Enhancing Defect Tolerance and Phase Stability of High-Bandgap Perovskites via Guanidinium Alloying
The open-circuit voltages (V OC) of hybrid perovskite (HP) solar cells do not increase sufficiently with increasing bandgap (for Eg > 1.70eV). We study the impact of A+ size mismatch induced lattice distortions (in ABX3 structure) on the optoelectronic quality of high-bandgap HPs and find that th...
Saved in:
Published in: | ACS energy letters Vol. 3; no. 6; pp. 1261 - 1268 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
American Chemical Society
08-06-2018
American Chemical Society (ACS) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The open-circuit voltages (V OC) of hybrid perovskite (HP) solar cells do not increase sufficiently with increasing bandgap (for Eg > 1.70eV). We study the impact of A+ size mismatch induced lattice distortions (in ABX3 structure) on the optoelectronic quality of high-bandgap HPs and find that the highest quality films have high A-site size-mismatch, where large guanidinium (GA) compensates for small Cs to keep the tolerance factor in the range for the perovskite structure. Specifically, we find that 1.84eV bandgap (FA0.33GA0.19Cs0.47)Pb(I0.66Br0.34)3 and 1.75eV bandgap (FA0.58GA0.10Cs0.32)Pb(I0.73Br0.27)3 attain quasi-Fermi level splitting of 1.43eV and 1.35eV, respectively, which is >91% of the Shockley-Queisser limit for both cases. Films of 1.75eV bandgap (FA,GA,Cs)Pb(I,Br)3 are then used to fabricate p-i-n photovoltaic devices that have a V OC of 1.24 V. This V OC is among the highest V OC reported for any HPs with similar bandgap (1.7 to 1.8 eV) and a substantial improvement for the p-i-n architecture, which is desirable for tandems with Si, CIGS, or a low-bandgap HP. Collectively, our results show that non-radiative recombination rates are reduced in (FA,GA,Cs)Pb(I,Br)3 films and prove that FA-GA-Cs alloying is a viable route to attain high V OC in high-bandgap HP solar cells. |
---|---|
AbstractList | Not provided. The open-circuit voltages (V OC) of hybrid perovskite (HP) solar cells do not increase sufficiently with increasing bandgap (for Eg > 1.70eV). We study the impact of A+ size mismatch induced lattice distortions (in ABX3 structure) on the optoelectronic quality of high-bandgap HPs and find that the highest quality films have high A-site size-mismatch, where large guanidinium (GA) compensates for small Cs to keep the tolerance factor in the range for the perovskite structure. Specifically, we find that 1.84eV bandgap (FA0.33GA0.19Cs0.47)Pb(I0.66Br0.34)3 and 1.75eV bandgap (FA0.58GA0.10Cs0.32)Pb(I0.73Br0.27)3 attain quasi-Fermi level splitting of 1.43eV and 1.35eV, respectively, which is >91% of the Shockley-Queisser limit for both cases. Films of 1.75eV bandgap (FA,GA,Cs)Pb(I,Br)3 are then used to fabricate p-i-n photovoltaic devices that have a V OC of 1.24 V. This V OC is among the highest V OC reported for any HPs with similar bandgap (1.7 to 1.8 eV) and a substantial improvement for the p-i-n architecture, which is desirable for tandems with Si, CIGS, or a low-bandgap HP. Collectively, our results show that non-radiative recombination rates are reduced in (FA,GA,Cs)Pb(I,Br)3 films and prove that FA-GA-Cs alloying is a viable route to attain high V OC in high-bandgap HP solar cells. |
