Enhancing Defect Tolerance and Phase Stability of High-Bandgap Perovskites via Guanidinium Alloying

The open-circuit voltages (V OC) of hybrid perovskite (HP) solar cells do not increase sufficiently with increasing bandgap (for Eg > 1.70eV). We study the impact of A+ size mismatch induced lattice distortions (in ABX3 structure) on the optoelectronic quality of high-bandgap HPs and find that th...

Full description

Saved in:
Bibliographic Details
Published in:ACS energy letters Vol. 3; no. 6; pp. 1261 - 1268
Main Authors: Stoddard, Ryan J, Rajagopal, Adharsh, Palmer, Ray L, Braly, Ian L, Jen, Alex K.-Y, Hillhouse, Hugh W
Format: Journal Article
Language:English
Published: United States American Chemical Society 08-06-2018
American Chemical Society (ACS)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The open-circuit voltages (V OC) of hybrid perovskite (HP) solar cells do not increase sufficiently with increasing bandgap (for Eg > 1.70eV). We study the impact of A+ size mismatch induced lattice distortions (in ABX3 structure) on the optoelectronic quality of high-bandgap HPs and find that the highest quality films have high A-site size-mismatch, where large guanidinium (GA) compensates for small Cs to keep the tolerance factor in the range for the perovskite structure. Specifically, we find that 1.84eV bandgap (FA0.33GA0.19Cs0.47)­Pb­(I0.66Br0.34)3 and 1.75eV bandgap (FA0.58GA0.10Cs0.32)­Pb­(I0.73Br0.27)3 attain quasi-Fermi level splitting of 1.43eV and 1.35eV, respectively, which is >91% of the Shockley-Queisser limit for both cases. Films of 1.75eV bandgap (FA,GA,Cs)­Pb­(I,Br)3 are then used to fabricate p-i-n photovoltaic devices that have a V OC of 1.24 V. This V OC is among the highest V OC reported for any HPs with similar bandgap (1.7 to 1.8 eV) and a substantial improvement for the p-i-n architecture, which is desirable for tandems with Si, CIGS, or a low-bandgap HP. Collectively, our results show that non-radiative recombination rates are reduced in (FA,GA,Cs)­Pb­(I,Br)3 films and prove that FA-GA-Cs alloying is a viable route to attain high V OC in high-bandgap HP solar cells.
AbstractList Not provided.
The open-circuit voltages (V OC) of hybrid perovskite (HP) solar cells do not increase sufficiently with increasing bandgap (for Eg > 1.70eV). We study the impact of A+ size mismatch induced lattice distortions (in ABX3 structure) on the optoelectronic quality of high-bandgap HPs and find that the highest quality films have high A-site size-mismatch, where large guanidinium (GA) compensates for small Cs to keep the tolerance factor in the range for the perovskite structure. Specifically, we find that 1.84eV bandgap (FA0.33GA0.19Cs0.47)­Pb­(I0.66Br0.34)3 and 1.75eV bandgap (FA0.58GA0.10Cs0.32)­Pb­(I0.73Br0.27)3 attain quasi-Fermi level splitting of 1.43eV and 1.35eV, respectively, which is >91% of the Shockley-Queisser limit for both cases. Films of 1.75eV bandgap (FA,GA,Cs)­Pb­(I,Br)3 are then used to fabricate p-i-n photovoltaic devices that have a V OC of 1.24 V. This V OC is among the highest V OC reported for any HPs with similar bandgap (1.7 to 1.8 eV) and a substantial improvement for the p-i-n architecture, which is desirable for tandems with Si, CIGS, or a low-bandgap HP. Collectively, our results show that non-radiative recombination rates are reduced in (FA,GA,Cs)­Pb­(I,Br)3 films and prove that FA-GA-Cs alloying is a viable route to attain high V OC in high-bandgap HP solar cells.
