Effect of Shape and Size on the Transport of Floating Particles on the Free Surface in a Natural Stream
Understanding how floating particles are transported by streaming waters is crucial in predicting the transport of plastic pollution, which is dramatically abundant in rivers, lakes, and oceans. Using particle tracking velocimetry, we investigate the motion of floating particles of different shape a...
Saved in:
Published in: | Water resources research Vol. 59; no. 10 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Washington
John Wiley & Sons, Inc
01-10-2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Understanding how floating particles are transported by streaming waters is crucial in predicting the transport of plastic pollution, which is dramatically abundant in rivers, lakes, and oceans. Using particle tracking velocimetry, we investigate the motion of floating particles of different shape and size on the turbulent free surface of a field‐scale meandering stream. We consider two different locations, where the role of surface waves on transport is deemed negligible. Millimeter‐sized spheres are used as tracers to characterize the surface flow. These are compared with centimeter‐sized discs and rods, approximating typical‐sized pieces of floating litter. The larger particles exhibit similar mean and fluctuating velocities as the tracers but filter out the extreme turbulent accelerations. Consequently, their motion is more time‐correlated and their spreading rate is larger. This behavior is also confirmed by complementary laboratory measurements in an open channel flow. The rotation of the rods, affected by a range of turbulent scales, reduces the correlation time scale of their translational motion, and leads to a slower dispersion compared to the discs, despite the rods' length being larger than the discs' diameter. Taken together, these results indicate that the motion of finite‐sized objects floating on the surface of weakly wavy turbulent waters is consistent with the behavior of inertial particles in three‐dimensional turbulence. These results can be valuable when constructing predictive models of floating plastics.
Plain Language Summary
Plastic debris is a rising global issue severely affecting the state of our rivers, lakes and oceans. Understanding, how pieces of litter, often floating, travel in streaming waters is crucial for predicting and ultimately limiting plastic pollution. The main goal of this research is to investigate how the shape and size of small floating objects may affect their journey on the surface of water. To this end, we use high‐speed imaging to track floating objects of different shape and size in an outdoor stream laboratory. The motion of centimeter‐sized discs and rods, approximating typical pieces of plastics found in rivers, is directly compared to the motion of millimeter‐sized spheres that follow the surface flow. We find that the larger discs and rods spread faster on the surface of water. Not only can these results be used to devise effective sequestration strategies, but they can be important for computer models that predict the abundance, and fate, of plastic litter in natural waters.
Key Points
The velocity of floating particles in turbulent streams is weakly affected by their shape and size
Larger particles disperse faster on the free surface due to their ability to filter out small‐scale turbulent fluctuations
Rods re‐orient following the mean shear of the surface flow and rotate according to the integral scales of the free surface turbulence |
---|---|
AbstractList | Understanding how floating particles are transported by streaming waters is crucial in predicting the transport of plastic pollution, which is dramatically abundant in rivers, lakes, and oceans. Using particle tracking velocimetry, we investigate the motion of floating particles of different shape and size on the turbulent free surface of a field‐scale meandering stream. We consider two different locations, where the role of surface waves on transport is deemed negligible. Millimeter‐sized spheres are used as tracers to characterize the surface flow. These are compared with centimeter‐sized discs and rods, approximating typical‐sized pieces of floating litter. The larger particles exhibit similar mean and fluctuating velocities as the tracers but filter out the extreme turbulent accelerations. Consequently, their motion is more time‐correlated and their spreading rate is larger. This behavior is also confirmed by complementary laboratory measurements in an open channel flow. The rotation of the rods, affected by a range of turbulent scales, reduces the correlation time scale of their translational motion, and leads to a slower dispersion compared to the discs, despite the rods' length being larger than the discs' diameter. Taken together, these results indicate that the motion of finite‐sized objects floating on the surface of weakly wavy turbulent waters is consistent with the behavior of inertial particles in three‐dimensional turbulence. These results can be valuable when constructing predictive models of floating plastics. Understanding how floating particles are transported by streaming waters is crucial in predicting the transport of plastic pollution, which is dramatically abundant in rivers, lakes, and oceans. Using particle tracking velocimetry, we investigate the motion of floating particles of different shape and size on the turbulent free surface of a field‐scale meandering stream. We consider two different locations, where the role of surface waves on transport is deemed negligible. Millimeter‐sized spheres are used as tracers to characterize the surface flow. These are compared with centimeter‐sized discs and rods, approximating typical‐sized pieces of floating litter. The larger particles exhibit similar mean and fluctuating velocities as the tracers but filter out the extreme turbulent accelerations. Consequently, their motion is more time‐correlated and their spreading rate is larger. This behavior is also confirmed by complementary laboratory measurements in an open channel flow. The rotation of the rods, affected by a range of turbulent scales, reduces the correlation time scale of their translational motion, and leads to a slower dispersion compared to the discs, despite the rods' length being larger than the discs' diameter. Taken together, these results indicate that the motion of finite‐sized objects floating on the surface of weakly wavy turbulent waters is consistent with the behavior of