Effect of Shape and Size on the Transport of Floating Particles on the Free Surface in a Natural Stream

Understanding how floating particles are transported by streaming waters is crucial in predicting the transport of plastic pollution, which is dramatically abundant in rivers, lakes, and oceans. Using particle tracking velocimetry, we investigate the motion of floating particles of different shape a...

Full description

Saved in:
Bibliographic Details
Published in:Water resources research Vol. 59; no. 10
Main Authors: Sanness Salmon, Henri R., Baker, Lucia J., Kozarek, Jessica L., Coletti, Filippo
Format: Journal Article
Language:English
Published: Washington John Wiley & Sons, Inc 01-10-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Understanding how floating particles are transported by streaming waters is crucial in predicting the transport of plastic pollution, which is dramatically abundant in rivers, lakes, and oceans. Using particle tracking velocimetry, we investigate the motion of floating particles of different shape and size on the turbulent free surface of a field‐scale meandering stream. We consider two different locations, where the role of surface waves on transport is deemed negligible. Millimeter‐sized spheres are used as tracers to characterize the surface flow. These are compared with centimeter‐sized discs and rods, approximating typical‐sized pieces of floating litter. The larger particles exhibit similar mean and fluctuating velocities as the tracers but filter out the extreme turbulent accelerations. Consequently, their motion is more time‐correlated and their spreading rate is larger. This behavior is also confirmed by complementary laboratory measurements in an open channel flow. The rotation of the rods, affected by a range of turbulent scales, reduces the correlation time scale of their translational motion, and leads to a slower dispersion compared to the discs, despite the rods' length being larger than the discs' diameter. Taken together, these results indicate that the motion of finite‐sized objects floating on the surface of weakly wavy turbulent waters is consistent with the behavior of inertial particles in three‐dimensional turbulence. These results can be valuable when constructing predictive models of floating plastics. Plain Language Summary Plastic debris is a rising global issue severely affecting the state of our rivers, lakes and oceans. Understanding, how pieces of litter, often floating, travel in streaming waters is crucial for predicting and ultimately limiting plastic pollution. The main goal of this research is to investigate how the shape and size of small floating objects may affect their journey on the surface of water. To this end, we use high‐speed imaging to track floating objects of different shape and size in an outdoor stream laboratory. The motion of centimeter‐sized discs and rods, approximating typical pieces of plastics found in rivers, is directly compared to the motion of millimeter‐sized spheres that follow the surface flow. We find that the larger discs and rods spread faster on the surface of water. Not only can these results be used to devise effective sequestration strategies, but they can be important for computer models that predict the abundance, and fate, of plastic litter in natural waters. Key Points The velocity of floating particles in turbulent streams is weakly affected by their shape and size Larger particles disperse faster on the free surface due to their ability to filter out small‐scale turbulent fluctuations Rods re‐orient following the mean shear of the surface flow and rotate according to the integral scales of the free surface turbulence
AbstractList Understanding how floating particles are transported by streaming waters is crucial in predicting the transport of plastic pollution, which is dramatically abundant in rivers, lakes, and oceans. Using particle tracking velocimetry, we investigate the motion of floating particles of different shape and size on the turbulent free surface of a field‐scale meandering stream. We consider two different locations, where the role of surface waves on transport is deemed negligible. Millimeter‐sized spheres are used as tracers to characterize the surface flow. These are compared with centimeter‐sized discs and rods, approximating typical‐sized pieces of floating litter. The larger particles exhibit similar mean and fluctuating velocities as the tracers but filter out the extreme turbulent accelerations. Consequently, their motion is more time‐correlated and their spreading rate is larger. This behavior is also confirmed by complementary laboratory measurements in an open channel flow. The rotation of the rods, affected by a range of turbulent scales, reduces the correlation time scale of their translational motion, and leads to a slower dispersion compared to the discs, despite the rods' length being larger than the discs' diameter. Taken together, these results indicate that the motion of finite‐sized objects floating on the surface of weakly wavy turbulent waters is consistent with the behavior of inertial particles in three‐dimensional turbulence. These results can be valuable when constructing predictive models of floating plastics.
Understanding how floating particles are transported by streaming waters is crucial in predicting the transport of plastic pollution, which is dramatically abundant in rivers, lakes, and oceans. Using particle tracking velocimetry, we investigate the motion of floating particles of different shape and size on the turbulent free surface of a field‐scale meandering stream. We consider two different locations, where the role of surface waves on transport is deemed negligible. Millimeter‐sized spheres are used as tracers to characterize the surface flow. These are compared with centimeter‐sized discs and rods, approximating typical‐sized pieces of floating litter. The larger particles exhibit similar mean and fluctuating velocities as the tracers but filter out the extreme turbulent accelerations. Consequently, their motion is more time‐correlated and their spreading rate is larger. This behavior is also confirmed by complementary laboratory measurements in an open channel flow. The rotation of the rods, affected by a range of turbulent scales, reduces the correlation time scale of their translational motion, and leads to a slower dispersion compared to the discs, despite the rods' length being larger than the discs' diameter. Taken together, these results indicate that the motion of finite‐sized objects floating on the surface of weakly wavy turbulent waters is consistent with the behavior of inertial particles in three‐dimensional turbulence. These results can be valuable when constructing predictive models of floating plastics. Plain Language Summary Plastic debris is a rising global issue severely affecting the state of our rivers, lakes and oceans. Understanding, how pieces of litter, often floating, travel in streaming waters is crucial for predicting and ultimately limiting plastic pollution. The main goal of this research is to investigate how the shape and size of small floating objects may affect their journey on the surface of water. To this end, we use high‐speed imaging to track floating objects of different shape and size in an outdoor stream laboratory. The motion of centimeter‐sized discs and rods, approximating typical pieces of plastics found in rivers, is directly compared to the motion of millimeter‐sized spheres that follow the surface flow. We find that the larger discs and rods spread faster on the surface of water. Not only can these results be used to devise effective sequestration strategies, but they can be important for computer models that predict the abundance, and fate, of plastic litter in natural waters. Key Points The velocity of floating particles in turbulent streams is weakly affected by their shape and size Larger particles disperse faster on the free surface due to their ability to filter out small‐scale turbulent fluctuations Rods re‐orient following the mean shear of the surface flow and rotate according to the integral scales of the free surface turbulence
Understanding how floating particles are transported by streaming waters is crucial in predicting the transport of plastic pollution, which is dramatically abundant in rivers, lakes, and oceans. Using particle tracking velocimetry, we investigate the motion of floating particles of different shape and size on the turbulent free surface of a field‐scale meandering stream. We consider two different locations, where the role of surface waves on transport is deemed negligible. Millimeter‐sized spheres are used as tracers to characterize the surface flow. These are compared with centimeter‐sized discs and rods, approximating typical‐sized pieces of floating litter. The larger particles exhibit similar mean and fluctuating velocities as the tracers but filter out the extreme turbulent accelerations. Consequently, their motion is more time‐correlated and their spreading rate is larger. This behavior is also confirmed by complementary laboratory measurements in an open channel flow. The rotation of the rods, affected by a range of turbulent scales, reduces the correlation time scale of their translational motion, and leads to a slower dispersion compared to the discs, despite the rods' length being larger than the discs' diameter. Taken together, these results indicate that the motion of finite‐sized objects floating on the surface of weakly wavy turbulent waters is consistent with the behavior of inertial particles in three‐dimensional turbulence. These results can be valuable when constructing predictive models of floating plastics. Plastic debris is a rising global issue severely affecting the state of our rivers, lakes and oceans. Understanding, how pieces of litter, often floating, travel in streaming waters is crucial for predicting and ultimately limiting plastic pollution. The main goal of this research is to investigate how the shape and size of small floating objects may affect their journey on the surface of water. To this end, we use high‐speed imaging to track floating objects of different shape and size in an outdoor stream laboratory. The motion of centimeter‐sized discs and rods, approximating typical pieces of plastics found in rivers, is directly compared to the motion of millimeter‐sized spheres that follow the surface flow. We find that the larger discs and rods spread faster on the surface of water. Not only can these results be used to devise effective sequestration strategies, but they can be important for computer models that predict the abundance, and fate, of plastic litter in natural waters. The velocity of floating particles in turbulent streams is weakly affected by their shape and size Larger particles disperse faster on the free surface due to their ability to filter out small‐scale turbulent fluctuations Rods re‐orient following the mean shear of the surface flow and rotate according to the integral scales of the free surface turbulence
Author Kozarek, Jessica L.
