that is consistent with a source of Saturn‐orbiting debris. Younger terrain units appear to be more consistent with sun‐orbiting debris at small diameters. This scenario is compatible with both young and old moons but suggests an early source of planetocentric debris. Further study on other satellites in the system is needed to ascertain age relationships. Key Points We map small impact craters in high‐resolution (image resolution ~150 m/pix) images on Saturn's moon Tethys We observe a surplus of small impact craters (1 km < D < 3 km) in the oldest region located near the Saturn facing side of the moon We interpret the crater records to be representative of an additional source population of Saturn‐centric debris
Author Kirchoff, M. R.
Rhoden, A. R.
Ferguson, S. N.
Author_xml – sequence: 1
  givenname: S. N.
  orcidid: 0000-0003-4674-0381
  surname: Ferguson
  fullname: Ferguson, S. N.
  email: sierra.ferguson@asu.edu
  organization: Arizona State University
– sequence: 2
  givenname: A. R.
  surname: Rhoden
  fullname: Rhoden, A. R.
  organization: Southwest Research Institute
– sequence: 3
  givenname: M. R.
  orcidid: 0000-0002-3367-2730
  surname: Kirchoff
  fullname: Kirchoff, M. R.
  organization: Southwest Research Institute
BookMark eNp9kE1Lw0AQhhepYK29-QMWPHgxOvuRTXKUUmtLRTH1HDbpLk1NsnF3g-Tfm9IKnpzLfPDMO8N7iUaNaRRC1wTuCdDkgQKF1RxAcIAzNKZEJEFCAEa_NSTRBZo6t4ch4mFE2Bh9prWsKrysW1l4PLPSK4vfTNtV0pemcdg0OJW-s82twy9m6DbK73qHZbM9bFVlcQK1sTg1nS3USc1Yh8sG-53Cae-8qq_QuZaVU9NTnqCPp_lm9hysXxfL2eM6kIwBDbQmRZ7nIWMJT7QW2zAGQQUoFhHOoy1JSMjiIi64AEpCraTkTADL44LpKFJsgm6Ouq01X51yPtsPfzXDyYxyLiKIaRQO1N2RKqxxziqdtbaspe0zAtnB0eyvowPOjvh3Wan-XzZbLd7nlHBB2Q9mcnfX
CitedBy_id crossref_primary_10_1016_j_jag_2024_103831
crossref_primary_10_1146_annurev_earth_031621_061221
crossref_primary_10_1016_j_epsl_2022_117652
crossref_primary_10_3847_PSJ_ad29f4
crossref_primary_10_1016_j_icarus_2021_114343
crossref_primary_10_1111_maps_14138
crossref_primary_10_1007_s11214_024_01049_2
crossref_primary_10_3847_PSJ_ac42d7
crossref_primary_10_3847_PSJ_acde80
crossref_primary_10_3847_PSJ_ad05ce
crossref_primary_10_3847_PSJ_ace7cd
crossref_primary_10_3847_1538_4357_acf613
crossref_primary_10_1029_2022GL100516
crossref_primary_10_3847_PSJ_acbef7
crossref_primary_10_1029_2022JE007204
crossref_primary_10_1038_d41586_024_00194_6
Cites_doi 10.1038/nature09661
10.1016/B978-0-444-53802-4.00177-9
10.1029/JB090iB02p02029
10.1016/j.icarus.2016.07.014
10.1016/j.icarus.2015.05.026
10.1126/science.212.4491.163
10.1006/icar.1999.6323
10.1038/ncomms12591
10.1086/379554
10.1146/annurev.astro.37.1.533
10.1016/j.icarus.2015.09.012
10.2307/j.ctv1v3gr3r.15
10.1029/2007GL031467
10.1023/A:1011989004263
10.1016/j.icarus.2016.10.028
10.1016/j.icarus.2005.04.017
10.1038/nature09096
10.1016/j.icarus.2009.12.007
10.1111/maps.12990
10.1126/science.aap8628
10.1111/j.1365-2966.2012.20954.x
10.1002/2013JE004477
10.1016/j.icarus.2011.09.017
10.1016/j.icarus.2010.06.023
10.1016/j.pss.2008.10.014
10.1016/S0019-1035(03)00048-4
10.1016/j.icarus.2010.08.016
10.2458/azu_uapress_9780816537075-ch013
10.1016/j.icarus.2009.07.029
10.1016/j.icarus.2016.03.020
10.1086/591839
10.3847/1538-4357/836/1/109
10.1088/0004-637X/752/1/14
10.1038/295285a0
10.1029/JB093iB11p13776
10.1016/j.icarus.2004.05.009
10.1038/s41550-019-0726-y
10.1029/JB089iB12p10405
10.1016/j.icarus.2012.12.009
10.1088/0004-6256/137/6/4936
10.1088/0004-6256/141/5/159
10.1029/2007GL033077
10.1126/science.1113544
10.1126/science.215.4532.504
10.1016/j.icarus.2007.02.012
10.1016/j.icarus.2010.01.025
10.1016/j.icarus.2017.01.025
10.1002/2016JE005094
10.1111/maps.13057
10.3847/0004-637X/820/2/97
10.1016/0019-1035(79)90009-5
10.1016/0019-1035(84)90175-1
10.1007/s11214-004-1456-7
10.1006/icar.2001.6668
10.1126/science.1121661
10.1007/978-1-4020-9217-6_19
10.1016/j.icarus.2015.04.010
10.1093/mnras/stw609
10.1016/j.icarus.2017.08.037
10.1038/nature04860
10.1002/2015JE004940
10.1016/j.icarus.2011.12.011
10.1016/j.icarus.2014.02.022
10.1126/science.1226477
ContentType Journal Article
Copyright 2020. American Geophysical Union. All Rights Reserved.
