Taking roots over high extensions of finite fields

We present a new algorithm for computing m \mathbb{F}_q, with p any positive integer. In the particular case m=2 O(\mathsf {M}(n)\log (p) + \mathsf {C}(n)\log (n)) \mathbb{F}_p \mathsf {M}(n) \mathsf {C}(n) \mathsf {M}(n) = O(n\log (n) \log \log (n)) \mathsf {C}(n) = O(n^{1.67}).

Saved in:
Bibliographic Details
Published in:Mathematics of computation Vol. 83; no. 285; pp. 435 - 446
Main Authors: DOLISKANI, JAVAD, SCHOST, ÉRIC
Format: Journal Article
Language:English
Published: American Mathematical Society 01-01-2014
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present a new algorithm for computing m \mathbb{F}_q, with p any positive integer. In the particular case m=2 O(\mathsf {M}(n)\log (p) + \mathsf {C}(n)\log (n)) \mathbb{F}_p \mathsf {M}(n) \mathsf {C}(n) \mathsf {M}(n) = O(n\log (n) \log \log (n)) \mathsf {C}(n) = O(n^{1.67}).
ISSN:0025-5718
1088-6842
DOI:10.1090/S0025-5718-2013-02715-9