Coletti, Filippo
Sanness Salmon, Henri R.
Baker, Lucia J.
Author_xml – sequence: 1
  givenname: Henri R.
  orcidid: 0000-0003-4621-797X
  surname: Sanness Salmon
  fullname: Sanness Salmon, Henri R.
  email: rsanness@ethz.ch
  organization: Swiss Federal Institute of Technology (ETH)
– sequence: 2
  givenname: Lucia J.
  orcidid: 0000-0002-7312-9548
  surname: Baker
  fullname: Baker, Lucia J.
  organization: University of Washington
– sequence: 3
  givenname: Jessica L.
  orcidid: 0000-0001-8913-5646
  surname: Kozarek
  fullname: Kozarek, Jessica L.
  organization: University of Minnesota
– sequence: 4
  givenname: Filippo
  surname: Coletti
  fullname: Coletti, Filippo
  organization: Swiss Federal Institute of Technology (ETH)
BookMark eNp90EFLw0AQBeBFKthWb_6ABa9Gd3eSbPYopVWhqDSVHsMkmW1T0qRuEqT-eqNV8OTpXT7eMG_EBlVdEWOXUtxIocytEgpWCwGBluEJG0rj-542GgZsKIQPngSjz9ioabZCSD8I9ZCtp9ZS1vLa8niDe-JY5TwuPojXFW83xJcOq2Zfu28yK2tsi2rNX9C1RVZS88tmjojHnbOYES8qjvwJ285hyePWEe7O2anFsqGLnxyz19l0OXnw5s_3j5O7uYegAukBBXmaaUAVkYi0DtMsQx9MmPq-nytl0PbfWYtGp1pTEFFOQCYCMChDymDMro69e1e_ddS0ybbuXNWfTFQUKQjCAKBX10eVubppHNlk74odukMiRfI1ZfJ3yp7Dkb8XJR3-tclqMVmo0AgJn6iedhE
Cites_doi 10.1016/j.flowmeasinst.2019.03.001
10.1017/s0022112093002708
10.1098/rsta.2017.0104
10.1007/s00348-020-03025-2
10.1017/s0022112099004243
10.1103/physrevlett.112.024501
10.1017/s0022112011000127
10.1119/1.1898523
10.1146/annurev-fluid-120710-101240
10.1061/(asce)hy.1943-7900.0000202
10.1017/s0022112099004590
10.1038/s41598-018-22939-w
10.1017/s0022112002001842
10.1016/j.ijheatmasstransfer.2003.06.001
10.1093/acprof:oso/9780198722588.001.0001
10.1063/1.2055529
10.1088/1748-9326/10/12/124006
10.1017/jfm.2013.435
10.1017/s0022112005003575
10.1103/physrevfluids.6.024601
10.1088/1367-2630/6/1/116
10.1103/physreve.77.016307
10.1112/plms/s2-20.1.196
10.1017/s0022112007008531
10.3390/rs13142661
10.1017/jfm.2017.853
10.1103/physrevfluids.4.034301
10.1017/s0022112094001370
10.1016/j.scitotenv.2022.157027
10.1017/s0022112001006012
10.1126/sciadv.aaz5803
10.1007/s00348-010-0885-1
10.1017/s0022112006004204
10.1017/s0022112078000130
10.1061/(asce)0733-9429(1994)120:10(1235)
10.1080/24705357.2019.1709102
10.3390/jmse7120467
10.1103/physrevlett.112.074501
10.1016/j.expthermflusci.2016.08.021
10.1017/s0022112001004669
10.1017/s0022112081002796
10.1016/j.watres.2022.119078
10.1201/9781315644479-96
10.1063/1.1762301
10.1061/(asce)0733-9429(1999)125:1(3)
10.1002/wat2.1398
10.1017/jfm.2020.934
10.1017/s002211200500844x
10.1017/s0022112009994022
10.1016/j.csr.2018.01.010
10.1017/jfm.2017.548
10.1038/s41561-019-0324-8
10.1017/s0022112010000923
10.1146/annurev.fluid.010908.165210
10.5194/gi-5-241-2016
10.1215/21573689-1597669
10.1017/jfm.2013.684
10.1007/s00348-022-03450-5
10.1016/j.minpro.2009.07.007
10.1103/physreve.88.033003
10.1016/s0955-5986(02)00059-6
10.1017/s0022112003004245
10.1017/CBO9780511840531
10.1109/lgrs.2011.2125942
10.1017/s0022112005005690
10.1017/jfm.2014.68
10.1007/s10652-007-9021-z
10.1016/j.marpolbul.2014.09.041
10.1007/978-3-319-68852-7_5
10.1088/1748-9326/ab6d7d
10.1063/1.868483
10.1063/5.0074760
10.1146/annurev-fluid-030121-021103
10.1007/s00348-016-2281-y
10.1146/annurev.fluid.010908.165243
10.1103/physrevfluids.7.083101
10.1016/j.catena.2018.09.009
10.1017/jfm.2019.923
10.1017/jfm.2021.185
10.7551/mitpress/3014.001.0001
10.1088/1367-2630/6/1/053
10.1016/j.ecss.2017.09.032
10.1126/science.1260352
10.1017/jfm.2019.99
10.1103/physrevfluids.4.074805
10.1016/j.ocemod.2017.11.008
10.1017/jfm.2021.1145
10.1016/j.marpolbul.2021.112095
10.1016/j.cageo.2010.07.007
10.1017/s0022112091001477
10.1063/1.869573
10.1016/j.marpolbul.2013.10.007
10.1103/physreve.86.035301
10.1063/1.4944523
10.1109/34.888718
10.1126/sciadv.1700782
10.1017/jfm.2022.438
10.1017/jfm.2021.280
10.1061/(asce)hy.1943-7900.0001319
10.1017/jfm.2017.209
10.1021/acs.langmuir.8b02031
10.1063/1.857937
10.1017/s0022112091002276
10.1017/jfm.2017.13
10.1016/j.marpolbul.2020.111024
10.1146/annurev-fluid-010816-060135
10.1063/1.866603
10.1103/physrevlett.124.104501
10.1063/1.870317
10.1017/jfm.2019.544
10.1063/1.5110731
10.1029/2012gl051116
10.3389/fmars.2020.00148
10.1017/jfm.2016.826
ContentType Journal Article
Copyright 2023. The Authors.
2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. The Authors.
– notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
AAYXX
CITATION
7QH
7QL
7T7
7TG
7U9
7UA
8FD
C1K
F1W
FR3
H94
H96
KL.