Copyright_xml – notice: 2020. American Geophysical Union. All Rights Reserved.
DBID AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
DOI 10.1029/2020JE006400
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList CrossRef
Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
EISSN 2169-9100
EndPage n/a
ExternalDocumentID 10_1029_2020JE006400
JGRE21462
Genre article
GrantInformation_xml – fundername: National Aeronautics and Space Administration (NASA)
  funderid: NNX16AI42G; 80NSSC19K1532; NNX17AG01G
GroupedDBID 05W
0R~
1OC
24P
31~
33P
3V.
50Y
52M
702
8-1
88I
8FE
8FG
8FH
A00
AAESR
AAHHS
AANLZ
AASGY
AAXRX
AAZKR
ABCUV
ABJNI
ABUWG
ACAHQ
ACCFJ
ACCZN
ACGFS
ACGOD
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARAPS
ASPBG
AVWKF
AZFZN
AZQEC
AZVAB
BENPR
BFHJK
BGLVJ
BHPHI
BKSAR
BMXJE
BPHCQ
BRXPI
CCPQU
D1K
DPXWK
DRFUL
DRSTM
DWQXO
EBS
EJD
FEDTE
G-S
GNUQQ
GODZA
HCIFZ
HGLYW
HVGLF
HZ~
K6-
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M2P
M7R
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
P-X
P2W
P62
PCBAR
PQQKQ
PROAC
R.K
RJQFR
RNS
ROL
SUPJJ
WBKPD
WIN
WXSBR
WYJ
~OA
AAMNL
AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
ID FETCH-LOGICAL-a3302-ff1cbbb533949ff6d5806260e371447d191538c8c460215feaa43603b8c3f77e3
IEDL.DBID 33P
ISSN 2169-9097
IngestDate Tue Nov 19 06:57:38 EST 2024
Thu Nov 21 23:23:42 EST 2024
Sat Aug 24 01:05:16 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a3302-ff1cbbb533949ff6d5806260e371447d191538c8c460215feaa43603b8c3f77e3
ORCID 0000-0003-4674-0381
0000-0002-3367-2730
PQID 2446708275
PQPubID 54729
PageCount 21
ParticipantIDs proquest_journals_2446708275
crossref_primary_10_1029_2020JE006400
wiley_primary_10_1029_2020JE006400_JGRE21462
PublicationCentury 2000
PublicationDate September 2020
2020-09-00
20200901
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: September 2020
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Journal of geophysical research. Planets
PublicationYear 2020
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2017; 836
1979; 37
2005; 178
2010; 468
1974; V1
2010; 465
1984b; 89
2008; 35
2016; 264
2007; 190
2016; 820
2007; 34
1978
2009; 57
1990
2019; 959
2015; 258
2015; 256
2013; 118
2004; 171
1986
2020b
2020a
2017; 281
1985; 90
2005; 309
2017; 284
1982; 215
1981
2003; 126
2017; 288
1984a; 60
2016; 274
2012; 338
2012; 218
2006; 441
2001; 96
1982; 295
1989
2009; 204
2003; 163
2019; 3
2010; 208
2011; 216
2010; 206
2010
2018; 300
2015; 10
2009
2013; 223
2016; 121
2005
2004
2008; 687
2012; 423
1988; 93
2011; 211
2009; 137
2014; 234
2006; 311
2016; 7
2018; 2018
2004; 115
2001; 153
1981; 212
1999; 37
2010; 210
2018
2016; 458
2013
2000; 145
2012; 752
2011; 141
2018; 53
e_1_2_8_28_1
Nava R. A. (e_1_2_8_51_1) 2010
e_1_2_8_24_1
Ferguson S. N. (e_1_2_8_31_1) 2018
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_81_1
Kattenhorn S. A. (e_1_2_8_40_1) 2009
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
Di Sisto R. P. (e_1_2_8_23_1) 2013
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_2_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_65_1
Schultz P. (e_1_2_8_69_1) 1990
Melosh H. J. (e_1_2_8_48_1) 1989
Castillo‐Rogez J. C. (e_1_2_8_14_1) 2018
e_1_2_8_63_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_79_1
Öhman T. (e_1_2_8_57_1) 2010; 465
Moore H. J. (e_1_2_8_49_1) 1974
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – year: 2009
– volume: 211
  start-page: 740
  issue: 1
  year: 2011
  end-page: 757
  article-title: Plasma, plumes and rings: Saturn system dynamics as recorded in global color patterns on its midsize icy satellites
  publication-title: Icarus
– volume: 441
  start-page: 834
  issue: 7095
  year: 2006
