Taking roots over high extensions of finite fields
We present a new algorithm for computing m \mathbb{F}_q, with p any positive integer. In the particular case m=2 O(\mathsf {M}(n)\log (p) + \mathsf {C}(n)\log (n)) \mathbb{F}_p \mathsf {M}(n) \mathsf {C}(n) \mathsf {M}(n) = O(n\log (n) \log \log (n)) \mathsf {C}(n) = O(n^{1.67}).
Saved in:
Published in: | Mathematics of computation Vol. 83; no. 285; pp. 435 - 446 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
American Mathematical Society
01-01-2014
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present a new algorithm for computing m \mathbb{F}_q, with p any positive integer. In the particular case m=2 O(\mathsf {M}(n)\log (p) + \mathsf {C}(n)\log (n)) \mathbb{F}_p \mathsf {M}(n) \mathsf {C}(n) \mathsf {M}(n) = O(n\log (n) \log \log (n)) \mathsf {C}(n) = O(n^{1.67}). |
---|---|
ISSN: | 0025-5718 1088-6842 |
DOI: | 10.1090/S0025-5718-2013-02715-9 |