inertial particles in three‐dimensional turbulence. These results can be valuable when constructing predictive models of floating plastics. Plain Language Summary Plastic debris is a rising global issue severely affecting the state of our rivers, lakes and oceans. Understanding, how pieces of litter, often floating, travel in streaming waters is crucial for predicting and ultimately limiting plastic pollution. The main goal of this research is to investigate how the shape and size of small floating objects may affect their journey on the surface of water. To this end, we use high‐speed imaging to track floating objects of different shape and size in an outdoor stream laboratory. The motion of centimeter‐sized discs and rods, approximating typical pieces of plastics found in rivers, is directly compared to the motion of millimeter‐sized spheres that follow the surface flow. We find that the larger discs and rods spread faster on the surface of water. Not only can these results be used to devise effective sequestration strategies, but they can be important for computer models that predict the abundance, and fate, of plastic litter in natural waters. Key Points The velocity of floating particles in turbulent streams is weakly affected by their shape and size Larger particles disperse faster on the free surface due to their ability to filter out small‐scale turbulent fluctuations Rods re‐orient following the mean shear of the surface flow and rotate according to the integral scales of the free surface turbulence Understanding how floating particles are transported by streaming waters is crucial in predicting the transport of plastic pollution, which is dramatically abundant in rivers, lakes, and oceans. Using particle tracking velocimetry, we investigate the motion of floating particles of different shape and size on the turbulent free surface of a field‐scale meandering stream. We consider two different locations, where the role of surface waves on transport is deemed negligible. Millimeter‐sized spheres are used as tracers to characterize the surface flow. These are compared with centimeter‐sized discs and rods, approximating typical‐sized pieces of floating litter. The larger particles exhibit similar mean and fluctuating velocities as the tracers but filter out the extreme turbulent accelerations. Consequently, their motion is more time‐correlated and their spreading rate is larger. This behavior is also confirmed by complementary laboratory measurements in an open channel flow. The rotation of the rods, affected by a range of turbulent scales, reduces the correlation time scale of their translational motion, and leads to a slower dispersion compared to the discs, despite the rods' length being larger than the discs' diameter. Taken together, these results indicate that the motion of finite‐sized objects floating on the surface of weakly wavy turbulent waters is consistent with the behavior of inertial particles in three‐dimensional turbulence. These results can be valuable when constructing predictive models of floating plastics. Plastic debris is a rising global issue severely affecting the state of our rivers, lakes and oceans. Understanding, how pieces of litter, often floating, travel in streaming waters is crucial for predicting and ultimately limiting plastic pollution. The main goal of this research is to investigate how the shape and size of small floating objects may affect their journey on the surface of water. To this end, we use high‐speed imaging to track floating objects of different shape and size in an outdoor stream laboratory. The motion of centimeter‐sized discs and rods, approximating typical pieces of plastics found in rivers, is directly compared to the motion of millimeter‐sized spheres that follow the surface flow. We find that the larger discs and rods spread faster on the surface of water. Not only can these results be used to devise effective sequestration strategies, but they can be important for computer models that predict the abundance, and fate, of plastic litter in natural waters. The velocity of floating particles in turbulent streams is weakly affected by their shape and size Larger particles disperse faster on the free surface due to their ability to filter out small‐scale turbulent fluctuations Rods re‐orient following the mean shear of the surface flow and rotate according to the integral scales of the free surface turbulence |
Author | Kozarek, Jessica L. Coletti, Filippo Sanness Salmon, Henri R. Baker, Lucia J. |
Author_xml | – sequence: 1 givenname: Henri R. orcidid: 0000-0003-4621-797X surname: Sanness Salmon fullname: Sanness Salmon, Henri R. email: rsanness@ethz.ch organization: Swiss Federal Institute of Technology (ETH) – sequence: 2 givenname: Lucia J. orcidid: 0000-0002-7312-9548 surname: Baker fullname: Baker, Lucia J. organization: University of Washington – sequence: 3 givenname: Jessica L. orcidid: 0000-0001-8913-5646 surname: Kozarek fullname: Kozarek, Jessica L. organization: University of Minnesota – sequence: 4 givenname: Filippo surname: Coletti fullname: Coletti, Filippo organization: Swiss Federal Institute of Technology (ETH) |
BookMark | eNp90EFLw0AQBeBFKthWb_6ABa9Gd3eSbPYopVWhqDSVHsMkmW1T0qRuEqT-eqNV8OTpXT7eMG_EBlVdEWOXUtxIocytEgpWCwGBluEJG0rj-542GgZsKIQPngSjz9ioabZCSD8I9ZCtp9ZS1vLa8niDe-JY5TwuPojXFW83xJcOq2Zfu28yK2tsi2rNX9C1RVZS88tmjojHnbOYES8qjvwJ285hyePWEe7O2anFsqGLnxyz19l0OXnw5s_3j5O7uYegAukBBXmaaUAVkYi0DtMsQx9MmPq-nytl0PbfWYtGp1pTEFFOQCYCMChDymDMro69e1e_ddS0ybbuXNWfTFQUKQjCAKBX10eVubppHNlk74odukMiRfI1ZfJ3yp7Dkb8XJR3-tclqMVmo0AgJn6iedhE |