  end-page: 839
  article-title: A common mass scaling for satellite systems of gaseous planets
  publication-title: Nature
– volume: 90
  start-page: 2029
  issue: B2
  year: 1985
  article-title: Impact cratering history of the Saturnian satellites
  publication-title: Journal of Geophysical Research
– year: 1981
– start-page: 267
  year: 2018
  end-page: 284
– year: 2005
– volume: 309
  start-page: 1847
  year: 2005
  end-page: 1851
  article-title: The origin of planetary Impactors in the inner solar system
  publication-title: Science (80‐.)
– start-page: 3843
  year: 1978
  end-page: 3875
– volume: 468
  start-page: 943
  issue: 7326
  year: 2010
  end-page: 946
  article-title: Origin of Saturn's rings and inner moons by mass removal from a lost titan‐sized satellite
  publication-title: Nature
– year: 1989
– volume: 3
  start-page: 543
  issue: 6
  year: 2019
  end-page: 552
  article-title: Evolution of Saturn' s mid‐sized moons
  publication-title: Nature Astronomy
– volume: 37
  start-page: 533
  issue: 1
  year: 1999
  end-page: 602
  article-title: Origin and evolution of the natural satellites
  publication-title: Annual Review of Astronomy and Astrophysics
– volume: 35
  start-page: 1
  year: 2008
  end-page: 4
  article-title: Implications from Ithaca Chasma for thermal and orbital history of Tethys
  publication-title: Geophysical Research Letters
– volume: 60
  start-page: 710
  issue: 3
  year: 1984a
  end-page: 717
  article-title: Cratering rate over the surface of a synchronous satellite
  publication-title: Icarus
– volume: 258
  start-page: 267
  year: 2015
  end-page: 288
  article-title: Impact and cratering rates onto Pluto
  publication-title: Icarus
– volume: 423
  start-page: 1254
  issue: 2
  year: 2012
  end-page: 1266
  article-title: Collisional evolution of trans‐Neptunian object populations in a Nice model environment
  publication-title: Monthly Notices of the Royal Astronomical Society
– volume: 687
  start-page: 714
  year: 2008
  end-page: 725
  article-title: The scattered disk as the source of the Jupiter family comets
  publication-title: The Astrophysical Journal
– volume: 171
  start-page: 421
  issue: 2
  year: 2004
  end-page: 443
  article-title: Large impact features on middle‐sized icy satellites
  publication-title: Icarus
– year: 2018
– year: 1990
– volume: 288
  start-page: 37
  year: 2017
  end-page: 52
  article-title: Impact crater relaxation on Dione and Tethys and relation to past heat flow
  publication-title: Icarus
– volume: 10
  start-page: 559
  issue: 215
  year: 2015
  end-page: 604
  article-title: The origin of the natural satellites
  publication-title: Treatise on Geophysics: Second Edition
– volume: 264
  start-page: 90
  year: 2016
  end-page: 101
  article-title: Surface ages of mid‐size saturnian satellites
  publication-title: Icarus
– year: 2004
– volume: 274
  start-page: 163
  year: 2016
  end-page: 194
  article-title: Polygonal impact craters on Dione: Evidence for tectonic structures outside the wispy terrain
  publication-title: Icarus
– volume: 115
  start-page: 363
  year: 2004
  end-page: 497
  article-title: Cassini imaging science: instrument characteristics and anticipated scientific investigations at Saturn
  publication-title: Space Science Reviews
– volume: 300
  start-page: 103
  year: 2018
  end-page: 114
  article-title: Icy Saturnian satellites: Disk‐integrated UV‐IR characteristics and links to exogenic processes
  publication-title: Icarus
– volume: 212
  start-page: 163
  year: 1981
  end-page: 191
  article-title: Encounter with Saturn: Voyager 1 imaging science results
  publication-title: Science (80‐.)