KR7
L.G
M7N
P64
DOI 10.1029/2023WR035716
DatabaseName Wiley-Blackwell Open Access Collection
Wiley Online Library Open Access
CrossRef
Aqualine
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Meteorological & Geoastrophysical Abstracts
Virology and AIDS Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
AIDS and Cancer Research Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Virology and AIDS Abstracts
Technology Research Database
Aqualine
Water Resources Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Civil Engineering Abstracts

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Economics
EISSN 1944-7973
EndPage n/a
ExternalDocumentID 10_1029_2023WR035716
WRCR26901
Genre researchArticle
GrantInformation_xml – fundername: Environment and Natural Resources Trust Fund
  funderid: M.L. 2018, Chp. 214, Art. 4, Sec. 02, Subd. 04b
– fundername: Swiss National Science Foundation
  funderid: 200021_207318/1
GroupedDBID -~X
..I
.DC
05W
0R~
123
1OB
1OC
24P
31~
33P
3V.
50Y
5VS
6TJ
7WY
7XC
8-1
8CJ
8FE
8FG
8FH
8FL
8G5
8R4
8R5
8WZ
A00
A6W
AAESR
AAHBH
AAHHS
AAIHA
AAIKC
AAMNW
AANLZ
AASGY
AAXRX
AAYJJ
AAYOK
AAZKR
ABCUV
ABJCF
ABJNI
ABPPZ
ABTAH
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AENEX
AEQDE
AETEA
AEUYR
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AIDBO
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
ASPBG
ATCPS
AVWKF
AZFZN
AZQEC
AZVAB
BDRZF
BENPR
BEZIV
BFHJK
BGLVJ
BHPHI
BKSAR
BMXJE
BPHCQ
BRXPI
CCPQU
CS3
D0L
D1J
DCZOG
DDYGU
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
F5P
FEDTE
FRNLG
G-S
GNUQQ
GODZA
GROUPED_ABI_INFORM_COMPLETE
GUQSH
HCIFZ
HVGLF
HZ~
K60
K6~
L6V
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M0C
M2O
M7R
M7S
MEWTI
MSFUL
MSSTM
MVM
MW2
MXFUL
MXSTM
MY~
O9-
OHT
OK1
P-X
P2P
P2W
PALCI
PATMY
PCBAR
PQBIZ
PQBZA
PQQKQ
PROAC
PTHSS
PYCSY
Q2X
R.K
RIWAO
RJQFR
ROL
SAMSI
SUPJJ
TAE
TN5
TWZ
UQL
VJK
VOH
WBKPD
WIN
WXSBR
WYJ
XOL
XSW
YHZ
YV5
ZCG
ZY4
ZZTAW
~02
~KM
~OA
~~A
AAYXX
CITATION
7QH
7QL
7T7
7TG
7U9
7UA
8FD
C1K
F1W
FR3
H94
H96
KL.
KR7
L.G
M7N
P64
ID FETCH-LOGICAL-a3251-3e5dbc73a28e08776bcca4396b444d229af357ffa97b77e58ede3e98339a16ec3
IEDL.DBID 33P
ISSN 0043-1397
IngestDate Thu Nov 07 07:59:10 EST 2024
Thu Nov 21 21:24:35 EST 2024
Sat Aug 24 01:00:16 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a3251-3e5dbc73a28e08776bcca4396b444d229af357ffa97b77e58ede3e98339a16ec3
ORCID 0000-0003-4621-797X
0000-0002-7312-9548
0000-0001-8913-5646
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2023WR035716
PQID 2882356533
PQPubID 105507
PageCount 22
ParticipantIDs proquest_journals_2882356533
crossref_primary_10_1029_2023WR035716
wiley_primary_10_1029_2023WR035716_WRCR26901
PublicationCentury 2000
PublicationDate October 2023
2023-10-00
20231001
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: October 2023
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Water resources research
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2017; 80
2019; 12
2002; 13
2004; 6
2020; 15
1972
2021; 165
1979
2007; 574
2018; 8
1991; 223
1994; 268
1967; 10
2000; 12
2009; 93
2022; 34
2005; 73
2007; 7
2018; 34
1993; 256
1998; 10
1991; 226
2022; 844
2017; 812
2001; 440
2019; 7
2017; 814
2019; 4
2019; 31
2013; 88
2004; 47
1994
2012; 39
2019; 866
2001; 449
2011; 8
1995; 7
1941; 30
2016; 5
2010; 42
2010; 49
2017; 829
2013; 77
2020; 154
2022; 7
2013; 733
2017; 143
2016; 28
2005; 17
2012; 44
2019; 172
2022; 226
2017; 821
2011; 675
2018; 121
2009; 41
2017; 3
2015; 347
1981; 104
2005; 530
2020; 61
2017; 49
2022; 63
2008; 77
1999; 125
2020; 124
2020; 883
1988; 31
2017; 199
2022; 934
2020; 7
2021; 917
2021; 916
2001
2000
2005; 540
2019; 67
2018; 376
2002; 469
2019; 876
2003; 484
1991; 3
2021; 7
2021; 6
2021; 908
2011
2000; 22
2015; 10
1999; 384
2006; 550
2011; 37
1999; 386
2014; 89
2016; 57
2014; 112
2021; 13
2018; 155
2014; 744
2012; 2
1921; 2
2010; 136
1978; 84
1994; 120
2010; 651
2007; 592
2010; 650
2018
2016
2015
2022; 54
2014
2018; 837
2022; 943
2014; 741
2012; 86
2012; 9
Fischer H. B. (e_1_2_8_34_1) 1979
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_5_1
Adrian R. J. (e_1_2_8_2_1) 2011
e_1_2_8_117_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_113_1
Ballent A. (e_1_2_8_9_1) 2012; 9
e_1_2_8_41_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_109_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
Lighthill J. (e_1_2_8_60_1) 2001
e_1_2_8_120_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_11_1
e_1_2_8_76_1
e_1_2_8_101_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_110_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_114_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_98_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_106_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_71_1
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_7_1
Kolmogorov A. N. (e_1_2_8_53_1) 1941; 30
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_115_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_70_1
e_1_2_8_122_1
Rutherford J. C. (e_1_2_8_88_1) 1994
e_1_2_8_97_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_93_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_116_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_84_1
e_1_2_8_112_1
e_1_2_8_61_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
e_1_2_8_92_1
e_1_2_8_96_1
e_1_2_8_100_1
Zambianchi E. (e_1_2_8_118_1) 2014
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_104_1
References_xml – year: 2011
– volume: 484
  start-page: 167
  year: 2003
  end-page: 196
  article-title: High‐Reynolds‐number turbulence in a shear‐free boundary layer: Revisiting the hunt–graham theory
  publication-title: Journal of Fluid Mechanics
– volume: 3
  issue: 7
  year: 2017
  article-title: Production, use, and fate of all plastics ever made
  publication-title: Science Advances
– volume: 42
  start-page: 111
  issue: 1
  year: 2010
  end-page: 133
  article-title: Turbulent dispersed multiphase flow
  publication-title: Annual Review of Fluid Mechanics
– volume: 675
  start-page: 168
  year: 2011
  end-page: 198
  article-title: Lagrangian mixing in straight compound channels
  publication-title: Journal of Fluid Mechanics
– volume: 8
  start-page: 849
  issue: 5
  year: 2011
  end-page: 853
  article-title: Infrared‐based measurements of velocity, turbulent kinetic energy, and dissipation at the water surface in a tidal river
  publication-title: IEEE Geoscience and Remote Sensing Letters
– volume: 574
  start-page: 405
  year: 2007
  end-page: 427
  article-title: An experimental investigation on Lagrangian correlations of small‐scale turbulence at low Reynolds number
  publication-title: Journal of Fluid Mechanics
– volume: 31
  start-page: 2491
  issue: 9
  year: 1988
  end-page: 2503
  article-title: Turbulence structure in free‐surface channel flows
  publication-title: The Physics of Fluids
– volume: 814
  start-page: 592
  year: 2017
  end-page: 613
  article-title: Snowflakes in the atmospheric surface layer: Observation of particle–turbulence dynamics
  publication-title: Journal of Fluid Mechanics