Author | Rajagopal, Adharsh Hillhouse, Hugh W Braly, Ian L Stoddard, Ryan J Palmer, Ray L Jen, Alex K.-Y |
AuthorAffiliation | Department of Chemistry Department of Chemical Engineering, Clean Energy Institute, and Molecular Engineering & Sciences Institute City University of Hong Kong Department of Materials Science & Engineering, Molecular Engineering and Sciences Institute Department of Materials Science & Engineering University of Washington |
AuthorAffiliation_xml | – name: Department of Chemical Engineering, Clean Energy Institute, and Molecular Engineering & Sciences Institute – name: Department of Materials Science & Engineering, Molecular Engineering and Sciences Institute – name: Department of Chemistry – name: Department of Materials Science & Engineering – name: City University of Hong Kong – name: University of Washington |
Author_xml | – sequence: 1 givenname: Ryan J orcidid: 0000-0003-1071-6443 surname: Stoddard fullname: Stoddard, Ryan J organization: University of Washington – sequence: 2 givenname: Adharsh orcidid: 0000-0001-9806-080X surname: Rajagopal fullname: Rajagopal, Adharsh organization: University of Washington – sequence: 3 givenname: Ray L surname: Palmer fullname: Palmer, Ray L organization: University of Washington – sequence: 4 givenname: Ian L orcidid: 0000-0002-7010-0424 surname: Braly fullname: Braly, Ian L organization: University of Washington – sequence: 5 givenname: Alex K.-Y orcidid: 0000-0002-9219-7749 surname: Jen fullname: Jen, Alex K.-Y organization: City University of Hong Kong – sequence: 6 givenname: Hugh W orcidid: 0000-0003-2069-7899 surname: Hillhouse fullname: Hillhouse, Hugh W email: h2@uw.edu organization: University of Washington |
BackLink | https://www.osti.gov/biblio/1539547$$D View this record in Osti.gov |
BookMark | eNqFUE1PAjEQbQwmIvITTBrvi_2gu8sREcHERBLx3HS7093i0pLtQrL_3ho46MnMYSbz5r3Me7do4LwDhO4pmVDC6KPSARy0Vd9A103yghCRpVdoyHhOkpzOxODXfIPGIewIITTNRawh0ktXK6etq_AzGNAd3voG2rgCrFyJN7UKgD86VdjGdj32Bq9tVSdPEazUAW-g9afwZTsI-GQVXh2Vs6V19rjH86bxfVS-Q9dGNQHGlz5Cny_L7WKdvL2vXhfzt0RxxrokLakyxUwblZqpYCzNcmGmekZKo02pOCWclJrlWVZmFLhiBcs5CKBEs4IC4SP0cNb1obMy6PiUrrV3LtqSVPCZmGbxSJyPdOtDaMHIQ2v3qu0lJfInUfknUXlJNPLomRdhufPH1kUr_3C-AUk3gc0 |
CitedBy_id | crossref_primary_10_1039_C9CC00016J crossref_primary_10_1002_adfm_202404402 crossref_primary_10_1016_j_joule_2019_05_009 crossref_primary_10_1021_acsami_2c09201 crossref_primary_10_1038_s41560_024_01491_0 crossref_primary_10_1039_C9TA05308E crossref_primary_10_1126_science_adf0194 crossref_primary_10_1021_acscentsci_2c01077 crossref_primary_10_1016_j_apsusc_2021_149986 crossref_primary_10_1002_cjoc_202100672 crossref_primary_10_1016_j_nanoen_2020_104755 crossref_primary_10_1002_aenm_202203230 crossref_primary_10_1002_admi_202000105 crossref_primary_10_1016_j_mtener_2018_12_009 crossref_primary_10_1021_acs_jpclett_2c00603 