– volume: 34
  start-page: 1
  year: 2007
  end-page: 5
  article-title: Tethys: Lithospheric thickness and heat flux from flexurally supported topography at Ithaca Chasma
  publication-title: Geophysical Research Letters
– volume: 465
  start-page: 51
  year: 2010
  end-page: 65
  article-title: Polygonal impact craters in the solar system: Observations and implications
  publication-title: Special Papers—Geological Society of America
– start-page: 492
  year: 1986
  end-page: 580
– volume: 256
  start-page: 78
  year: 2015
  end-page: 89
  article-title: Dione's resurfacing history as determined from a global impact crater database
  publication-title: Icarus
– volume: 163
  start-page: 263
  issue: 2
  year: 2003
  end-page: 289
  article-title: Cratering rates in the outer solar system
  publication-title: Icarus
– volume: 118
  start-page: 2295
  year: 2013
  end-page: 2309
  article-title: The transition from circular to elliptical impact craters
  publication-title: Journal of Geophysical Research: Planets
– volume: V1
  start-page: 71
  year: 1974
  end-page: 100
– volume: 178
  start-page: 104
  issue: 1
  year: 2005
  end-page: 123
  article-title: Fates of satellite ejecta in the Saturn system
  publication-title: Icarus
– volume: 234
  start-page: 109
  year: 2014
  end-page: 131
  article-title: The variability of crater identification among expert and community crater analysts
  publication-title: Icarus
– volume: 93
  start-page: 13776
  issue: B11
  year: 1988
  end-page: 13804
  article-title: Bombardment history of the Saturn system
  publication-title: Journal of Geophysical Research
– volume: 836
  start-page: 109
  issue: 1
  year: 2017
  article-title: Accretion of Saturn's inner mid‐sized moons from a massive primordial ice ring
  publication-title: The Astrophysical Journal
– volume: 959
  start-page: 955
  year: 2019
  end-page: 959
  article-title: Impact craters on Pluto and Charon indicate a deficit of small Kuiper belt objects
  publication-title: Science (80‐.)
– volume: 37
  start-page: 467
  issue: 2
  year: 1979
  end-page: 474
  article-title: Standard techniques for presentation and analysis of crater size‐frequency data
  publication-title: Icarus
– volume: 121
  start-page: 111
  year: 2016
  end-page: 117
  article-title: Differential impact cratering of Saturn's satellites by heliocentric impactors
  publication-title: Journal of Geophysical Research: Planets
– volume: 215
  start-page: 504
  year: 1982
  end-page: 537
  article-title: A new look at the Saturn system: The voyager 2 images
  publication-title: Science (80‐.)
– volume: 137
  start-page: 4936
  issue: 6
  year: 2009
  end-page: 4948
  article-title: A new chronology for the moon and mercury
  publication-title: Astronomy Journal
– volume: 458
  start-page: 3867
  issue: 4
  year: 2016
  end-page: 3879
  article-title: Resonance locking as the source of rapid tidal migration in the Jupiter and Saturn moon systems
  publication-title: Monthly Notices of the Royal Astronomical Society
– volume: 281
  start-page: 286
  year: 2017
  end-page: 296
  article-title: New constraints on Saturn's interior from Cassini astrometric data
  publication-title: Icarus
– volume: 311
  start-page: 1401
  year: 2006
  end-page: 1405
  article-title: Cassini encounters Enceladus: Background and the discovery of a south polar hot spot
  publication-title: Science (80‐.)