– volume: 376
  issue: 2111
  year: 2018
  article-title: Stokes drift
  publication-title: Philosophical Transactions of the Royal Society A: Mathematical, Physical & Engineering Sciences
– volume: 22
  start-page: 1330
  issue: 11
  year: 2000
  end-page: 1334
  article-title: A flexible new technique for camera calibration
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 917
  start-page: 917
  year: 2021
  article-title: Dynamics of small heavy particles in homogeneous turbulence: A Lagrangian experimental study
  publication-title: Journal of Fluid Mechanics
– volume: 744
  start-page: 217
  year: 2014
  end-page: 249
  article-title: Direct numerical simulation of turbulent scalar transport across a flat surface
  publication-title: Journal of Fluid Mechanics
– volume: 7
  year: 2020
  article-title: Non‐breaking wave effects on buoyant particle distributions
  publication-title: Frontiers in Marine Science
– volume: 154
  year: 2020
  article-title: Modeling the three‐dimensional transport and distribution of multiple microplastic polymer types in lake erie
  publication-title: Marine Pollution Bulletin
– volume: 7
  start-page: 159
  issue: 2
  year: 2007
  end-page: 172
  article-title: Large‐scale turbulent structure of uniform shallow free‐surface flows
  publication-title: Environmental Fluid Mechanics
– volume: 384
  start-page: 207
  year: 1999
  end-page: 241
  article-title: The mechanism of vortex connection at a free surface
  publication-title: Journal of Fluid Mechanics
– volume: 30
  start-page: 301
  year: 1941
  end-page: 305
  article-title: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers
  publication-title: Proceedings of the URSS Academy of Sciences
– volume: 84
  start-page: 209
  issue: 2
  year: 1978
  end-page: 235
  article-title: Free‐stream turbulence near plane boundaries
  publication-title: Journal of Fluid Mechanics
– volume: 866
  start-page: 598
  year: 2019
  end-page: 629
  article-title: Experimental study of negatively buoyant finite‐size particles in a turbulent boundary layer up to dense regimes
  publication-title: Journal of Fluid Mechanics
– volume: 39
  issue: 7
  year: 2012
  article-title: The effect of wind mixing on the vertical distribution of buoyant plastic debris
  publication-title: Geophysical Research Letters
– start-page: 31
  year: 2014
  end-page: 41
– volume: 37
  start-page: 1148
  issue: 8
  year: 2011
  end-page: 1161
  article-title: Using a three‐dimensional particle‐tracking model to estimate the residence time and age of water in a tidal estuary
  publication-title: Computers & Geosciences
– volume: 268
  start-page: 333
  year: 1994
  end-page: 372
  article-title: Local isotropy in turbulent boundary layers at high Reynolds number
  publication-title: Journal of Fluid Mechanics
– year: 1972
– volume: 916
  start-page: A3
  year: 2021
  article-title: Long non‐axisymmetric fibres in turbulent channel flow
  publication-title: Journal of Fluid Mechanics
– volume: 550
  start-page: 349
  issue: ‐1
  year: 2006
  end-page: 358
  article-title: Acceleration statistics of heavy particles in turbulence
  publication-title: Journal of Fluid Mechanics
– volume: 49
  start-page: 249
  issue: 1
  year: 2017
  end-page: 276
  article-title: Anisotropic particles in turbulence
  publication-title: Annual Review of Fluid Mechanics
– volume: 6
  start-page: 17
  issue: 1
  year: 2021
  end-page: 35
  article-title: A Lagrangian particle‐tracking approach to modelling larval drift in rivers
  publication-title: Journal of Ecohydraulics
– volume: 6
  issue: 1
  year: 2004
  article-title: Experimental and numerical study of the Lagrangian dynamics of high Reynolds turbulence
  publication-title: New Journal of Physics
– volume: 440
  start-page: 75
  year: 2001
  end-page: 116
  article-title: Large‐eddy simulation of free‐surface turbulence
  publication-title: Journal of Fluid Mechanics
– volume: 540
  start-page: 143
  issue: ‐1
  year: 2005
  end-page: 173
  article-title: Rotational and translational dispersion of fibres in isotropic turbulent flows
  publication-title: Journal of Fluid Mechanics
– volume: 347
  start-page: 768
  issue: 6223
  year: 2015
  end-page: 771
  article-title: Plastic waste inputs from land into the ocean
  publication-title: Science
– volume: 13
  issue: 14
  year: 2021
  article-title: Large‐scale particle image velocimetry to measure streamflow from videos recorded from unmanned aerial vehicle and fixed imaging system
  publication-title: Remote Sensing
– volume: 812
  start-page: 991
  year: 2017
  end-page: 1023
  article-title: Clustering and preferential concentration of finite‐size particles in forced homogeneous‐isotropic turbulence
  publication-title: Journal of Fluid Mechanics
– volume: 908
  start-page: 908
  year: 2021
  article-title: Particle–fluid–wall interaction of inertial spherical particles in a turbulent boundary layer
  publication-title: Journal of Fluid Mechanics
– volume: 386
  start-page: 167
  year: 1999
  end-page: 212
  article-title: The surface layer for free‐surface turbulent flows
  publication-title: Journal of Fluid Mechanics
– volume: 199
  start-page: 74
  year: 2017
  end-page: 86
  article-title: Transport of microplastics in coastal seas
  publication-title: Estuarine, Coastal and Shelf Science
– volume: 6
  issue: 2
  year: 2021
  article-title: Laboratory model for plastic fragmentation in the turbulent ocean
  publication-title: Physical Review Fluids
– volume: 4
  issue: 3
  year: 2019
  article-title: Orientation dynamics of nonspherical particles under surface gravity waves
  publication-title: Physical Review Fluids
– volume: 31
  issue: 9
  year: 2019
  article-title: Building a maxey–riley framework for surface ocean inertial particle dynamics
  publication-title: Physics of Fluids
– volume: 86
  issue: 3
  year: 2012
  article-title: Clustering of finite‐size particles in turbulence
  publication-title: Physical Review E
– volume: 155
  start-page: 11
  year: 2018
  end-page: 20
  article-title: The boundary current role on the transport and stranding of floating marine litter: The French riviera case
  publication-title: Continental Shelf Research
– volume: 63
  start-page: 1
  issue: 6
  year: 2022
  end-page: 25
  article-title: Free‐surface flow measurements by non‐intrusive methods: A survey
  publication-title: Experiments in Fluids
– volume: 12
  start-page: 259
  issue: 4
  year: 2019
  end-page: 263
  article-title: Distinct air–water gas exchange regimes in low‐and high‐energy streams
  publication-title: Nature Geoscience
– volume: 829
  start-page: 364
  year: 2017
  end-page: 391
  article-title: Lagrangian transport by breaking surface waves
  publication-title: Journal of Fluid Mechanics
– volume: 57
  start-page: 1
  issue: 12
  year: 2016
  end-page: 15
  article-title: Generating and controlling homogeneous air turbulence using random jet arrays
  publication-title: Experiments in Fluids
– volume: 226
  start-page: 1
  year: 1991
  end-page: 35