crossref_primary_10_1039_D0CP03882B crossref_primary_10_1016_j_apsusc_2022_154362 crossref_primary_10_1002_crat_202300046 crossref_primary_10_1021_acsmaterialslett_0c00166 crossref_primary_10_1002_eem2_12211 crossref_primary_10_1016_j_apsusc_2024_160542 crossref_primary_10_1021_acsenergylett_9b00351 crossref_primary_10_1016_j_joule_2021_05_013 crossref_primary_10_2139_ssrn_4122738 crossref_primary_10_1039_D0SE01469A crossref_primary_10_1016_j_jechem_2021_03_038 crossref_primary_10_1038_s41467_023_43016_5 crossref_primary_10_1016_j_nanoen_2021_106141 crossref_primary_10_1039_D0TA12286F crossref_primary_10_1016_j_cej_2022_141199 crossref_primary_10_1021_acs_jpclett_1c03095 crossref_primary_10_1039_C9EE03757H crossref_primary_10_1038_s41467_019_10985_5 crossref_primary_10_1021_acsaem_9b00747 crossref_primary_10_1002_adma_202002585 crossref_primary_10_1063_1_5126867 crossref_primary_10_1007_s40820_023_01040_6 crossref_primary_10_1002_solr_202200852 crossref_primary_10_1021_acs_jpclett_2c01515 crossref_primary_10_1016_j_jechem_2020_09_036 crossref_primary_10_1063_5_0054086 crossref_primary_10_1002_advs_202105085 crossref_primary_10_1021_acsenergylett_1c02302 crossref_primary_10_1002_aenm_202202802 crossref_primary_10_1021_acsami_3c02571 crossref_primary_10_7498_aps_68_20190355 crossref_primary_10_1002_smll_202004877 crossref_primary_10_1002_adom_202303038 crossref_primary_10_1002_adfm_202301695 crossref_primary_10_1021_acsami_2c19201 crossref_primary_10_1039_D2QM01315K crossref_primary_10_1039_C9TA10899H crossref_primary_10_1002_adfm_202200431 crossref_primary_10_1039_C9CP01348B crossref_primary_10_1016_j_nanoen_2020_105377 crossref_primary_10_1016_j_mtsust_2023_100603 crossref_primary_10_1016_j_nanoen_2021_106608 crossref_primary_10_1039_D2EE04087E crossref_primary_10_1007_s43207_021_00117_5 crossref_primary_10_1038_s41578_019_0125_0 crossref_primary_10_1002_nano_202000183 crossref_primary_10_1021_acs_chemmater_1c00848 crossref_primary_10_1039_C9NR03533H crossref_primary_10_7498_aps_69_20200822 crossref_primary_10_1021_acs_chemmater_9b05342 crossref_primary_10_1088_1674_4926_41_5_051201 crossref_primary_10_1016_j_flatc_2020_100213 crossref_primary_10_1002_adfm_202110700 crossref_primary_10_1021_acs_nanolett_2c02368 crossref_primary_10_1021_acsenergylett_0c00872 crossref_primary_10_1039_D2MH01429G crossref_primary_10_1088_1361_6641_ab27f7 crossref_primary_10_1021_acsami_0c14925 crossref_primary_10_1021_acsenergylett_3c00609 crossref_primary_10_1002_solr_202100906 crossref_primary_10_1021_acs_jpclett_8b01152 crossref_primary_10_1016_j_solener_2018_10_036 crossref_primary_10_1039_C9QM00112C crossref_primary_10_1002_aenm_202302124 crossref_primary_10_1039_C9NH00774A crossref_primary_10_1039_D2QM01341J crossref_primary_10_1002_aenm_202201509 crossref_primary_10_1016_j_orgel_2023_106984 crossref_primary_10_1021_acsenergylett_2c00304 crossref_primary_10_1021_acsenergylett_0c00164 crossref_primary_10_26599_EMD_2024_9370037 crossref_primary_10_1021_acsanm_1c03727 crossref_primary_10_1002_adfm_201905739 crossref_primary_10_1002_solr_202200021 crossref_primary_10_1002_aenm_202202438 