– volume: 465
  start-page: 752
  issue: 7299
  year: 2010
  end-page: 754
  article-title: The recent formation of Saturn's moonlets from viscous spreading of the main rings
  publication-title: Nature
– volume: 190
  start-page: 224
  issue: 1
  year: 2007
  end-page: 235
  article-title: The origin and distribution of the Centaur population
  publication-title: Icarus
– volume: 223
  start-page: 544
  issue: 1
  year: 2013
  end-page: 565
  article-title: Late origin of the Saturn system
  publication-title: Icarus
– volume: 57
  start-page: 83
  issue: 1
  year: 2009
  end-page: 92
  article-title: High‐resolution atlases of Mimas, Tethys, and Iapetus derived from Cassini‐ISS images
  publication-title: Planetary and Space Science
– volume: 206
  start-page: 485
  issue: 2
  year: 2010
  end-page: 497
  article-title: Impact cratering records of the mid‐sized, icy Saturnian satellites
  publication-title: Icarus
– volume: 53
  start-page: 638
  issue: 4
  year: 2018
  end-page: 671
  article-title: Secondary craters and ejecta across the solar system: Populations and effects on impact‐crater–based chronologies
  publication-title: Meteoritics and Planetary Science
– volume: 2018
  start-page: 3
  year: 2018
  end-page: 4
– volume: 295
  start-page: 285
  issue: 5847
  year: 1982
  end-page: 290
  article-title: Crater densities and geological histories of Rhea, Dione, Mimas and Tethys
  publication-title: Nature
– year: 2020a
– volume: 153
  start-page: 111
  issue: 1
  year: 2001
  end-page: 129
  article-title: Differential cratering of synchronously rotating satellites by ecliptic comets
  publication-title: Icarus
– volume: 7
  year: 2016
  article-title: Sesquinary catenae on the Martian satellite Phobos from reaccretion of escaping Ejecta
  publication-title: Nature Communications
– volume: 53
  start-page: 891
  issue: 4
  year: 2018
  end-page: 931
  article-title: Revised recommended methods for analyzing crater size‐frequency distributions
  publication-title: Meteoritics and Planetary Science
– year: 2010
– volume: 126
  start-page: 3122
  year: 2003
  end-page: 3131
  article-title: The dynamics of known centaurs
  publication-title: Astronomy Journal
– volume: 338
  start-page: 1196
  year: 2012
  end-page: 1199
  article-title: Formation of regular satellites from ancient massive rings in the solar system
  publication-title: Science (80‐.)
– volume: 752
  start-page: 14
  issue: 1
  year: 2012
  article-title: Strong tidal dissipation in Saturn and constraints on Enceladus' thermal state from astrometry
  publication-title: The Astrophysical Journal
– volume: 284
  start-page: 70
  year: 2017
  end-page: 89
  article-title: Fates of satellite ejecta in the Saturn system, II
  publication-title: Icarus
– volume: 210
  start-page: 436
  issue: 1
  year: 2010
  end-page: 445
  article-title: Exchange of ejecta between Telesto and Calypso: Tadpoles, horseshoes, and passing orbits
  publication-title: Icarus
– start-page: 613
  year: 2009
  end-page: 635
– volume: 216
  start-page: 535
  issue: 2
  year: 2011
  end-page: 550
  article-title: Accretion of Saturn's mid‐sized moons during the viscous spreading of young massive rings: Solving the paradox of silicate‐poor rings versus silicate‐rich moons
  publication-title: Icarus
– volume: 145
  start-page: 108
  issue: 1
  year: 2000
  end-page: 121
  article-title: Interpreting the elliptical crater populations on Mars, Venus, and the Moon
  publication-title: Icarus
– volume: 204
  start-page: 697
  issue: 2
  year: 2009
  end-page: 715
  article-title: Cratering saturation and equilibrium: A new model looks at an old problem
  publication-title: Icarus
– year: 2013
  article-title: The production of craters on the mid‐sized saturnian satellites by Centaur objects
  publication-title: Astronomy & Astrophysics
– volume: 208
  start-page: 395
  issue: 1
  year: 2010
  end-page: 401
  article-title: Sizes, shapes, and derived properties of the Saturnian satellites after the Cassini nominal mission
  publication-title: Icarus
– volume: 820
  start-page: 97
  issue: 2
  year: 2016
  article-title: Dynamical evidence for a late formation of Saturn's moons
  publication-title: The Astrophysical Journal
– volume: 218
  start-page: 602
  issue: 1
  year: 2012
  end-page: 621
  article-title: The role of ejecta in the small crater populations on the mid‐sized saturnian satellites
  publication-title: Icarus
– volume: 121
  start-page: 1900
  year: 2016
  end-page: 1926
  article-title: Analysis of impact crater populations and the geochronology of planetary surfaces in the inner solar system
  publication-title: Journal of Geophysical Research: Planets
– year: 2020b
– volume: 141
  start-page: 159
  issue: 5
  year: 2011
  article-title: Observed binary fraction sets limits on the extent of collisional grinding in the Kuiper Belt
  publication-title: Astronomy Journal
– volume: 96
  start-page: 55
  issue: 1/4
  year: 2001
  end-page: 86
  article-title: Cratering records in the inner solar system in relation to the lunar reference system
  publication-title: Space Science Reviews
– volume: 89
  start-page: 10405
  issue: B12
  year: 1984b
  end-page: 10410
  article-title: Planetocentric versus heliocentric impacts in the Jovian and Saturnian satellite system
  publication-title: Journal of Geophysical Research
– year: 2013
– ident: e_1_2_8_12_1
  doi: 10.1038/nature09661
– ident: e_1_2_8_70_1
– ident: e_1_2_8_59_1
  doi: 10.1016/B978-0-444-53802-4.00177-9
– ident: e_1_2_8_61_1
  doi: 10.1029/JB090iB02p02029
– ident: e_1_2_8_44_1
  doi: 10.1016/j.icarus.2016.07.014
– ident: e_1_2_8_35_1
  doi: 10.1016/j.icarus.2015.05.026
– ident: e_1_2_8_73_1
  doi: 10.1126/science.212.4491.163
– ident: e_1_2_8_10_1
  doi: 10.1006/icar.1999.6323
– ident: e_1_2_8_52_1
  doi: 10.1038/ncomms12591
– ident: e_1_2_8_77_1
  doi: 10.1086/379554
– ident: e_1_2_8_58_1
  doi: 10.1146/annurev.astro.37.1.533
– ident: e_1_2_8_24_1
  doi: 10.1016/j.icarus.2015.09.012
– year: 2013
  ident: e_1_2_8_23_1
  article-title: The production of craters on the mid‐sized saturnian satellites by Centaur objects
  publication-title: Astronomy & Astrophysics
  contributor:
    fullname: Di Sisto R. P.