Author Rajagopal, Adharsh
Hillhouse, Hugh W
Braly, Ian L
Stoddard, Ryan J
Palmer, Ray L
Jen, Alex K.-Y
AuthorAffiliation Department of Chemistry
Department of Chemical Engineering, Clean Energy Institute, and Molecular Engineering & Sciences Institute
City University of Hong Kong
Department of Materials Science & Engineering, Molecular Engineering and Sciences Institute
Department of Materials Science & Engineering
University of Washington
AuthorAffiliation_xml – name: Department of Chemical Engineering, Clean Energy Institute, and Molecular Engineering & Sciences Institute
– name: Department of Materials Science & Engineering, Molecular Engineering and Sciences Institute
– name: Department of Chemistry
– name: Department of Materials Science & Engineering
– name: City University of Hong Kong
– name: University of Washington
Author_xml – sequence: 1
  givenname: Ryan J
  orcidid: 0000-0003-1071-6443
  surname: Stoddard
  fullname: Stoddard, Ryan J
  organization: University of Washington
– sequence: 2
  givenname: Adharsh
  orcidid: 0000-0001-9806-080X
  surname: Rajagopal
  fullname: Rajagopal, Adharsh
  organization: University of Washington
– sequence: 3
  givenname: Ray L
  surname: Palmer
  fullname: Palmer, Ray L
  organization: University of Washington
– sequence: 4
  givenname: Ian L
  orcidid: 0000-0002-7010-0424
  surname: Braly
  fullname: Braly, Ian L
  organization: University of Washington
– sequence: 5
  givenname: Alex K.-Y
  orcidid: 0000-0002-9219-7749
  surname: Jen
  fullname: Jen, Alex K.-Y
  organization: City University of Hong Kong
– sequence: 6
  givenname: Hugh W
  orcidid: 0000-0003-2069-7899
  surname: Hillhouse
  fullname: Hillhouse, Hugh W
  email: h2@uw.edu
  organization: University of Washington
BackLink https://www.osti.gov/biblio/1539547$$D View this record in Osti.gov
BookMark eNqFUE1PAjEQbQwmIvITTBrvi_2gu8sREcHERBLx3HS7093i0pLtQrL_3ho46MnMYSbz5r3Me7do4LwDhO4pmVDC6KPSARy0Vd9A103yghCRpVdoyHhOkpzOxODXfIPGIewIITTNRawh0ktXK6etq_AzGNAd3voG2rgCrFyJN7UKgD86VdjGdj32Bq9tVSdPEazUAW-g9afwZTsI-GQVXh2Vs6V19rjH86bxfVS-Q9dGNQHGlz5Cny_L7WKdvL2vXhfzt0RxxrokLakyxUwblZqpYCzNcmGmekZKo02pOCWclJrlWVZmFLhiBcs5CKBEs4IC4SP0cNb1obMy6PiUrrV3LtqSVPCZmGbxSJyPdOtDaMHIQ2v3qu0lJfInUfknUXlJNPLomRdhufPH1kUr_3C-AUk3gc0
CitedBy_id crossref_primary_10_1039_C9CC00016J
crossref_primary_10_1002_adfm_202404402
crossref_primary_10_1016_j_joule_2019_05_009
crossref_primary_10_1021_acsami_2c09201
crossref_primary_10_1038_s41560_024_01491_0
crossref_primary_10_1039_C9TA05308E
crossref_primary_10_1126_science_adf0194
crossref_primary_10_1021_acscentsci_2c01077
crossref_primary_10_1016_j_apsusc_2021_149986
crossref_primary_10_1002_cjoc_202100672
crossref_primary_10_1016_j_nanoen_2020_104755
crossref_primary_10_1002_aenm_202203230
crossref_primary_10_1002_admi_202000105
crossref_primary_10_1016_j_mtener_2018_12_009
crossref_primary_10_1021_acs_jpclett_2c00603
crossref_primary_10_1039_D0CP03882B