  article-title: Measurements of particle dispersion obtained from direct numerical simulations of isotropic turbulence
  publication-title: Journal of Fluid Mechanics
– volume: 165
  year: 2021
  article-title: Ridding our rivers of plastic: A framework for plastic pollution capture device selection
  publication-title: Marine Pollution Bulletin
– volume: 67
  start-page: 142
  year: 2019
  end-page: 152
  article-title: Application of large scale piv in river surface turbulence measurements and water depth estimation
  publication-title: Flow Measurement and Instrumentation
– volume: 256
  start-page: 27
  year: 1993
  end-page: 68
  article-title: Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence
  publication-title: Journal of Fluid Mechanics
– volume: 10
  start-page: 1417
  issue: 7
  year: 1967
  end-page: 1423
  article-title: Inertial ranges in two‐dimensional turbulence
  publication-title: The Physics of Fluids
– volume: 10
  issue: 12
  year: 2015
  article-title: A global inventory of small floating plastic debris
  publication-title: Environmental Research Letters
– volume: 741
  start-page: 567
  year: 2014
  end-page: 584
  article-title: Decay of turbulence generated by a square‐fractal‐element grid
  publication-title: Journal of Fluid Mechanics
– volume: 6
  issue: 1
  year: 2004
  article-title: Eulerian and Lagrangian studies in surface flow turbulence
  publication-title: New Journal of Physics
– volume: 47
  start-page: 539
  issue: 3
  year: 2004
  end-page: 553
  article-title: The role of free‐surface turbulence and surfactants in air–water gas transfer
  publication-title: International Journal of Heat and Mass Transfer
– volume: 17
  issue: 9
  year: 2005
  article-title: On the normalized turbulent energy dissipation rate
  publication-title: Physics of Fluids
– volume: 121
  start-page: 49
  year: 2018
  end-page: 75
  article-title: Lagrangian ocean analysis: Fundamentals and practices
  publication-title: Ocean Modelling
– year: 2001
– volume: 5
  start-page: 241
  issue: 1
  year: 2016
  end-page: 251
  article-title: A novel permanent gauge‐cam station for surface‐flow observations on the Tiber River
  publication-title: Geoscientific Instrumentation, Methods and Data Systems
– volume: 10
  start-page: 437
  issue: 2
  year: 1998
  end-page: 456
  article-title: An experimental investigation of the characteristics of free‐surface turbulence in channel flow
  publication-title: Physics of Fluids
– volume: 449
  start-page: 225
  year: 2001
  end-page: 254
  article-title: The dynamics of strong turbulence at free surfaces. part 1. description
  publication-title: Journal of Fluid Mechanics
– volume: 54
  start-page: 159
  issue: 1
  year: 2022
  end-page: 189
  article-title: Particle‐laden turbulence: Progress and perspectives
  publication-title: Annual Review of Fluid Mechanics
– volume: 28
  issue: 3
  year: 2016
  article-title: Lagrangian velocity and acceleration correlations of large inertial particles in a closed turbulent flow
  publication-title: Physics of Fluids
– volume: 172
  start-page: 378
  year: 2019
  end-page: 386
  article-title: Ptv‐stream: A simplified particle tracking velocimetry framework for stream surface flow monitoring
  publication-title: Catena
– volume: 876
  start-page: 876
  year: 2019
  article-title: Laboratory studies of Lagrangian transport by breaking surface waves
  publication-title: Journal of Fluid Mechanics
– year: 1979
– year: 1994
– volume: 883
  start-page: 883
  year: 2020
  article-title: Is vortex stretching the main cause of the turbulent energy cascade?
  publication-title: Journal of Fluid Mechanics
– volume: 49
  start-page: 341
  issue: 1
  year: 2010
  end-page: 353
  article-title: Experimental investigation of a free‐surface turbulent jet with coanda effect
  publication-title: Experiments in Fluids
– volume: 13
  start-page: 237
  issue: 5–6
  year: 2002
  end-page: 245
  article-title: Large scale piv‐measurements at the surface of shallow water flows
  publication-title: Flow Measurement and Instrumentation
– start-page: 145
  year: 2018
  end-page: 202
– volume: 844
  year: 2022
  article-title: Performance assessment of bubbles barriers for microplastic remediation
  publication-title: Science of the Total Environment
– volume: 88
  issue: 3
  year: 2013
  article-title: Time persistence of floating‐particle clusters in free‐surface turbulence
  publication-title: Physical Review E
– volume: 7
  issue: 1
  year: 2020
  article-title: Plastic debris in rivers
  publication-title: Wiley Interdisciplinary Reviews: Water
– volume: 104
  start-page: 1
  year: 1981
  end-page: 43
  article-title: Structure of space‐time correlations of bursting phenomena in an open‐channel flow
  publication-title: Journal of Fluid Mechanics
– volume: 7
  issue: 12
  year: 2019
  article-title: Sea waves transport of inertial micro‐plastics: Mathematical model and applications
  publication-title: Journal of Marine Science and Engineering
– volume: 650
  start-page: 5
  year: 2010
  end-page: 55
  article-title: Modulation of isotropic turbulence by particles of taylor length‐scale size
  publication-title: Journal of Fluid Mechanics
– volume: 2
  start-page: 41
  issue: 1
  year: 2012
  end-page: 53
  article-title: Scaling the gas transfer velocity and hydraulic geometry in streams and small rivers
  publication-title: Limnology and Oceanography: Fluids and Environments
– volume: 530
  start-page: 31
  year: 2005
  end-page: 80
  article-title: Fluid dynamics of floating particles
  publication-title: Journal of Fluid Mechanics
– volume: 226
  year: 2022
  article-title: The key role of surface tension in the transport and quantification of plastic pollution in rivers
  publication-title: Water Research
– volume: 120
  start-page: 1235
  issue: 10
  year: 1994
  end-page: 1237
  article-title: Turbulence in open‐channel flows
  publication-title: Journal of Hydraulic Engineering
– volume: 9
  issue: 12
  year: 2012
  article-title: Physical transport properties of marine microplastic pollution
  publication-title: Biogeosciences Discussions
– volume: 943
  start-page: 943
  year: 2022
  article-title: Experimental investigation of inertial fibres and disks in a turbulent boundary layer
  publication-title: Journal of Fluid Mechanics
– volume: 8
  start-page: 1
  issue: 1
  year: 2018
  end-page: 15
  article-title: Evidence that the great pacific garbage patch is rapidly accumulating plastic
  publication-title: Scientific Reports
– volume: 34
  issue: 1
  year: 2022
  article-title: Dispersion of heavy particles under sea waves
  publication-title: Physics of Fluids
– volume: 93
  start-page: 128
  issue: 2
  year: 2009
  end-page: 134
  article-title: The effect of particle shape and hydrophobicity in flotation
  publication-title: International Journal of Mineral Processing
– volume: 12
  start-page: 392
  issue: 2
  year: 2000
  end-page: 402
  article-title: Effects of shallowness on the development of free‐surface mixing layers