– ident: e_1_2_8_15_1
  doi: 10.2307/j.ctv1v3gr3r.15
– ident: e_1_2_8_34_1
  doi: 10.1029/2007GL031467
– ident: e_1_2_8_54_1
  doi: 10.1023/A:1011989004263
– ident: e_1_2_8_4_1
– ident: e_1_2_8_2_1
  doi: 10.1016/j.icarus.2016.10.028
– ident: e_1_2_8_3_1
  doi: 10.1016/j.icarus.2005.04.017
– ident: e_1_2_8_17_1
  doi: 10.1038/nature09096
– ident: e_1_2_8_42_1
  doi: 10.1016/j.icarus.2009.12.007
– ident: e_1_2_8_66_1
  doi: 10.1111/maps.12990
– volume-title: Decapitated impactors in the laboratory and on the planets
  year: 1990
  ident: e_1_2_8_69_1
  contributor:
    fullname: Schultz P.
– ident: e_1_2_8_71_1
  doi: 10.1126/science.aap8628
– ident: e_1_2_8_11_1
  doi: 10.1111/j.1365-2966.2012.20954.x
– ident: e_1_2_8_27_1
  doi: 10.1002/2013JE004477
– ident: e_1_2_8_16_1
  doi: 10.1016/j.icarus.2011.09.017
– ident: e_1_2_8_25_1
  doi: 10.1016/j.icarus.2010.06.023
– ident: e_1_2_8_64_1
  doi: 10.1016/j.pss.2008.10.014
– ident: e_1_2_8_80_1
  doi: 10.1016/S0019-1035(03)00048-4
– ident: e_1_2_8_68_1
  doi: 10.1016/j.icarus.2010.08.016
– ident: e_1_2_8_41_1
  doi: 10.2458/azu_uapress_9780816537075-ch013
– ident: e_1_2_8_63_1
  doi: 10.1016/j.icarus.2009.07.029
– ident: e_1_2_8_7_1
  doi: 10.1016/j.icarus.2016.03.020
– ident: e_1_2_8_78_1
  doi: 10.1086/591839
– ident: e_1_2_8_67_1
  doi: 10.3847/1538-4357/836/1/109
– volume-title: Origin and evolution of Saturn's mid‐sized moons, Enceladus and the icy moons of Saturn
  year: 2018
  ident: e_1_2_8_14_1
  contributor:
    fullname: Castillo‐Rogez J. C.
– ident: e_1_2_8_29_1
– ident: e_1_2_8_45_1
  doi: 10.1088/0004-637X/752/1/14
– ident: e_1_2_8_60_1
  doi: 10.1038/295285a0
– ident: e_1_2_8_46_1
  doi: 10.1029/JB093iB11p13776
– ident: e_1_2_8_50_1
  doi: 10.1016/j.icarus.2004.05.009
– ident: e_1_2_8_56_1
  doi: 10.1038/s41550-019-0726-y
– volume-title: Impact cratering a geologic process
  year: 1989
  ident: e_1_2_8_48_1
  contributor:
    fullname: Melosh H. J.