Cites_doi | 10.1016/j.flowmeasinst.2019.03.001 10.1017/s0022112093002708 10.1098/rsta.2017.0104 10.1007/s00348-020-03025-2 10.1017/s0022112099004243 10.1103/physrevlett.112.024501 10.1017/s0022112011000127 10.1119/1.1898523 10.1146/annurev-fluid-120710-101240 10.1061/(asce)hy.1943-7900.0000202 10.1017/s0022112099004590 10.1038/s41598-018-22939-w 10.1017/s0022112002001842 10.1016/j.ijheatmasstransfer.2003.06.001 10.1093/acprof:oso/9780198722588.001.0001 10.1063/1.2055529 10.1088/1748-9326/10/12/124006 10.1017/jfm.2013.435 10.1017/s0022112005003575 10.1103/physrevfluids.6.024601 10.1088/1367-2630/6/1/116 10.1103/physreve.77.016307 10.1112/plms/s2-20.1.196 10.1017/s0022112007008531 10.3390/rs13142661 10.1017/jfm.2017.853 10.1103/physrevfluids.4.034301 10.1017/s0022112094001370 10.1016/j.scitotenv.2022.157027 10.1017/s0022112001006012 10.1126/sciadv.aaz5803 10.1007/s00348-010-0885-1 10.1017/s0022112006004204 10.1017/s0022112078000130 10.1061/(asce)0733-9429(1994)120:10(1235) 10.1080/24705357.2019.1709102 10.3390/jmse7120467 10.1103/physrevlett.112.074501 10.1016/j.expthermflusci.2016.08.021 10.1017/s0022112001004669 10.1017/s0022112081002796 10.1016/j.watres.2022.119078 10.1201/9781315644479-96 10.1063/1.1762301 10.1061/(asce)0733-9429(1999)125:1(3) 10.1002/wat2.1398 10.1017/jfm.2020.934 10.1017/s002211200500844x 10.1017/s0022112009994022 10.1016/j.csr.2018.01.010 10.1017/jfm.2017.548 10.1038/s41561-019-0324-8 10.1017/s0022112010000923 10.1146/annurev.fluid.010908.165210 10.5194/gi-5-241-2016 10.1215/21573689-1597669 10.1017/jfm.2013.684 10.1007/s00348-022-03450-5 10.1016/j.minpro.2009.07.007 10.1103/physreve.88.033003 10.1016/s0955-5986(02)00059-6 10.1017/s0022112003004245 10.1017/CBO9780511840531 10.1109/lgrs.2011.2125942 10.1017/s0022112005005690 10.1017/jfm.2014.68 10.1007/s10652-007-9021-z 10.1016/j.marpolbul.2014.09.041 10.1007/978-3-319-68852-7_5 10.1088/1748-9326/ab6d7d 10.1063/1.868483 10.1063/5.0074760 10.1146/annurev-fluid-030121-021103 10.1007/s00348-016-2281-y 10.1146/annurev.fluid.010908.165243 10.1103/physrevfluids.7.083101 10.1016/j.catena.2018.09.009 10.1017/jfm.2019.923 10.1017/jfm.2021.185 10.7551/mitpress/3014.001.0001 10.1088/1367-2630/6/1/053 10.1016/j.ecss.2017.09.032 10.1126/science.1260352 10.1017/jfm.2019.99 10.1103/physrevfluids.4.074805 10.1016/j.ocemod.2017.11.008 10.1017/jfm.2021.1145 10.1016/j.marpolbul.2021.112095 10.1016/j.cageo.2010.07.007 10.1017/s0022112091001477 10.1063/1.869573 10.1016/j.marpolbul.2013.10.007 10.1103/physreve.86.035301 10.1063/1.4944523 10.1109/34.888718 10.1126/sciadv.1700782 10.1017/jfm.2022.438 10.1017/jfm.2021.280 10.1061/(asce)hy.1943-7900.0001319 10.1017/jfm.2017.209 10.1021/acs.langmuir.8b02031 10.1063/1.857937 10.1017/s0022112091002276 10.1017/jfm.2017.13 10.1016/j.marpolbul.2020.111024 10.1146/annurev-fluid-010816-060135 10.1063/1.866603 10.1103/physrevlett.124.104501 10.1063/1.870317 10.1017/jfm.2019.544 10.1063/1.5110731 10.1029/2012gl051116 10.3389/fmars.2020.00148 10.1017/jfm.2016.826 |
ContentType | Journal Article |
Copyright | 2023. The Authors. 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023. The Authors. – notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P WIN AAYXX CITATION 7QH 7QL 7T7 7TG 7U9 7UA 8FD C1K F1W FR3 H94 H96 KL. KR7 L.G M7N P64 |
DOI | 10.1029/2023WR035716 |
DatabaseName | Wiley-Blackwell Open Access Collection Wiley Online Library Open Access CrossRef Aqualine Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Meteorological & Geoastrophysical Abstracts Virology and AIDS Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database AIDS and Cancer Research Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Virology and AIDS Abstracts Technology Research Database Aqualine Water Resources Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts AIDS and Cancer Research Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Civil Engineering Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Economics |
EISSN | 1944-7973 |
EndPage | n/a |
ExternalDocumentID | 10_1029_2023WR035716 WRCR26901 |
Genre | researchArticle |
GrantInformation_xml | – fundername: Environment and Natural Resources Trust Fund funderid: M.L. 2018, Chp. 214, Art. 4, Sec. 02, Subd. 04b – fundername: Swiss National Science Foundation funderid: 200021_207318/1 |
GroupedDBID | -~X ..I .DC 05W 0R~ 123 1OB 1OC 24P 31~ 33P 3V. 50Y 5VS 6TJ 7WY 7XC 8-1 8CJ 8FE 8FG 8FH 8FL 8G5 8R4 8R5 8WZ A00 A6W AAESR AAHBH AAHHS AAIHA AAIKC AAMNW AANLZ AASGY AAXRX AAYJJ AAYOK AAZKR ABCUV ABJCF ABJNI ABPPZ ABTAH ABUWG ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACKIV ACNCT ACPOU ACPRK ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AENEX AEQDE AETEA AEUYR AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AIDBO AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB ASPBG ATCPS AVWKF AZFZN AZQEC AZVAB BDRZF BENPR BEZIV BFHJK BGLVJ BHPHI BKSAR BMXJE BPHCQ BRXPI CCPQU CS3 D0L D1J DCZOG DDYGU DPXWK DRFUL DRSTM DU5 DWQXO EBS EJD F5P FEDTE FRNLG G-S GNUQQ GODZA GROUPED_ABI_INFORM_COMPLETE GUQSH HCIFZ HVGLF HZ~ K60 K6~ L6V LATKE LEEKS LITHE LK5 LOXES LUTES LYRES M0C M2O M7R M7S MEWTI MSFUL MSSTM MVM MW2 MXFUL MXSTM MY~ O9- OHT OK1 P-X P2P P2W PALCI PATMY PCBAR PQBIZ PQBZA PQQKQ PROAC PTHSS PYCSY Q2X R.K RIWAO RJQFR ROL SAMSI SUPJJ TAE TN5 TWZ UQL VJK VOH WBKPD WIN WXSBR WYJ XOL XSW YHZ YV5 ZCG ZY4 ZZTAW ~02 ~KM ~OA ~~A AAYXX CITATION 7QH 7QL 7T7 7TG 7U9 7UA 8FD C1K F1W FR3 H94 H96 KL. KR7 L.G M7N P64 |
ID | FETCH-LOGICAL-a3251-3e5dbc73a28e08776bcca4396b444d229af357ffa97b77e58ede3e98339a16ec3 |
IEDL.DBID | 33P |
ISSN | 0043-1397 |
IngestDate | Thu Nov 07 07:59:10 EST 2024 Thu Nov 21 21:24:35 EST 2024 Sat Aug 24 01:00:16 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a3251-3e5dbc73a28e08776bcca4396b444d229af357ffa97b77e58ede3e98339a16ec3 |
ORCID | 0000-0003-4621-797X 0000-0002-7312-9548 0000-0001-8913-5646 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2023WR035716 |
PQID | 2882356533 |
PQPubID | 105507 |
PageCount | 22 |
ParticipantIDs | proquest_journals_2882356533 crossref_primary_10_1029_2023WR035716 wiley_primary_10_1029_2023WR035716_WRCR26901 |
PublicationCentury | 2000 |
PublicationDate | October 2023 2023-10-00 20231001 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: October 2023 |
PublicationDecade | 2020 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Water resources research |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2017; 80 2019; 12 2002; 13 2004; 6 2020; 15 1972 2021; 165 1979 2007; 574 2018; 8 1991; 223 1994; 268 1967; 10 2000; 12 2009; 93 2022; 34 2005; 73 2007; 7 2018; 34 1993; 256 1998; 10 1991; 226 2022; 844 2017; 812 2001; 440 2019; 7 2017; 814 2019; 4 2019; 31 2013; 88 2004; 47 1994 2012; 39 2019; 866 2001; 449 2011; 8 1995; 7 1941; 30 2016; 5 2010; 42 2010; 49 2017; 829 2013; 77 2020; 154 2022; 7 2013; 733 2017; 143 2016; 28 2005; 17 2012; 44 2019; 172 2022; 226 2017; 821 2011; 675 2018; 121 2009; 41 2017; 3 2015; 347 1981; 104 2005; 530 2020; 61 2017; 49 2022; 63 2008; 77 1999; 125 2020; 124 2020; 883 1988; 31 2017; 199 2022; 934 2020; 7 2021; 917 2021; 916 2001 2000 2005; 540 2019; 67 2018; 376 2002; 469 2019; 876 2003; 484 1991; 3 2021; 7 2021; 6 2021; 908 2011 2000; 22 2015; 10 1999; 384 2006; 550 2011; 37 1999; 386 2014; 89 2016; 57 2014; 112 2021; 13 2018; 155 2014; 744 2012; 2 1921; 2 2010; 136 1978; 84 1994; 120 2010; 651 2007; 592 2010; 650 2018 2016 2015 2022; 54 2014 2018; 837 2022; 943 2014; 741 2012; 86 2012; 9 Fischer H. B. (e_1_2_8_34_1) 1979 