  publication-title: Physics of Fluids
– year: 2015
– volume: 124
  issue: 10
  year: 2020
  article-title: Energy transfer from large to small scales in turbulence by multiscale nonlinear strain and vorticity interactions
  publication-title: Physical Review Letters
– volume: 3
  start-page: 1577
  issue: 6
  year: 1991
  end-page: 1586
  article-title: Reynolds number effects in Lagrangian stochastic models of turbulent dispersion
  publication-title: Physics of Fluids A: Fluid Dynamics
– volume: 837
  start-page: 320
  year: 2018
  end-page: 340
  article-title: Transport of anisotropic particles under waves
  publication-title: Journal of Fluid Mechanics
– volume: 15
  issue: 2
  year: 2020
  article-title: The physical oceanography of the transport of floating marine debris
  publication-title: Environmental Research Letters
– volume: 934
  start-page: A18
  year: 2022
  article-title: Influence of Reynolds number on the dynamics of rigid, slender and non‐axisymmetric fibres in channel flow turbulence
  publication-title: Journal of Fluid Mechanics
– volume: 4
  issue: 7
  year: 2019
  article-title: Statistics of single and multiple floaters in experiments of surface wave turbulence
  publication-title: Physical Review Fluids
– volume: 34
  start-page: 10163
  issue: 34
  year: 2018
  end-page: 10168
  article-title: Limit for small spheres to float by dynamic analysis
  publication-title: Langmuir
– volume: 112
  issue: 7
  year: 2014
  article-title: Flexible fiber in a turbulent flow: A macroscopic polymer
  publication-title: Physical Review Letters
– volume: 125
  start-page: 3
  issue: 1
  year: 1999
  end-page: 10
  article-title: Air‐water gas transfer in uniform channel flow
  publication-title: Journal of Hydraulic Engineering
– volume: 73
  start-page: 817
  issue: 9
  year: 2005
  end-page: 825
  article-title: The “cheerios effect”
  publication-title: American Journal of Physics
– year: 2000
– volume: 733
  start-page: 588
  year: 2013
  end-page: 624
  article-title: Air–water gas transfer and near‐surface motions
  publication-title: Journal of Fluid Mechanics
– volume: 821
  start-page: 248
  year: 2017
  end-page: 265
  article-title: On the dynamics of turbulence near a free surface
  publication-title: Journal of Fluid Mechanics
– volume: 469
  start-page: 121
  year: 2002
  end-page: 160
  article-title: Measurement of particle accelerations in fully developed turbulence
  publication-title: Journal of Fluid Mechanics
– volume: 77
  start-page: 177
  issue: 1–2
  year: 2013
  end-page: 182
  article-title: Microplastic pollution in the surface waters of the laurentian great lakes
  publication-title: Marine Pollution Bulletin
– volume: 61
  start-page: 1
  issue: 9
  year: 2020
  end-page: 18
  article-title: Propagation of perturbations and meandering in a free surface shallow water jet
  publication-title: Experiments in Fluids
– volume: 44
  start-page: 427
  issue: 1
  year: 2012
  end-page: 451
  article-title: Two‐dimensional turbulence
  publication-title: Annual Review of Fluid Mechanics
– volume: 2
  start-page: 196
  issue: 1
  year: 1921
  end-page: 212
  article-title: Diffusion by continuous movements
  publication-title: Proceedings of the London Mathematical Society
– volume: 7
  start-page: 1649
  issue: 7
  year: 1995
  end-page: 1664
  article-title: A numerical study of free‐surface turbulence in channel flow
  publication-title: Physics of Fluids
– volume: 7
  issue: 8
  year: 2022
  article-title: Experimental study of concentrated particle transport in successively bifurcating vessels
  publication-title: Physical Review Fluids
– volume: 112
  issue: 2
  year: 2014
  article-title: Inertial range scaling in rotations of long rods in turbulence
  publication-title: Physical Review Letters
– volume: 7
  issue: 18
  year: 2021
  article-title: More than 1000 rivers account for 80% of global riverine plastic emissions into the ocean
  publication-title: Science Advances
– volume: 80
  start-page: 181
  year: 2017
  end-page: 192
  article-title: Pod‐based background removal for particle image velocimetry
  publication-title: Experimental Thermal and Fluid Science
– volume: 41
  start-page: 375
  issue: 1
  year: 2009
  end-page: 404
  article-title: Lagrangian properties of particles in turbulence
  publication-title: Annual Review of Fluid Mechanics
– year: 2016
  article-title: Assessing the use of uav to quantify flow processes in rivers
  publication-title: River flow
– volume: 143
  issue: 8
  year: 2017
  article-title: Turbulent mixing of floating pollutants at the surface of the river
  publication-title: Journal of Hydraulic Engineering
– volume: 651
  start-page: 81
  year: 2010
  end-page: 91
  article-title: Finite‐size effects in the dynamics of neutrally buoyant particles in turbulent flow
  publication-title: Journal of Fluid Mechanics
– volume: 77
  issue: 1
  year: 2008
  article-title: Behavior of heavy particles in isotropic turbulence
  publication-title: Physical Review E
– volume: 89
  start-page: 324
  issue: 1–2
  year: 2014
  end-page: 330
  article-title: Selective transport of microplastics and mesoplastics by drifting in coastal waters
  publication-title: Marine Pollution Bulletin
– volume: 592
  start-page: 335
  year: 2007
  end-page: 366
  article-title: Small‐scale statistics in high‐resolution direct numerical simulation of turbulence: Reynolds number dependence of one‐point velocity gradient statistics
  publication-title: Journal of Fluid Mechanics
– volume: 223
  start-page: 383
  issue: ‐1
  year: 1991
  end-page: 409
  article-title: Two‐dimensional cusped interfaces
  publication-title: Journal of Fluid Mechanics
– volume: 136
  start-page: 368
  issue: 6
  year: 2010
  end-page: 378
  article-title: Estimation of power spectra of acoustic‐Doppler velocimetry data contaminated with intermittent spikes
  publication-title: Journal of Hydraulic Engineering
– ident: e_1_2_8_48_1
  doi: 10.1016/j.flowmeasinst.2019.03.001
– ident: e_1_2_8_116_1
  doi: 10.1017/s0022112093002708
– ident: e_1_2_8_109_1
  doi: 10.1098/rsta.2017.0104
– ident: e_1_2_8_72_1
  doi: 10.1007/s00348-020-03025-2
– ident: e_1_2_8_119_1
  doi: 10.1017/s0022112099004243
– ident: e_1_2_8_82_1
  doi: 10.1103/physrevlett.112.024501
– ident: e_1_2_8_96_1
  doi: 10.1017/s0022112011000127
– ident: e_1_2_8_113_1
  doi: 10.1119/1.1898523
– ident: e_1_2_8_14_1
  doi: 10.1146/annurev-fluid-120710-101240
– ident: e_1_2_8_83_1
  doi: 10.1061/(asce)hy.1943-7900.0000202
– ident: e_1_2_8_92_1
  doi: 10.1017/s0022112099004590
– ident: e_1_2_8_57_1
  doi: 10.1038/s41598-018-22939-w
– ident: e_1_2_8_114_1
  doi: 10.1017/s0022112002001842
– ident: e_1_2_8_68_1
  doi: 10.1016/j.ijheatmasstransfer.2003.06.001
– ident: e_1_2_8_25_1
  doi: 10.1093/acprof:oso/9780198722588.001.0001
– ident: e_1_2_8_19_1
  doi: 10.1063/1.2055529
– start-page: 31
  volume-title: Marine litter in the mediterranean and black seas ciesm workshop monograph
  year: 2014
  ident: e_1_2_8_118_1
  contributor:
    fullname: Zambianchi E.