crossref_primary_10_1039_D1EE01562A crossref_primary_10_1002_chem_201805032 crossref_primary_10_1002_smll_202302021 crossref_primary_10_1039_C9EE00476A crossref_primary_10_1038_s41598_020_63674_5 crossref_primary_10_1016_j_joule_2019_04_012 crossref_primary_10_1002_solr_202100842 crossref_primary_10_1021_acsenergylett_2c01766 crossref_primary_10_1021_acsaem_9b01924 crossref_primary_10_1021_acsami_0c14540 crossref_primary_10_1021_acsenergylett_0c00450 crossref_primary_10_3390_en14175431 crossref_primary_10_1002_adma_202103394 crossref_primary_10_1002_adfm_201806479 crossref_primary_10_1016_j_heliyon_2024_e24689 crossref_primary_10_1016_j_joule_2019_08_001 crossref_primary_10_1021_acsami_4c03285 crossref_primary_10_1002_solr_202100295 |
Cites_doi | 10.1038/nature25989 10.1021/acs.nanolett.6b04453 10.1126/science.aad5845 10.1039/C7TA00562H 10.1021/jacs.7b09096 10.1021/acsenergylett.7b00647 10.1039/C6EE03014A 10.1021/acsenergylett.7b00525 10.1017/S0885715613001188 10.1021/acsenergylett.6b00495 10.1039/C7TA00404D 10.1016/j.nanoen.2017.10.006 10.1021/acsenergylett.7b00278 10.1021/acsenergylett.7b01255 10.1002/ejic.201601499 10.1039/C4SC03141E 10.1016/0001-6160(53)90006-6 10.1002/aenm.201500799 10.1021/acs.inorgchem.7b01204 10.1038/s41467-017-00284-2 10.1021/jacs.7b12860 10.1021/acs.jpclett.7b01185 10.1002/anie.201607397 10.1038/s41560-017-0054-3 10.1021/acsami.7b06816 10.1039/C6EE01969B 10.1021/acsenergylett.7b00357 10.1063/1.4898346 10.1126/science.aah5557 10.1016/0927-0248(92)90016-I 10.1021/acs.nanolett.6b03857 10.1107/S0021889869006558 10.1039/C6TA08418D 10.1107/S0021889804004583 10.1021/acs.jpcc.5b10728 10.1038/nenergy.2017.9 10.1021/acs.nanolett.5b04060 10.1002/adma.201702140 10.1021/acsenergylett.7b00282 10.1002/adma.201706275 |
ContentType | Journal Article |
CorporateAuthor | Univ. of Washington, Seattle, WA (United States) |
CorporateAuthor_xml | – name: Univ. of Washington, Seattle, WA (United States) |
DBID | AAYXX CITATION OTOTI |
DOI | 10.1021/acsenergylett.8b00576 |
DatabaseName | CrossRef OSTI.GOV |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 2380-8195 |
EndPage | 1268 |
ExternalDocumentID | 1539547 10_1021_acsenergylett_8b00576 c842903953 |
GroupedDBID | ABUCX ACGFS ACS AFEFF ALMA_UNASSIGNED_HOLDINGS EBS EJD VF5 VG9 AAYXX ABQRX AHGAQ BAANH CITATION CUPRZ GGK ABFRP OTOTI |
ID | FETCH-LOGICAL-a322t-6d1afb9cfa6f45226785f4c90dfcfda31030dc2877d71e3a2b283e5e10c2b1e03 |
IEDL.DBID | ACS |
ISSN | 2380-8195 |
IngestDate | Fri May 19 02:13:57 EDT 2023 Fri Aug 23 00:52:10 EDT 2024 Thu Aug 27 13:44:51 EDT 2020 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a322t-6d1afb9cfa6f45226785f4c90dfcfda31030dc2877d71e3a2b283e5e10c2b1e03 |
Notes | EE0006710 USDOE Office of Energy Efficiency and Renewable Energy (EERE) |
ORCID | 0000-0002-7010-0424 0000-0001-9806-080X 0000-0003-2069-7899 0000-0003-1071-6443 0000-0002-9219-7749 0000000310716443 000000019806080X 0000000320697899 0000000292197749 0000000270100424 |
PageCount | 8 |
ParticipantIDs | osti_scitechconnect_1539547 crossref_primary_10_1021_acsenergylett_8b00576 acs_journals_10_1021_acsenergylett_8b00576 |