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_5_1 Adrian R. J. (e_1_2_8_2_1) 2011 e_1_2_8_117_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_113_1 Ballent A. (e_1_2_8_9_1) 2012; 9 e_1_2_8_41_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 Lighthill J. (e_1_2_8_60_1) 2001 e_1_2_8_120_1 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_11_1 e_1_2_8_76_1 e_1_2_8_101_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_110_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_114_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_94_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_98_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_106_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_71_1 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_7_1 Kolmogorov A. N. (e_1_2_8_53_1) 1941; 30 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_115_1 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_70_1 e_1_2_8_122_1 Rutherford J. C. (e_1_2_8_88_1) 1994 e_1_2_8_97_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_93_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_69_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_116_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_84_1 e_1_2_8_112_1 e_1_2_8_61_1 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 e_1_2_8_92_1 e_1_2_8_96_1 e_1_2_8_100_1 Zambianchi E. (e_1_2_8_118_1) 2014 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_104_1 |
References_xml | – year: 2011 – volume: 484 start-page: 167 year: 2003 end-page: 196 article-title: High‐Reynolds‐number turbulence in a shear‐free boundary layer: Revisiting the hunt–graham theory publication-title: Journal of Fluid Mechanics – volume: 3 issue: 7 year: 2017 article-title: Production, use, and fate of all plastics ever made publication-title: Science Advances – volume: 42 start-page: 111 issue: 1 year: 2010 end-page: 133 article-title: Turbulent dispersed multiphase flow publication-title: Annual Review of Fluid Mechanics – volume: 675 start-page: 168 year: 2011 end-page: 198 article-title: Lagrangian mixing in straight compound channels publication-title: Journal of Fluid Mechanics – volume: 8 start-page: 849 issue: 5 year: 2011 end-page: 853 article-title: Infrared‐based measurements of velocity, turbulent kinetic energy, and dissipation at the water surface in a tidal river publication-title: IEEE Geoscience and Remote Sensing Letters – volume: 574 start-page: 405 year: 2007 end-page: 427 article-title: An experimental investigation on Lagrangian correlations of small‐scale turbulence at low Reynolds number publication-title: Journal of Fluid Mechanics – volume: 31 start-page: 2491 issue: 9 year: 1988 end-page: 2503 article-title: Turbulence structure in free‐surface channel flows publication-title: The Physics of Fluids – volume: 814 start-page: 592 year: 2017 end-page: 613 article-title: Snowflakes in the atmospheric surface layer: Observation of particle–turbulence dynamics publication-title: Journal of Fluid Mechanics – volume: 376 issue: 2111 year: 2018 article-title: Stokes drift publication-title: Philosophical Transactions of the Royal Society A: Mathematical, Physical & Engineering Sciences – volume: 22 start-page: 1330 issue: 11 year: 2000 end-page: 1334 article-title: A flexible new technique for camera calibration publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 917 start-page: 917 year: 2021 article-title: Dynamics of small heavy particles in homogeneous turbulence: A Lagrangian experimental study publication-title: Journal of Fluid Mechanics – volume: 744 start-page: 217 year: 2014 end-page: 249 article-title: Direct numerical simulation of turbulent scalar transport across a flat surface publication-title: Journal of Fluid Mechanics – volume: 7 year: 2020 article-title: Non‐breaking wave effects on buoyant particle distributions publication-title: Frontiers in Marine Science – volume: 154 year: 2020 article-title: Modeling the three‐dimensional transport and distribution of multiple microplastic polymer types in lake erie publication-title: Marine Pollution Bulletin – volume: 7 start-page: 159 issue: 2 year: 2007 end-page: 172 article-title: Large‐scale turbulent structure of uniform shallow free‐surface flows publication-title: Environmental Fluid Mechanics – volume: 384 start-page: 207 year: 1999 end-page: 241 article-title: The mechanism of vortex connection at a free surface publication-title: Journal of Fluid Mechanics – volume: 30 start-page: 301 year: 1941 end-page: 305 article-title: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers publication-title: Proceedings of the URSS Academy of Sciences – volume: 84 start-page: 209 issue: 2 year: 1978 end-page: 235 article-title: Free‐stream turbulence near plane boundaries publication-title: Journal of Fluid Mechanics – volume: 866 start-page: 598 year: 2019 end-page: 629 article-title: Experimental study of negatively buoyant finite‐size particles in a turbulent boundary layer up to dense regimes publication-title: Journal of Fluid Mechanics – volume: 39 issue: 7 year: 2012 article-title: The effect of wind mixing on the vertical distribution of buoyant plastic debris publication-title: Geophysical Research Letters – start-page: 31 year: 2014 end-page: 41 – volume: 37 start-page: 1148 issue: 8 year: 2011 end-page: 1161 article-title: Using a three‐dimensional particle‐tracking model to estimate the residence time and age of water in a tidal estuary publication-title: Computers & Geosciences – volume: 268 start-page: 333 year: 1994 end-page: 372 article-title: Local isotropy in turbulent boundary layers at high Reynolds number publication-title: Journal of Fluid Mechanics – year: 1972 – volume: 916 start-page: A3 year: 2021 article-title: Long non‐axisymmetric fibres in turbulent channel flow publication-title: Journal of Fluid Mechanics – volume: 550 start-page: 349 issue: ‐1 year: 2006 end-page: 358 article-title: Acceleration statistics of heavy particles in turbulence publication-title: Journal of Fluid Mechanics – volume: 49 start-page: 249 issue: 1 year: 2017 end-page: 276 article-title: Anisotropic particles in turbulence publication-title: Annual Review of Fluid Mechanics – volume: 6 start-page: 17 issue: 1 year: 2021 end-page: 35 article-title: A Lagrangian particle‐tracking approach to modelling larval drift in rivers publication-title: Journal of Ecohydraulics – volume: 6 issue: 1 year: 2004 article-title: Experimental and numerical study of the Lagrangian dynamics of high Reynolds turbulence publication-title: New Journal of Physics – volume: 440 start-page: 75 year: 2001 end-page: 116 article-title: Large‐eddy simulation of free‐surface turbulence publication-title: Journal of Fluid Mechanics – volume: 540 start-page: 143 issue: ‐1 year: 2005 end-page: 173 article-title: Rotational and translational dispersion of fibres in isotropic turbulent flows publication-title: Journal of Fluid Mechanics – volume: 347 start-page: 768 issue: 6223 year: 2015 end-page: 771 article-title: Plastic waste inputs from land into the ocean publication-title: Science – volume: 13 issue: 14 year: 2021 article-title: Large‐scale particle image velocimetry to measure streamflow from videos recorded from unmanned aerial vehicle and fixed imaging system publication-title: Remote Sensing – volume: 812 start-page: 991 year: 2017 end-page: 1023 article-title: Clustering and preferential concentration of finite‐size particles in forced homogeneous‐isotropic turbulence publication-title: Journal of Fluid Mechanics – volume: 908 start-page: 908 year: 2021 article-title: Particle–fluid–wall interaction of inertial spherical particles in a turbulent boundary layer publication-title: Journal of Fluid Mechanics – volume: 386 start-page: 167 year: 1999 end-page: 212 article-title: The surface layer for free‐surface turbulent flows publication-title: Journal of Fluid Mechanics – volume: 199 start-page: 74 year: 2017 end-page: 86 article-title: Transport of microplastics in coastal seas publication-title: Estuarine, Coastal and Shelf Science – volume: 6 issue: 2 year: 2021 article-title: Laboratory model for plastic fragmentation in the turbulent ocean publication-title: Physical Review Fluids – volume: 4 issue: 3 year: 2019 article-title: Orientation dynamics of nonspherical particles under surface gravity waves publication-title: Physical Review Fluids – volume: 31 issue: 9 year: 2019 article-title: Building a maxey–riley framework for surface ocean inertial particle dynamics publication-title: Physics of Fluids – volume: 86 issue: 3 year: 2012 article-title: Clustering of finite‐size particles in turbulence publication-title: Physical Review E – volume: 155 start-page: 11 year: 2018 end-page: 20 article-title: The boundary current role on the transport and stranding of floating marine litter: The French riviera case publication-title: Continental Shelf Research – volume: 63 start-page: 1 issue: 6 year: 2022 end-page: 25 article-title: Free‐surface flow measurements by non‐intrusive methods: A survey publication-title: Experiments in Fluids – volume: 12 start-page: 259 issue: 4 year: 2019 end-page: 263 article-title: Distinct air–water gas exchange regimes in low‐and high‐energy streams publication-title: Nature Geoscience – volume: 829 start-page: 364 year: 2017 end-page: 391 article-title: Lagrangian transport by breaking surface waves publication-title: Journal of Fluid Mechanics – volume: 57 start-page: 1 issue: 12 year: 2016 end-page: 15 article-title: Generating and controlling homogeneous air turbulence using random jet arrays publication-title: Experiments in Fluids – volume: 226 start-page: 1 year: 1991 end-page: 35 article-title: Measurements of particle dispersion obtained from direct numerical simulations of isotropic turbulence publication-title: Journal of Fluid Mechanics – volume: 165 year: 2021 article-title: Ridding our rivers of plastic: A framework for plastic pollution capture device selection publication-title: Marine Pollution Bulletin – volume: 67 start-page: 142 year: 2019 end-page: 152 article-title: Application of large scale piv in river surface turbulence measurements and water depth estimation publication-title: Flow Measurement and Instrumentation – volume: 256 start-page: 27 year: 1993 end-page: 68 article-title: Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence publication-title: Journal of Fluid Mechanics – volume: 10 start-page: 1417 issue: 7 year: 1967 end-page: 1423 article-title: Inertial ranges in two‐dimensional turbulence publication-title: The Physics of Fluids – volume: 10 issue: 12 year: 2015 article-title: A global inventory of small floating plastic debris publication-title: Environmental Research Letters – volume: 741 start-page: 567 year: 2014 end-page: 584 article-title: Decay of turbulence generated by a square‐fractal‐element grid publication-title: Journal of Fluid Mechanics – volume: 6 issue: 1 year: 2004 article-title: Eulerian and Lagrangian studies in surface flow turbulence publication-title: New Journal of Physics – volume: 47 start-page: 539 issue: 3 year: 2004 end-page: 553 article-title: The role of free‐surface turbulence and surfactants in air–water gas transfer publication-title: International Journal of Heat and Mass Transfer – volume: 17 issue: 9 year: 2005 article-title: On the normalized turbulent energy dissipation rate publication-title: Physics of Fluids – volume: 121 start-page: 49 year: 2018 end-page: 75 article-title: Lagrangian ocean analysis: Fundamentals and practices publication-title: Ocean Modelling – year: 2001 – volume: 5 start-page: 241 issue: 1 year: 2016 end-page: 251 article-title: A novel permanent gauge‐cam station for surface‐flow observations on the Tiber River publication-title: Geoscientific Instrumentation, Methods and Data Systems – volume: 10 start-page: 437 issue: 2 year: 1998 end-page: 456 article-title: An experimental investigation of the characteristics of free‐surface turbulence in channel flow publication-title: Physics of Fluids – volume: 449 start-page: 225 year: 2001 end-page: 254 article-title: The dynamics of strong turbulence at free surfaces. part 1. description publication-title: Journal of Fluid Mechanics – volume: 54 start-page: 159 issue: 1 year: 2022 end-page: 189 article-title: Particle‐laden turbulence: Progress and perspectives publication-title: Annual Review of Fluid Mechanics – volume: 28 issue: 3 year: 2016 article-title: Lagrangian velocity and acceleration correlations of large inertial particles in a closed turbulent flow publication-title: Physics of Fluids – volume: 172 start-page: 378 year: 2019 end-page: 386 article-title: Ptv‐stream: A simplified particle tracking velocimetry framework for stream surface flow monitoring publication-title: Catena – volume: 876 start-page: 876 year: 2019 article-title: Laboratory studies of Lagrangian transport by breaking surface waves publication-title: Journal of Fluid Mechanics – year: 1979 – year: 1994 – volume: 883 start-page: 883 year: 2020 article-title: Is vortex stretching the main cause of the turbulent