– ident: e_1_2_8_6_1
– ident: e_1_2_8_39_1
  doi: 10.1029/JB089iB12p10405
– ident: e_1_2_8_5_1
  doi: 10.1016/j.icarus.2012.12.009
– ident: e_1_2_8_47_1
  doi: 10.1088/0004-6256/137/6/4936
– ident: e_1_2_8_53_1
  doi: 10.1088/0004-6256/141/5/159
– ident: e_1_2_8_18_1
  doi: 10.1029/2007GL033077
– ident: e_1_2_8_75_1
  doi: 10.1126/science.1113544
– ident: e_1_2_8_72_1
  doi: 10.1126/science.215.4532.504
– ident: e_1_2_8_22_1
  doi: 10.1016/j.icarus.2007.02.012
– ident: e_1_2_8_33_1
– volume-title: Tectonics of Europa, Europa
  year: 2009
  ident: e_1_2_8_40_1
  contributor:
    fullname: Kattenhorn S. A.
– ident: e_1_2_8_76_1
  doi: 10.1016/j.icarus.2010.01.025
– ident: e_1_2_8_79_1
  doi: 10.1016/j.icarus.2017.01.025
– ident: e_1_2_8_28_1
  doi: 10.1002/2016JE005094
– ident: e_1_2_8_9_1
  doi: 10.1111/maps.13057
– start-page: 71
  volume-title: Multiringed basins‐illustrated by Orientale and associated features
  year: 1974
  ident: e_1_2_8_49_1
  contributor:
    fullname: Moore H. J.
– volume: 465
  start-page: 51
  year: 2010
  ident: e_1_2_8_57_1
  article-title: Polygonal impact craters in the solar system: Observations and implications
  publication-title: Special Papers—Geological Society of America
  contributor:
    fullname: Öhman T.
– ident: e_1_2_8_55_1
– ident: e_1_2_8_21_1
  doi: 10.3847/0004-637X/820/2/97
– ident: e_1_2_8_19_1
  doi: 10.1016/0019-1035(79)90009-5
– ident: e_1_2_8_38_1
  doi: 10.1016/0019-1035(84)90175-1
– ident: e_1_2_8_62_1
  doi: 10.1007/s11214-004-1456-7
– ident: e_1_2_8_81_1
  doi: 10.1006/icar.2001.6668
– ident: e_1_2_8_74_1
  doi: 10.1126/science.1121661
– ident: e_1_2_8_26_1
  doi: 10.1007/978-1-4020-9217-6_19
– ident: e_1_2_8_43_1
  doi: 10.1016/j.icarus.2015.04.010
– ident: e_1_2_8_32_1
  doi: 10.1093/mnras/stw609
– ident: e_1_2_8_36_1
  doi: 10.1016/j.icarus.2017.08.037
– ident: e_1_2_8_13_1
  doi: 10.1038/nature04860
– ident: e_1_2_8_30_1
– ident: e_1_2_8_37_1
  doi: 10.1002/2015JE004940
– ident: e_1_2_8_8_1
  doi: 10.1016/j.icarus.2011.12.011
– volume-title: Crater helper tools—Manual
  year: 2010
  ident: e_1_2_8_51_1
  contributor:
    fullname: Nava R. A.
– ident: e_1_2_8_65_1
  doi: 10.1016/j.icarus.2014.02.022
– ident: e_1_2_8_20_1
  doi: 10.1126/science.1226477
– start-page: 3
  volume-title: Interpreting the small crater record of Tethys and the role of secondary craters
  year: 2018
  ident: e_1_2_8_31_1
  contributor:
    fullname: Ferguson S. N.
SSID ssj0000816913
Score 2.298905
Snippet Current estimates place the ages of the inner Saturnian satellites (Mimas, Enceladus, Tethys, Dione, and Rhea) between 4.5 Gyr and 100 Myr. These estimates are...