– ident: e_1_2_8_108_1
  doi: 10.1088/1748-9326/10/12/124006
– ident: e_1_2_8_103_1
  doi: 10.1017/jfm.2013.435
– ident: e_1_2_8_94_1
  doi: 10.1017/s0022112005003575
– ident: e_1_2_8_17_1
  doi: 10.1103/physrevfluids.6.024601
– ident: e_1_2_8_74_1
  doi: 10.1088/1367-2630/6/1/116
– ident: e_1_2_8_51_1
  doi: 10.1103/physreve.77.016307
– ident: e_1_2_8_100_1
  doi: 10.1112/plms/s2-20.1.196
– ident: e_1_2_8_44_1
  doi: 10.1017/s0022112007008531
– ident: e_1_2_8_62_1
  doi: 10.3390/rs13142661
– ident: e_1_2_8_31_1
  doi: 10.1017/jfm.2017.853
– ident: e_1_2_8_30_1
  doi: 10.1103/physrevfluids.4.034301
– ident: e_1_2_8_89_1
  doi: 10.1017/s0022112094001370
– ident: e_1_2_8_120_1
  doi: 10.1016/j.scitotenv.2022.157027
– ident: e_1_2_8_16_1
  doi: 10.1017/s0022112001006012
– ident: e_1_2_8_69_1
  doi: 10.1126/sciadv.aaz5803
– ident: e_1_2_8_71_1
  doi: 10.1007/s00348-010-0885-1
– ident: e_1_2_8_38_1
  doi: 10.1017/s0022112006004204
– ident: e_1_2_8_43_1
  doi: 10.1017/s0022112078000130
– ident: e_1_2_8_77_1
  doi: 10.1061/(asce)0733-9429(1994)120:10(1235)
– ident: e_1_2_8_67_1
  doi: 10.1080/24705357.2019.1709102
– ident: e_1_2_8_97_1
  doi: 10.3390/jmse7120467
– ident: e_1_2_8_18_1
  doi: 10.1103/physrevlett.112.074501
– ident: e_1_2_8_70_1
  doi: 10.1016/j.expthermflusci.2016.08.021
– ident: e_1_2_8_91_1
  doi: 10.1017/s0022112001004669
– volume-title: Waves in fluids
  year: 2001
  ident: e_1_2_8_60_1
  contributor:
    fullname: Lighthill J.
– ident: e_1_2_8_75_1
  doi: 10.1017/s0022112081002796
– ident: e_1_2_8_107_1
  doi: 10.1016/j.watres.2022.119078
– ident: e_1_2_8_13_1
  doi: 10.1201/9781315644479-96
– ident: e_1_2_8_54_1
  doi: 10.1063/1.1762301
– ident: e_1_2_8_73_1
  doi: 10.1061/(asce)0733-9429(1999)125:1(3)
– ident: e_1_2_8_110_1
  doi: 10.1002/wat2.1398
– ident: e_1_2_8_6_1
  doi: 10.1017/jfm.2020.934
– ident: e_1_2_8_10_1
  doi: 10.1017/s002211200500844x
– ident: e_1_2_8_64_1
  doi: 10.1017/s0022112009994022
– ident: e_1_2_8_79_1
  doi: 10.1016/j.csr.2018.01.010
– ident: e_1_2_8_26_1
  doi: 10.1017/jfm.2017.548
– ident: e_1_2_8_106_1
  doi: 10.1038/s41561-019-0324-8
– ident: e_1_2_8_42_1
  doi: 10.1017/s0022112010000923
– ident: e_1_2_8_102_1
  doi: 10.1146/annurev.fluid.010908.165210
– ident: e_1_2_8_98_1
  doi: 10.5194/gi-5-241-2016
– ident: e_1_2_8_87_1
  doi: 10.1215/21573689-1597669
– ident: e_1_2_8_39_1
  doi: 10.1017/jfm.2013.684
– ident: e_1_2_8_37_1
  doi: 10.1007/s00348-022-03450-5
– ident: e_1_2_8_52_1
  doi: 10.1016/j.minpro.2009.07.007
– ident: e_1_2_8_63_1
  doi: 10.1103/physreve.88.033003
– ident: e_1_2_8_117_1
  doi: 10.1016/s0955-5986(02)00059-6
– ident: e_1_2_8_66_1
  doi: 10.1017/s0022112003004245
– ident: e_1_2_8_84_1
  doi: 10.1017/CBO9780511840531
– ident: e_1_2_8_22_1
  doi: 10.1109/lgrs.2011.2125942
– ident: e_1_2_8_93_1
  doi: 10.1017/s0022112005005690
– ident: e_1_2_8_41_1
  doi: 10.1017/jfm.2014.68
– ident: e_1_2_8_78_1
  doi: 10.1007/s10652-007-9021-z
– ident: e_1_2_8_45_1
  doi: 10.1016/j.marpolbul.2014.09.041
– ident: e_1_2_8_85_1
  doi: 10.1007/978-3-319-68852-7_5
– ident: e_1_2_8_111_1
  doi: 10.1088/1748-9326/ab6d7d
– ident: e_1_2_8_80_1
  doi: 10.1063/1.868483
– ident: e_1_2_8_27_1
  doi: 10.1063/5.0074760
– volume-title: Particle image velocimetry (No. 30)
  year: 2011
  ident: e_1_2_8_2_1
  contributor:
    fullname: Adrian R. J.
– ident: e_1_2_8_15_1
  doi: 10.1146/annurev-fluid-030121-021103
– ident: e_1_2_8_21_1
  doi: 10.1007/s00348-016-2281-y
– ident: e_1_2_8_8_1
  doi: 10.1146/annurev.fluid.010908.165243
– ident: e_1_2_8_59_1
  doi: 10.1103/physrevfluids.7.083101
– ident: e_1_2_8_99_1
  doi: 10.1016/j.catena.2018.09.009
– ident: e_1_2_8_20_1
  doi: 10.1017/jfm.2019.923
– ident: e_1_2_8_3_1
  doi: 10.1017/jfm.2021.185
– ident: e_1_2_8_101_1
  doi: 10.7551/mitpress/3014.001.0001
– volume-title: Mixing in inland and coastal waters
  year: 1979
  ident: e_1_2_8_34_1
  contributor:
    fullname: Fischer H. B.
– ident: e_1_2_8_23_1
  doi: 10.1088/1367-2630/6/1/053
– ident: e_1_2_8_121_1
  doi: 10.1016/j.ecss.2017.09.032
– ident: e_1_2_8_46_1
  doi: 10.1126/science.1260352
– ident: e_1_2_8_5_1
  doi: 10.1017/jfm.2019.99
– ident: e_1_2_8_28_1
  doi: 10.1103/physrevfluids.4.074805
– ident: e_1_2_8_112_1
  doi: 10.1016/j.ocemod.2017.11.008
– ident: e_1_2_8_4_1
  doi: 10.1017/jfm.2021.1145
– ident: e_1_2_8_40_1
  doi: 10.1016/j.marpolbul.2021.112095
– ident: e_1_2_8_61_1
  doi: 10.1016/j.cageo.2010.07.007
– volume: 9
  issue: 12
  year: 2012
  ident: e_1_2_8_9_1
  article-title: Physical transport properties of marine microplastic pollution
  publication-title: Biogeosciences Discussions
  contributor:
    fullname: Ballent A.
– ident: e_1_2_8_50_1
  doi: 10.1017/s0022112091001477
– ident: e_1_2_8_56_1
  doi: 10.1063/1.869573
– volume-title: River mixing
  year: 1994
  ident: e_1_2_8_88_1
  contributor:
    fullname: Rutherford J. C.
– ident: e_1_2_8_32_1
  doi: 10.1016/j.marpolbul.2013.10.007
– ident: e_1_2_8_33_1
  doi: 10.1103/physreve.86.035301
– volume: 30
  start-page: 301
  year: 1941
  ident: e_1_2_8_53_1
  article-title: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers
  publication-title: Proceedings of the URSS Academy of Sciences
  contributor:
    fullname: Kolmogorov A. N.