energy cascade? publication-title: Journal of Fluid Mechanics – volume: 49 start-page: 341 issue: 1 year: 2010 end-page: 353 article-title: Experimental investigation of a free‐surface turbulent jet with coanda effect publication-title: Experiments in Fluids – volume: 13 start-page: 237 issue: 5–6 year: 2002 end-page: 245 article-title: Large scale piv‐measurements at the surface of shallow water flows publication-title: Flow Measurement and Instrumentation – start-page: 145 year: 2018 end-page: 202 – volume: 844 year: 2022 article-title: Performance assessment of bubbles barriers for microplastic remediation publication-title: Science of the Total Environment – volume: 88 issue: 3 year: 2013 article-title: Time persistence of floating‐particle clusters in free‐surface turbulence publication-title: Physical Review E – volume: 7 issue: 1 year: 2020 article-title: Plastic debris in rivers publication-title: Wiley Interdisciplinary Reviews: Water – volume: 104 start-page: 1 year: 1981 end-page: 43 article-title: Structure of space‐time correlations of bursting phenomena in an open‐channel flow publication-title: Journal of Fluid Mechanics – volume: 7 issue: 12 year: 2019 article-title: Sea waves transport of inertial micro‐plastics: Mathematical model and applications publication-title: Journal of Marine Science and Engineering – volume: 650 start-page: 5 year: 2010 end-page: 55 article-title: Modulation of isotropic turbulence by particles of taylor length‐scale size publication-title: Journal of Fluid Mechanics – volume: 2 start-page: 41 issue: 1 year: 2012 end-page: 53 article-title: Scaling the gas transfer velocity and hydraulic geometry in streams and small rivers publication-title: Limnology and Oceanography: Fluids and Environments – volume: 530 start-page: 31 year: 2005 end-page: 80 article-title: Fluid dynamics of floating particles publication-title: Journal of Fluid Mechanics – volume: 226 year: 2022 article-title: The key role of surface tension in the transport and quantification of plastic pollution in rivers publication-title: Water Research – volume: 120 start-page: 1235 issue: 10 year: 1994 end-page: 1237 article-title: Turbulence in open‐channel flows publication-title: Journal of Hydraulic Engineering – volume: 9 issue: 12 year: 2012 article-title: Physical transport properties of marine microplastic pollution publication-title: Biogeosciences Discussions – volume: 943 start-page: 943 year: 2022 article-title: Experimental investigation of inertial fibres and disks in a turbulent boundary layer publication-title: Journal of Fluid Mechanics – volume: 8 start-page: 1 issue: 1 year: 2018 end-page: 15 article-title: Evidence that the great pacific garbage patch is rapidly accumulating plastic publication-title: Scientific Reports – volume: 34 issue: 1 year: 2022 article-title: Dispersion of heavy particles under sea waves publication-title: Physics of Fluids – volume: 93 start-page: 128 issue: 2 year: 2009 end-page: 134 article-title: The effect of particle shape and hydrophobicity in flotation publication-title: International Journal of Mineral Processing – volume: 12 start-page: 392 issue: 2 year: 2000 end-page: 402 article-title: Effects of shallowness on the development of free‐surface mixing layers publication-title: Physics of Fluids – year: 2015 – volume: 124 issue: 10 year: 2020 article-title: Energy transfer from large to small scales in turbulence by multiscale nonlinear strain and vorticity interactions publication-title: Physical Review Letters – volume: 3 start-page: 1577 issue: 6 year: 1991 end-page: 1586 article-title: Reynolds number effects in Lagrangian stochastic models of turbulent dispersion publication-title: Physics of Fluids A: Fluid Dynamics – volume: 837 start-page: 320 year: 2018 end-page: 340 article-title: Transport of anisotropic particles under waves publication-title: Journal of Fluid Mechanics – volume: 15 issue: 2 year: 2020 article-title: The physical oceanography of the transport of floating marine debris publication-title: Environmental Research Letters – volume: 934 start-page: A18 year: 2022 article-title: Influence of Reynolds number on the dynamics of rigid, slender and non‐axisymmetric fibres in channel flow turbulence publication-title: Journal of Fluid Mechanics – volume: 4 issue: 7 year: 2019 article-title: Statistics of single and multiple floaters in experiments of surface wave turbulence publication-title: Physical Review Fluids – volume: 34 start-page: 10163 issue: 34 year: 2018 end-page: 10168 article-title: Limit for small spheres to float by dynamic analysis publication-title: Langmuir – volume: 112 issue: 7 year: 2014 article-title: Flexible fiber in a turbulent flow: A macroscopic polymer publication-title: Physical Review Letters – volume: 125 start-page: 3 issue: 1 year: 1999 end-page: 10 article-title: Air‐water gas transfer in uniform channel flow publication-title: Journal of Hydraulic Engineering – volume: 73 start-page: 817 issue: 9 year: 2005 end-page: 825 article-title: The “cheerios effect” publication-title: American Journal of Physics – year: 2000 – volume: 733 start-page: 588 year: 2013 end-page: 624 article-title: Air–water gas transfer and near‐surface motions publication-title: Journal of Fluid Mechanics – volume: 821 start-page: 248 year: 2017 end-page: 265 article-title: On the dynamics of turbulence near a free surface publication-title: Journal of Fluid Mechanics – volume: 469 start-page: 121 year: 2002 end-page: 160 article-title: Measurement of particle accelerations in fully developed turbulence publication-title: Journal of Fluid Mechanics – volume: 77 start-page: 177 issue: 1–2 year: 2013 end-page: 182 article-title: Microplastic pollution in the surface waters of the laurentian great lakes publication-title: Marine Pollution Bulletin – volume: 61 start-page: 1 issue: 9 year: 2020 end-page: 18 article-title: Propagation of perturbations and meandering in a free surface shallow water jet publication-title: Experiments in Fluids – volume: 44 start-page: 427 issue: 1 year: 2012 end-page: 451 article-title: Two‐dimensional turbulence publication-title: Annual Review of Fluid Mechanics – volume: 2 start-page: 196 issue: 1 year: 1921 end-page: 212 article-title: Diffusion by continuous movements publication-title: Proceedings of the London Mathematical Society – volume: 7 start-page: 1649 issue: 7 year: 1995 end-page: 1664 article-title: A numerical study of free‐surface turbulence in channel flow publication-title: Physics of Fluids – volume: 7 issue: 8 