Current estimates place the ages of the inner Saturnian satellites (Mimas, Enceladus, Tethys, Dione, and Rhea) between 4.5 Gyr and 100 Myr. These estimates are...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Computer simulation
Craters
Detritus
Diameters
Dione
Enceladus
Evolution
icy satellites
impact cratering
impactor populations
Impactors
Lunar surface
Mapping
Mimas
Moon
Moons
Orbital mechanics
Outer solar system
Parameter uncertainty
Pixels
Populations
Rhea (astronomy)
Satellites
Saturn
Saturn satellites
Solar system
Terrain
Tethys
Title Small Impact Crater Populations on Saturn's Moon Tethys and Implications for Source Impactors in the System
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2020JE006400
https://www.proquest.com/docview/2446708275
Volume 125
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8MwGA66kxe_ZdMpOfhxsdglWdJchDE7daAMN8FbSZoExK2V1R389yZpV-dFEG8pbULJm4_ned_keQE4RUghy6xUQIkJA2KUCiQSUcC0kB0sGE-NT2I7Zo8v0U3sZHKul3dhSn2I2uHmZoZfr90EF7KoxAacRqZl7eEw9pEoR9ktUfA3OPCodrG4nBLcJ0hGthDwkLPq6Ltt4Wq1_s9N6RtpruJVv-EMtv77q9tgs4KasFeOjR2wprNd0OwVzvmdzz7hOfTl0rdR7IG38UxMp_De35uEfachMYejOsFXAfMMjp0OaHZRwIfcPk20MzMUmXK1avcftEAYjn1UoGotnxfwNYMWbMJSIn0fPA_iSf8uqHIxBAJju2ga00mllBYccsKNoaobhY4Laaf4R5iytM8unWmUEupQhNFCEExDLKMUG8Y0PgCNLM90E0BBNacqQoZbdslkKChThlJCZUoMQ6QFzpbGSN5LyY3Eh8oRT1Z7sgXaS0sl1cQrEotWKLOwhnVb4NLb5Nc2kuHtU-xym6PDv31-BDbci_K0WRs0PuYLfQzWC7U48YPwC6KM2Sw
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZ4DLDwRi1PDzwWIlLH2PGEUGmhpa0qWiS2yIltCQEJamDg3-Nz0lAWJMTmSM4pytnn7-583yF0RIgi1rNSHqPG96hRyouJDD2uZdwIJBeJcU1sR3zwGF63gCbncloLU_BDVAE32BnOXsMGh4B0yTYAJJnWbfe7LZeKsj77ImV2LUINRzCsgizQVUK4FsnEDjzhC15efrcizmcF_DyWvrHmLGJ1R0579d8fu4ZWSrSJr4rlsY7mdLqBalc5xL-z1098gt24CG_km-h59CpfXnDHlU7iJtBITPCw6vGV4yzFI6ACTU9z3M_s01iDprFMFbxVRQCxxcJ45BIDpbRskuOnFFu8iQuW9C300G6Nm7de2Y7Bk0Fg7aYxjSSOY4sPBRXGMHUR-uAOaSD9o1xZz89azyRMKAMgYbSUNGB-EIdJYDjXwTZaSLNU1xCWTAumQmKEdTB57EvGlWGMsjihhhNaR8dTbURvBetG5LLlRESzf7KO9qaqisq9l0cWsDBukQ2_qKMzp5RfZUTdm_sWtDcnO3-bfoiWbsf9XtTrDO520TJMKi6f7aGF98mH3kfzufo4cCvyC3q63VQ
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA86QXzxW5yfefDjxWKXZEnzIgzddFPHcAq-lbRJQNRWVn3wv_eSdnO-COJbCulRernL7-6S3yF0QIgmEFnpgDMbBsxqHSRERYEwKmlQJWRqfRPboeg_RhdtR5NzNr4LU_JDTBJuzjK8v3YG_qZtRTbgODIhag97bV-JgpB9jgESd9z5lA4mORbXVEL6DskEBoEMpajOvoOI02kBP3elb6g5DVj9jtNZ-u-3LqPFCmviVrk4VtCMyVbRZqtw2e_89RMfYT8ukxvFGnoevqqXF9z1FyfxuSORGOHBpMNXgfMMDx0RaHZc4Nscnu6N0zNWmXZvTfJ_GJAwHvqyQCUtHxX4KcOANnHJkb6OHjrt-_OroGrGEChKwWta20iTJAF0KJm0lutmFLpgyDjKPyY0xH3gO9MoBUUAjLBGKUZ5SJMopVYIQzdQLcszs4mw4kZyHRErIbwUSai40JZzxpOUWUFYHR2OlRG_lZwbsa-VExlP_8k62hlrKq4sr4gBrnABuEY06-jE6-RXGXHv8q7tmpuTrb9N30fzg4tOfNPtX2-jBTenPHm2g2rvow-zi2YL_bHn1-MX1_zb-g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Small+Impact+Crater+Populations+on+Saturn%27s+Moon+Tethys+and+Implications+for+Source+Impactors+in+the+System&rft.jtitle=Journal+of+geophysical+research.+Planets&rft.au=Ferguson%2C+S.+N.&rft.au=Rhoden%2C+A.+R.&rft.au=Kirchoff%2C+M.+R.&rft.date=2020-09-01&rft.issn=2169-9097&rft.eissn=2169-9100&rft.volume=125&rft.issue=9&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2020JE006400&rft.externalDBID=10.1029%252F2020JE006400&rft.externalDocID=JGRE21462
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-9097&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-9097&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-9097&client=summon