ProviderPackageCode | ACS VG9 ABUCX AFEFF VF5 |
PublicationCentury | 2000 |
PublicationDate | 2018-06-08 |
PublicationDateYYYYMMDD | 2018-06-08 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-08 day: 08 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS energy letters |
PublicationTitleAlternate | ACS Energy Lett |
PublicationYear | 2018 |
Publisher | American Chemical Society American Chemical Society (ACS) |
Publisher_xml | – name: American Chemical Society – name: American Chemical Society (ACS) |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 Warren B. E. (ref27/cit27) 1969 ref21/cit21 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref7/cit7 |
References_xml | – ident: ref40/cit40 doi: 10.1038/nature25989 – ident: ref37/cit37 doi: 10.1021/acs.nanolett.6b04453 – ident: ref8/cit8 doi: 10.1126/science.aad5845 – ident: ref39/cit39 doi: 10.1039/C7TA00562H – ident: ref23/cit23 doi: 10.1021/jacs.7b09096 – ident: ref1/cit1 doi: 10.1021/acsenergylett.7b00647 – ident: ref9/cit9 doi: 10.1039/C6EE03014A – ident: ref4/cit4 doi: 10.1021/acsenergylett.7b00525 – ident: ref31/cit31 doi: 10.1017/S0885715613001188 – ident: ref34/cit34 doi: 10.1021/acsenergylett.6b00495 – ident: ref7/cit7 doi: 10.1039/C7TA00404D – ident: ref19/cit19 doi: 10.1016/j.nanoen.2017.10.006 – ident: ref11/cit11 doi: 10.1021/acsenergylett.7b00278 – ident: ref15/cit15 doi: 10.1021/acsenergylett.7b01255 – ident: ref21/cit21 doi: 10.1002/ejic.201601499 – ident: ref3/cit3 doi: 10.1039/C4SC03141E – ident: ref29/cit29 doi: 10.1016/0001-6160(53)90006-6 – ident: ref14/cit14 doi: 10.1002/aenm.201500799 – ident: ref22/cit22 doi: 10.1021/acs.inorgchem.7b01204 – ident: ref38/cit38 doi: 10.1038/s41467-017-00284-2 – ident: ref26/cit26 doi: 10.1021/jacs.7b12860 – ident: ref33/cit33 doi: 10.1021/acs.jpclett.7b01185 – ident: ref24/cit24 doi: 10.1002/anie.201607397 – ident: ref25/cit25 doi: 10.1038/s41560-017-0054-3 – ident: ref5/cit5 doi: 10.1021/acsami.7b06816 – ident: ref32/cit32 doi: 10.1039/C6EE01969B – ident: ref36/cit36 doi: 10.1021/acsenergylett.7b00357 – volume-title: X-ray Diffraction year: 1969 ident: ref27/cit27 contributor: fullname: Warren B. E. – ident: ref16/cit16 doi: 10.1063/1.4898346 – ident: ref12/cit12 doi: 10.1126/science.aah5557 – ident: ref17/cit17 doi: 10.1016/0927-0248(92)90016-I – ident: ref10/cit10 doi: 10.1021/acs.nanolett.6b03857 – ident: ref28/cit28 doi: 10.1107/S0021889869006558 – ident: ref20/cit20 doi: 10.1039/C6TA08418D – ident: ref30/cit30 doi: 10.1107/S0021889804004583 – ident: ref6/cit6 doi: 10.1021/acs.jpcc.5b10728 – ident: ref13/cit13 doi: 10.1038/nenergy.2017.9 – ident: ref18/cit18 doi: 10.1021/acs.nanolett.5b04060 – ident: ref2/cit2 doi: 10.1002/adma.201702140 – ident: ref35/cit35 doi: 10.1021/acsenergylett.7b00282 – ident: ref41/cit41 doi: 10.1002/adma.201706275 |
SSID | ssj0001685858 |
Score | 2.457285 |
Snippet | The open-circuit voltages (V OC) of hybrid perovskite (HP) solar cells do not increase sufficiently with increasing bandgap (for Eg > 1.70eV). We study the... Not provided. |