year: 2022 article-title: Experimental study of concentrated particle transport in successively bifurcating vessels publication-title: Physical Review Fluids – volume: 112 issue: 2 year: 2014 article-title: Inertial range scaling in rotations of long rods in turbulence publication-title: Physical Review Letters – volume: 7 issue: 18 year: 2021 article-title: More than 1000 rivers account for 80% of global riverine plastic emissions into the ocean publication-title: Science Advances – volume: 80 start-page: 181 year: 2017 end-page: 192 article-title: Pod‐based background removal for particle image velocimetry publication-title: Experimental Thermal and Fluid Science – volume: 41 start-page: 375 issue: 1 year: 2009 end-page: 404 article-title: Lagrangian properties of particles in turbulence publication-title: Annual Review of Fluid Mechanics – year: 2016 article-title: Assessing the use of uav to quantify flow processes in rivers publication-title: River flow – volume: 143 issue: 8 year: 2017 article-title: Turbulent mixing of floating pollutants at the surface of the river publication-title: Journal of Hydraulic Engineering – volume: 651 start-page: 81 year: 2010 end-page: 91 article-title: Finite‐size effects in the dynamics of neutrally buoyant particles in turbulent flow publication-title: Journal of Fluid Mechanics – volume: 77 issue: 1 year: 2008 article-title: Behavior of heavy particles in isotropic turbulence publication-title: Physical Review E – volume: 89 start-page: 324 issue: 1–2 year: 2014 end-page: 330 article-title: Selective transport of microplastics and mesoplastics by drifting in coastal waters publication-title: Marine Pollution Bulletin – volume: 592 start-page: 335 year: 2007 end-page: 366 article-title: Small‐scale statistics in high‐resolution direct numerical simulation of turbulence: Reynolds number dependence of one‐point velocity gradient statistics publication-title: Journal of Fluid Mechanics – volume: 223 start-page: 383 issue: ‐1 year: 1991 end-page: 409 article-title: Two‐dimensional cusped interfaces publication-title: Journal of Fluid Mechanics – volume: 136 start-page: 368 issue: 6 year: 2010 end-page: 378 article-title: Estimation of power spectra of acoustic‐Doppler velocimetry data contaminated with intermittent spikes publication-title: Journal of Hydraulic Engineering – ident: e_1_2_8_48_1 doi: 10.1016/j.flowmeasinst.2019.03.001 – ident: e_1_2_8_116_1 doi: 10.1017/s0022112093002708 – ident: e_1_2_8_109_1 doi: 10.1098/rsta.2017.0104 – ident: e_1_2_8_72_1 doi: 10.1007/s00348-020-03025-2 – ident: e_1_2_8_119_1 doi: 10.1017/s0022112099004243 – ident: e_1_2_8_82_1 doi: 10.1103/physrevlett.112.024501 – ident: e_1_2_8_96_1 doi: 10.1017/s0022112011000127 – ident: e_1_2_8_113_1 doi: 10.1119/1.1898523 – ident: e_1_2_8_14_1 doi: 10.1146/annurev-fluid-120710-101240 – ident: e_1_2_8_83_1 doi: 10.1061/(asce)hy.1943-7900.0000202 – ident: e_1_2_8_92_1 doi: 10.1017/s0022112099004590 – ident: e_1_2_8_57_1 doi: 10.1038/s41598-018-22939-w – ident: e_1_2_8_114_1 doi: 10.1017/s0022112002001842 – ident: e_1_2_8_68_1 doi: 10.1016/j.ijheatmasstransfer.2003.06.001 – ident: e_1_2_8_25_1 doi: 10.1093/acprof:oso/9780198722588.001.0001 – ident: e_1_2_8_19_1 doi: 10.1063/1.2055529 – start-page: 31 volume-title: Marine litter in the mediterranean and black seas ciesm workshop monograph year: 2014 ident: e_1_2_8_118_1 contributor: fullname: Zambianchi E. – ident: e_1_2_8_108_1 doi: 10.1088/1748-9326/10/12/124006 – ident: e_1_2_8_103_1 doi: 10.1017/jfm.2013.435 – ident: e_1_2_8_94_1 doi: 10.1017/s0022112005003575 – ident: e_1_2_8_17_1 doi: 10.1103/physrevfluids.6.024601 – ident: e_1_2_8_74_1 doi: 10.1088/1367-2630/6/1/116 – ident: e_1_2_8_51_1 doi: 10.1103/physreve.77.016307 – ident: e_1_2_8_100_1 doi: 10.1112/plms/s2-20.1.196 – ident: e_1_2_8_44_1 doi: 10.1017/s0022112007008531 – ident: e_1_2_8_62_1 doi: 10.3390/rs13142661 – ident: e_1_2_8_31_1 doi: 10.1017/jfm.2017.853 – ident: e_1_2_8_30_1 doi: 10.1103/physrevfluids.4.034301 – ident: e_1_2_8_89_1 doi: 10.1017/s0022112094001370 – ident: e_1_2_8_120_1 doi: 10.1016/j.scitotenv.2022.157027 – ident: e_1_2_8_16_1 doi: 10.1017/s0022112001006012 – ident: e_1_2_8_69_1 doi: 10.1126/sciadv.aaz5803 – ident: e_1_2_8_71_1 doi: 10.1007/s00348-010-0885-1 – ident: e_1_2_8_38_1 doi: 10.1017/s0022112006004204 – ident: e_1_2_8_43_1 doi: 10.1017/s0022112078000130 – ident: e_1_2_8_77_1 doi: 10.1061/(asce)0733-9429(1994)120:10(1235) – ident: e_1_2_8_67_1 doi: 10.1080/24705357.2019.1709102 – ident: e_1_2_8_97_1 doi: 10.3390/jmse7120467 – ident: e_1_2_8_18_1 doi: 10.1103/physrevlett.112.074501 – ident: e_1_2_8_70_1 doi: 10.1016/j.expthermflusci.2016.08.021 – ident: e_1_2_8_91_1 doi: 10.1017/s0022112001004669 – volume-title: Waves in fluids year: 2001 ident: e_1_2_8_60_1 contributor: fullname: Lighthill J. – ident: e_1_2_8_75_1 doi: 10.1017/s0022112081002796 – ident: e_1_2_8_107_1 doi: 10.1016/j.watres.2022.119078 – ident: e_1_2_8_13_1 doi: 10.1201/9781315644479-96 – ident: e_1_2_8_54_1 doi: 10.1063/1.1762301 – ident: e_1_2_8_73_1 doi: 10.1061/(asce)0733-9429(1999)125:1(3) – ident: e_1_2_8_110_1 doi: 10.1002/wat2.1398 – ident: e_1_2_8_6_1 doi: 10.1017/jfm.2020.934 – ident: e_1_2_8_10_1 doi: 10.1017/s002211200500844x – ident: e_1_2_8_64_1 doi: 10.1017/s0022112009994022 – ident: e_1_2_8_79_1 doi: 10.1016/j.csr.2018.01.010 – ident: e_1_2_8_26_1 doi: 10.1017/jfm.2017.548 – ident: e_1_2_8_106_1 doi: 10.1038/s41561-019-0324-8 – ident: e_1_2_8_42_1 doi: 10.1017/s0022112010000923 – ident: e_1_2_8_102_1 doi: 10.1146/annurev.fluid.010908.165210 – ident: e_1_2_8_98_1 doi: 10.5194/gi-5-241-2016 – ident: e_1_2_8_87_1 doi: 10.1215/21573689-1597669 – ident: e_1_2_8_39_1 doi: 10.1017/jfm.2013.684 – ident: e_1_2_8_37_1 doi: 10.1007/s00348-022-03450-5 – ident: e_1_2_8_52_1 doi: 10.1016/j.minpro.2009.07.007 – ident: e_1_2_8_63_1 doi: 10.1103/physreve.88.033003 – ident: e_1_2_8_117_1 doi: 10.1016/s0955-5986(02)00059-6 – ident: e_1_2_8_66_1 doi: 10.1017/s0022112003004245 – ident: e_1_2_8_84_1 doi: 10.1017/CBO9780511840531 – ident: e_1_2_8_22_1 doi: 10.1109/lgrs.2011.2125942 – ident: e_1_2_8_93_1 doi: 10.1017/s0022112005005690 – ident: e_1_2_8_41_1 doi: 10.1017/jfm.2014.68 – ident: e_1_2_8_78_1 doi: 10.1007/s10652-007-9021-z – ident: e_1_2_8_45_1 doi: 10.1016/j.marpolbul.2014.09.041 – ident: e_1_2_8_85_1 doi: 10.1007/978-3-319-68852-7_5 – ident: e_1_2_8_111_1 doi: 10.1088/1748-9326/ab6d7d – ident: e_1_2_8_80_1 doi: 10.1063/1.868483 – ident: e_1_2_8_27_1 doi: 10.1063/5.0074760 – volume-title: Particle image velocimetry (No. 30) year: 