– ident: e_1_2_8_65_1
  doi: 10.1063/1.4944523
– ident: e_1_2_8_122_1
  doi: 10.1109/34.888718
– ident: e_1_2_8_36_1
  doi: 10.1126/sciadv.1700782
– ident: e_1_2_8_7_1
  doi: 10.1017/jfm.2022.438
– ident: e_1_2_8_11_1
  doi: 10.1017/jfm.2021.280
– ident: e_1_2_8_81_1
  doi: 10.1061/(asce)hy.1943-7900.0001319
– ident: e_1_2_8_35_1
  doi: 10.1017/jfm.2017.209
– ident: e_1_2_8_47_1
  doi: 10.1021/acs.langmuir.8b02031
– ident: e_1_2_8_90_1
  doi: 10.1063/1.857937
– ident: e_1_2_8_95_1
  doi: 10.1017/s0022112091002276
– ident: e_1_2_8_76_1
  doi: 10.1017/jfm.2017.13
– ident: e_1_2_8_24_1
  doi: 10.1016/j.marpolbul.2020.111024
– ident: e_1_2_8_115_1
  doi: 10.1146/annurev-fluid-010816-060135
– ident: e_1_2_8_86_1
  doi: 10.1063/1.866603
– ident: e_1_2_8_49_1
  doi: 10.1103/physrevlett.124.104501
– ident: e_1_2_8_105_1
  doi: 10.1063/1.870317
– ident: e_1_2_8_58_1
  doi: 10.1017/jfm.2019.544
– ident: e_1_2_8_12_1
  doi: 10.1063/1.5110731
– ident: e_1_2_8_55_1
  doi: 10.1029/2012gl051116
– ident: e_1_2_8_29_1
  doi: 10.3389/fmars.2020.00148
– ident: e_1_2_8_104_1
  doi: 10.1017/jfm.2016.826
SSID ssj0014567
Score 2.4753735
Snippet Understanding how floating particles are transported by streaming waters is crucial in predicting the transport of plastic pollution, which is dramatically...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Approximation
Channel flow
Computer models
Diameters
Floating
free surface turbulence
Free surfaces
Lakes
Litter
Mathematical models
Meandering
Meandering streams
Movement
natural stream
Natural streams
Natural waters
Oceans
Open channel flow
Open channels
particle dispersion
Particle tracking
Particle tracking velocimetry
Plastic debris
Plastic pollution
Pollution
Pollution dispersion
Prediction models
Rivers
Rods
Seafloor spreading
Shape
Shape effects
Stream pollution
Streaming
Surface flow
Surface waves
Tracers
Translational motion
Turbulence
Title Effect of Shape and Size on the Transport of Floating Particles on the Free Surface in a Natural Stream
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2023WR035716
https://www.proquest.com/docview/2882356533
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagCyy8EYWCPMBGRLDz8oKESqNOVdWAyhY5zYVWgqRq6AC_njsnKWVBQmyRYluJz4_v_J2_Y-ySdiFPCbA8VweWA-izBlJKizxnXDBVAibdWz_yB8_BQ49kcu6auzCVPsTqwI1mhlmvaYLrpKzFBkgjk_J-j0e2dBHx4xKMjoK5wSGHKxIBsYHfEMwEdOq4d6x-s1755470DTPXwarZbcLd_37nHtupcSa_rwbGPtuA_IBtNdeQS3yu059PPw7ZS6VhzIuMR1M9B67zlEezT-BFzhEh8pUEOhUJXwtNwdJ82ETVNcXCBQCPlotMT4DPcq75QBtdD07kt347Yk9h77Hbt-oMDJaWCHwsCW6aTHypRQCkHOglaHCEMF7iOE4qhNIZ_leWaeUnvg9uAClIUGhtpW89mMhj1sqLHE4Yp9MShS35vh042k4VcYDE7YvMJuq3za4aK8TzSmgjNgS5UPF6F7ZZpzFRXE-3MhboJ0iEplK22bUxxq9txONRdyQoFdfp34qfsW16UQXzdVjrfbGEc7ZZpssLM_S-AB_z0rA
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED7RMpSFN6JQwANsRIQ4L08IlUZFlKpqisoWOc2FVoKkaukAvx5fHqUsSIgtw9lKcmf7s7_zdwDntArZwkDNtqSrmaj2rC7nXKOds5owRYhZube273Sf3bsWyeTclHdhcn2I5YEbjYxsvqYBTgfShdoAiWRS4e9hX-eWgvwVWDdtFYt0h4P3ljSCQgdOSTET1Cky31X7q9XWP9ekb6C5Clez9cbb-vebbsNmATXZbR4bO7CGyS7UypvIc_VcVEAff-zBSy5jzNKY-WM5RSaTiPmTT2RpwhRIZEsVdDLxXlNJ-dKsVybWlWbeDJH5i1ksR8gmCZOsKzNpD0b8t3zbhyevNWi2taIIgya5wj4aRysKRw6XhoskHmiHyucKxdihaZqRYQgZq--KYymc0HHQcjFCjkI5XMhrG0f8AKpJmuAhMDowEaonx9FdU-qRIBqQ6H0j1on9rcNF6YZgmmttBBlHbohg9RfWoVH6KChG3Dww1FaBK3TKeR0uM2_82kcw7Df7BlXjOvqb-RnU2oPHTtC57z4cwwYZ5bl9Dai-zxZ4ApV5tDjN4vALmaHW2A
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED7RIgELb0ShgAfYiCh2Xl6QUNuoCFRVDahskdNcaCVIqpYO8Ovx5VHKgoTYMpytJOezP_s7fwdwTquQLTkatqVcw0S9Z3WFEAbtnPWEKUPMyr11fKf77LbaJJNzU96FyfUhFgduFBnZfE0BPoniQmyANDKp7veg3xCWRvwVWDU1EiftfCF6CxZBgwOnZJgJ6RSJ77r91XLrn0vSN85cRqvZcuNt_fdFt2GzAJrsNh8ZO7CCyS6sl_eQZ_q5qH8--tiDl1zEmKUx80dqgkwlEfPHn8jShGmIyBYa6GTivaaKsqVZr0yrK828KSLz59NYDZGNE6ZYV2XCHozYb_W2D09e-7HZMYoSDIYSGvkYAq0oHDpCcRdJOtAOtcc1hrFD0zQjzqWK9XfFsZJO6DhouRihQKndLdW1jUNxANUkTfAQGB2XSN2T4zRcUzUiSSQgkfs8bhD3W4OL0gvBJFfaCDKGnMtg-RfWoF66KCjibRZwvVEQGpsKUYPLzBm_9hEM-s0-p1pcR38zP4O1XssLHu6698ewQTZ5Yl8dqu_TOZ5AZRbNT7NR-AUKEdV-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Shape+and+Size+on+the+Transport+of+Floating+Particles+on+the+Free+Surface+in+a+Natural+Stream&rft.jtitle=Water+resources+research&rft.au=Sanness+Salmon%2C+Henri+R.&rft.au=Baker%2C+Lucia+J.&rft.au=Kozarek%2C+Jessica+L.&rft.au=Coletti%2C+Filippo&rft.date=2023-10-01&rft.issn=0043-1397&rft.eissn=1944-7973&rft.volume=59&rft.issue=10&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2023WR035716&rft.externalDBID=10.1029%252F2023WR035716&rft.externalDocID=WRCR26901
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1397&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1397&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1397&client=summon