SourceID | osti crossref acs |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | 1261 |
SubjectTerms | Chemistry Electrochemistry Energy & Fuels Materials Science Science & Technology - Other Topics |
Title | Enhancing Defect Tolerance and Phase Stability of High-Bandgap Perovskites via Guanidinium Alloying |
URI | http://dx.doi.org/10.1021/acsenergylett.8b00576 https://www.osti.gov/biblio/1539547 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwJBDJ4IXvTg24iomYMnk5V9MjtHRAgnQwIm3jazMx0gwV3CAon_3naBiAdjOE_2NW23X6ftV8YelYgjXJOOsJJaciB1pA2N4ylpZZBCqAQ1CvcG4u0jfu0QTU7jjwy-7zWULqBsg8PvWDzHpDaiWWGHvkC0QFioPfg5VCnZ1MspdEHsOpQj2nbt_HUn8kq6-OWVqjla146X6Z7u_X5n7GQDKHlrrQHn7ACyC3a8QzN4yXQnGxOtRjbir0DlG3yYT4EmagBXmeH9MboyjrCzLJT94rnlVP7hvODiSM14H-b5qqBj3oKvJoqjWmUT9HmT5SdvTac5dUpdsfduZ9juOZvhCo5CG144TeMpm0ptVdMSqzo6rciGWrrGamtUOX7MaIynhBEeBMpPEYhABJ6r_dQDN7hm1SzP4IZxcKXBuC4NQ61CG6cqNSYKASNPFEYT4hp7wk1KNsZRJGXe2_eSXzuXbHauxp63kkhma8KN_y6ok7wSRAxEe6upPkgvEvyTyygUt_s8u86OEA_FZSVYfMeqi_kS7lmlMMuHUs--AZxs1UM |
link.rule.ids | 230,315,782,786,887,2769,27085,27933,27934,56747,56797 |
linkProvider | American Chemical Society |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4UD-rBtxHx0YMnk8Vd2FePKBCMaEzAxNum206VBHcJCyT-e2cqRDwYo9dttu22MzvftDPfMHYhozjANuFERlBKDqSOML52PCmMqKfgy4gShTu96OE5braIJidc5MLgJArsqbCX-F_sAt4VPgObDYefM6nGJD1RuMrWghABMUGim97X2YolVbfF6Oqx69BV0SJ556eeyDip4ptxKuWoZEvGpr3932nusK05vOSNT3nYZSuQ7bHNJdLBfaZa2SuRbGQvvAkUzMH7-RCovgZwmWn--IqGjSMItWGz7zw3nIJBnGtsfJEj_gjjfFbQoW_BZwPJUciyAVrAwfSNN4bDnPKmDthTu9W_6TjzUguORI2eOKH2pEmFMjI0xLGOJiwwvhKuNspoaYuRaYXeVaQjD-qyliIsgQA8V9VSD9z6IStleQZHjIMrNHp5qe8r6Zs4lanWgQ_oh-KehBCX2SUuUjJXlSKxt-A1L_m2csl85cqsutiQZPRJv_HbCxXatgTxA5HgKooWUpME_-si8KPjv4x9ztY7_ftu0r19uKuwDURKsY0Ri09YaTKewilbLfT0zIreB8sy3bA |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA86QfTBb3F-5sEnodpubdP4Nt2GoshABd9KmlzmYLbDbgP_e-9ih_ogIr42NEkvd7273N3vGDtWIolwTHrCSirJgcyTNjReoKSVzQxCJahQ-Ope3D0l7Q7B5JzPamFwEyXOVLogPkn1yNgKYSA4w-fgKuLwk8anCXGQiOfZQhQLSY5X6_L-837FAau7hnTNxPcoXDQr4PlpJlJQuvymoGoFCtoXhdNd_c9W19hKZWby1gdfrLM5yDfY8hfwwU2mO_kzgW3kfd4GSurgD8UQqM8GcJUb3ntGBcfRGHXps2-8sJySQrwLHOyrEe_BazEt6fK35NOB4shs-QA14WDywlvDYUH1U1vssdt5uLzyqpYLnkLJHnuxCZTNpLYqtoS1jqossqGWvrHaGuWakhmNXpYwIoCmamRonkAEga8bWQB-c5vV8iKHHcbBlwa9vSwMtQptkqnMmCgE9EfxXGJI6uwEiZRWIlOmLhreCNJvlEsrytXZ6exQ0tEHDMdvL-zR0aVoRxAYrqasIT1O8f8uo1Ds_mXtI7bYa3fT2-u7mz22hAZT4lLFkn1WG79O4IDNl2Zy6LjvHffI4DM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Defect+Tolerance+and+Phase+Stability+of+High-Bandgap+Perovskites+via+Guanidinium+Alloying&rft.jtitle=ACS+energy+letters&rft.au=Stoddard%2C+Ryan+J.&rft.au=Rajagopal%2C+Adharsh&rft.au=Palmer%2C+Ray+L.&rft.au=Braly%2C+Ian+L.&rft.date=2018-06-08&rft.pub=American+Chemical+Society+%28ACS%29&rft.issn=2380-8195&rft.eissn=2380-8195&rft.volume=3&rft.issue=6&rft_id=info:doi/10.1021%2Facsenergylett.8b00576&rft.externalDocID=1539547 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2380-8195&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2380-8195&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2380-8195&client=summon |