2011 ident: e_1_2_8_2_1 contributor: fullname: Adrian R. J. – ident: e_1_2_8_15_1 doi: 10.1146/annurev-fluid-030121-021103 – ident: e_1_2_8_21_1 doi: 10.1007/s00348-016-2281-y – ident: e_1_2_8_8_1 doi: 10.1146/annurev.fluid.010908.165243 – ident: e_1_2_8_59_1 doi: 10.1103/physrevfluids.7.083101 – ident: e_1_2_8_99_1 doi: 10.1016/j.catena.2018.09.009 – ident: e_1_2_8_20_1 doi: 10.1017/jfm.2019.923 – ident: e_1_2_8_3_1 doi: 10.1017/jfm.2021.185 – ident: e_1_2_8_101_1 doi: 10.7551/mitpress/3014.001.0001 – volume-title: Mixing in inland and coastal waters year: 1979 ident: e_1_2_8_34_1 contributor: fullname: Fischer H. B. – ident: e_1_2_8_23_1 doi: 10.1088/1367-2630/6/1/053 – ident: e_1_2_8_121_1 doi: 10.1016/j.ecss.2017.09.032 – ident: e_1_2_8_46_1 doi: 10.1126/science.1260352 – ident: e_1_2_8_5_1 doi: 10.1017/jfm.2019.99 – ident: e_1_2_8_28_1 doi: 10.1103/physrevfluids.4.074805 – ident: e_1_2_8_112_1 doi: 10.1016/j.ocemod.2017.11.008 – ident: e_1_2_8_4_1 doi: 10.1017/jfm.2021.1145 – ident: e_1_2_8_40_1 doi: 10.1016/j.marpolbul.2021.112095 – ident: e_1_2_8_61_1 doi: 10.1016/j.cageo.2010.07.007 – volume: 9 issue: 12 year: 2012 ident: e_1_2_8_9_1 article-title: Physical transport properties of marine microplastic pollution publication-title: Biogeosciences Discussions contributor: fullname: Ballent A. – ident: e_1_2_8_50_1 doi: 10.1017/s0022112091001477 – ident: e_1_2_8_56_1 doi: 10.1063/1.869573 – volume-title: River mixing year: 1994 ident: e_1_2_8_88_1 contributor: fullname: Rutherford J. C. – ident: e_1_2_8_32_1 doi: 10.1016/j.marpolbul.2013.10.007 – ident: e_1_2_8_33_1 doi: 10.1103/physreve.86.035301 – volume: 30 start-page: 301 year: 1941 ident: e_1_2_8_53_1 article-title: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers publication-title: Proceedings of the URSS Academy of Sciences contributor: fullname: Kolmogorov A. N. – ident: e_1_2_8_65_1 doi: 10.1063/1.4944523 – ident: e_1_2_8_122_1 doi: 10.1109/34.888718 – ident: e_1_2_8_36_1 doi: 10.1126/sciadv.1700782 – ident: e_1_2_8_7_1 doi: 10.1017/jfm.2022.438 – ident: e_1_2_8_11_1 doi: 10.1017/jfm.2021.280 – ident: e_1_2_8_81_1 doi: 10.1061/(asce)hy.1943-7900.0001319 – ident: e_1_2_8_35_1 doi: 10.1017/jfm.2017.209 – ident: e_1_2_8_47_1 doi: 10.1021/acs.langmuir.8b02031 – ident: e_1_2_8_90_1 doi: 10.1063/1.857937 – ident: e_1_2_8_95_1 doi: 10.1017/s0022112091002276 – ident: e_1_2_8_76_1 doi: 10.1017/jfm.2017.13 – ident: e_1_2_8_24_1 doi: 10.1016/j.marpolbul.2020.111024 – ident: e_1_2_8_115_1 doi: 10.1146/annurev-fluid-010816-060135 – ident: e_1_2_8_86_1 doi: 10.1063/1.866603 – ident: e_1_2_8_49_1 doi: 10.1103/physrevlett.124.104501 – ident: e_1_2_8_105_1 doi: 10.1063/1.870317 – ident: e_1_2_8_58_1 doi: 10.1017/jfm.2019.544 – ident: e_1_2_8_12_1 doi: 10.1063/1.5110731 – ident: e_1_2_8_55_1 doi: 10.1029/2012gl051116 – ident: e_1_2_8_29_1 doi: 10.3389/fmars.2020.00148 – ident: e_1_2_8_104_1 doi: 10.1017/jfm.2016.826 |
SSID | ssj0014567 |
Score | 2.4753735 |
Snippet | Understanding how floating particles are transported by streaming waters is crucial in predicting the transport of plastic pollution, which is dramatically... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Approximation Channel flow Computer models Diameters Floating free surface turbulence Free surfaces Lakes Litter Mathematical models Meandering Meandering streams Movement natural stream Natural streams Natural waters Oceans Open channel flow Open channels particle dispersion Particle tracking Particle tracking velocimetry Plastic debris Plastic pollution Pollution Pollution dispersion Prediction models Rivers Rods Seafloor spreading Shape Shape effects Stream pollution Streaming Surface flow Surface waves Tracers Translational motion Turbulence |
Title | Effect of Shape and Size on the Transport of Floating Particles on the Free Surface in a Natural Stream |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2023WR035716 https://www.proquest.com/docview/2882356533 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagCyy8EYWCPMBGRLDz8oKESqNOVdWAyhY5zYVWgqRq6AC_njsnKWVBQmyRYluJz4_v_J2_Y-ySdiFPCbA8VweWA-izBlJKizxnXDBVAibdWz_yB8_BQ49kcu6auzCVPsTqwI1mhlmvaYLrpKzFBkgjk_J-j0e2dBHx4xKMjoK5wSGHKxIBsYHfEMwEdOq4d6x-s1755470DTPXwarZbcLd_37nHtupcSa_rwbGPtuA_IBtNdeQS3yu059PPw7ZS6VhzIuMR1M9B67zlEezT-BFzhEh8pUEOhUJXwtNwdJ82ETVNcXCBQCPlotMT4DPcq75QBtdD07kt347Yk9h77Hbt-oMDJaWCHwsCW6aTHypRQCkHOglaHCEMF7iOE4qhNIZ_leWaeUnvg9uAClIUGhtpW89mMhj1sqLHE4Yp9MShS35vh042k4VcYDE7YvMJuq3za4aK8TzSmgjNgS5UPF6F7ZZpzFRXE-3MhboJ0iEplK22bUxxq9txONRdyQoFdfp34qfsW16UQXzdVjrfbGEc7ZZpssLM_S-AB_z0rA |
link.rule.ids | 315,782,786,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED7RMpSFN6JQwANsRIQ4L08IlUZFlKpqisoWOc2FVoKkaukAvx5fHqUsSIgtw9lKcmf7s7_zdwDntArZwkDNtqSrmaj2rC7nXKOds5owRYhZube273Sf3bsWyeTclHdhcn2I5YEbjYxsvqYBTgfShdoAiWRS4e9hX-eWgvwVWDdtFYt0h4P3ljSCQgdOSTET1Cky31X7q9XWP9ekb6C5Clez9cbb-vebbsNmATXZbR4bO7CGyS7UypvIc_VcVEAff-zBSy5jzNKY-WM5RSaTiPmTT2RpwhRIZEsVdDLxXlNJ-dKsVybWlWbeDJH5i1ksR8gmCZOsKzNpD0b8t3zbhyevNWi2taIIgya5wj4aRysKRw6XhoskHmiHyucKxdihaZqRYQgZq--KYymc0HHQcjFCjkI5XMhrG0f8AKpJmuAhMDowEaonx9FdU-qRIBqQ6H0j1on9rcNF6YZgmmttBBlHbohg9RfWoVH6KChG3Dww1FaBK3TKeR0uM2_82kcw7Df7BlXjOvqb-RnU2oPHTtC57z4cwwYZ5bl9Dai-zxZ4ApV5tDjN4vALmaHW2A |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED7RIgELb0ShgAfYiCh2Xl6QUNuoCFRVDahskdNcaCVIqpYO8Ovx5VHKgoTYMpytJOezP_s7fwdwTquQLTkatqVcw0S9Z3WFEAbtnPWEKUPMyr11fKf77LbaJJNzU96FyfUhFgduFBnZfE0BPoniQmyANDKp7veg3xCWRvwVWDU1EiftfCF6CxZBgwOnZJgJ6RSJ77r91XLrn0vSN85cRqvZcuNt_fdFt2GzAJrsNh8ZO7CCyS6sl_eQZ_q5qH8--tiDl1zEmKUx80dqgkwlEfPHn8jShGmIyBYa6GTivaaKsqVZr0yrK828KSLz59NYDZGNE6ZYV2XCHozYb_W2D09e-7HZMYoSDIYSGvkYAq0oHDpCcRdJOtAOtcc1hrFD0zQjzqWK9XfFsZJO6DhouRihQKndLdW1jUNxANUkTfAQGB2XSN2T4zRcUzUiSSQgkfs8bhD3W4OL0gvBJFfaCDKGnMtg-RfWoF66KCjibRZwvVEQGpsKUYPLzBm_9hEM-s0-p1pcR38zP4O1XssLHu6698ewQTZ5Yl8dqu_TOZ5AZRbNT7NR-AUKEdV- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Shape+and+Size+on+the+Transport+of+Floating+Particles+on+the+Free+Surface+in+a+Natural+Stream&rft.jtitle=Water+resources+research&rft.au=Sanness+Salmon%2C+Henri+R.&rft.au=Baker%2C+Lucia+J.&rft.au=Kozarek%2C+Jessica+L.&rft.au=Coletti%2C+Filippo&rft.date=2023-10-01&rft.issn=0043-1397&rft.eissn=1944-7973&rft.volume=59&rft.issue=10&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2023WR035716&rft.externalDBID=10.1029%252F2023WR035716&rft.externalDocID=WRCR26901 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1397&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1397&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1397&client=summon |