crossref_primary_10_1016_j_apsusc_2022_154362
crossref_primary_10_1002_crat_202300046
crossref_primary_10_1021_acsmaterialslett_0c00166
crossref_primary_10_1002_eem2_12211
crossref_primary_10_1016_j_apsusc_2024_160542
crossref_primary_10_1021_acsenergylett_9b00351
crossref_primary_10_1016_j_joule_2021_05_013
crossref_primary_10_2139_ssrn_4122738
crossref_primary_10_1039_D0SE01469A
crossref_primary_10_1016_j_jechem_2021_03_038
crossref_primary_10_1038_s41467_023_43016_5
crossref_primary_10_1016_j_nanoen_2021_106141
crossref_primary_10_1039_D0TA12286F
crossref_primary_10_1016_j_cej_2022_141199
crossref_primary_10_1021_acs_jpclett_1c03095
crossref_primary_10_1039_C9EE03757H
crossref_primary_10_1038_s41467_019_10985_5
crossref_primary_10_1021_acsaem_9b00747
crossref_primary_10_1002_adma_202002585
crossref_primary_10_1063_1_5126867
crossref_primary_10_1007_s40820_023_01040_6
crossref_primary_10_1002_solr_202200852
crossref_primary_10_1021_acs_jpclett_2c01515
crossref_primary_10_1016_j_jechem_2020_09_036
crossref_primary_10_1063_5_0054086
crossref_primary_10_1002_advs_202105085
crossref_primary_10_1021_acsenergylett_1c02302
crossref_primary_10_1002_aenm_202202802
crossref_primary_10_1021_acsami_3c02571
crossref_primary_10_7498_aps_68_20190355
crossref_primary_10_1002_smll_202004877
crossref_primary_10_1002_adom_202303038
crossref_primary_10_1002_adfm_202301695
crossref_primary_10_1021_acsami_2c19201
crossref_primary_10_1039_D2QM01315K
crossref_primary_10_1039_C9TA10899H
crossref_primary_10_1002_adfm_202200431
crossref_primary_10_1039_C9CP01348B
crossref_primary_10_1016_j_nanoen_2020_105377
crossref_primary_10_1016_j_mtsust_2023_100603
crossref_primary_10_1016_j_nanoen_2021_106608
crossref_primary_10_1039_D2EE04087E
crossref_primary_10_1007_s43207_021_00117_5
crossref_primary_10_1038_s41578_019_0125_0
crossref_primary_10_1002_nano_202000183
crossref_primary_10_1021_acs_chemmater_1c00848
crossref_primary_10_1039_C9NR03533H
crossref_primary_10_7498_aps_69_20200822
crossref_primary_10_1021_acs_chemmater_9b05342
crossref_primary_10_1088_1674_4926_41_5_051201
crossref_primary_10_1016_j_flatc_2020_100213
crossref_primary_10_1002_adfm_202110700
crossref_primary_10_1021_acs_nanolett_2c02368
crossref_primary_10_1021_acsenergylett_0c00872
crossref_primary_10_1039_D2MH01429G
crossref_primary_10_1088_1361_6641_ab27f7
crossref_primary_10_1021_acsami_0c14925
crossref_primary_10_1021_acsenergylett_3c00609
crossref_primary_10_1002_solr_202100906
crossref_primary_10_1021_acs_jpclett_8b01152
crossref_primary_10_1016_j_solener_2018_10_036
crossref_primary_10_1039_C9QM00112C
crossref_primary_10_1002_aenm_202302124
crossref_primary_10_1039_C9NH00774A
crossref_primary_10_1039_D2QM01341J
crossref_primary_10_1002_aenm_202201509
crossref_primary_10_1016_j_orgel_2023_106984
crossref_primary_10_1021_acsenergylett_2c00304
crossref_primary_10_1021_acsenergylett_0c00164
crossref_primary_10_26599_EMD_2024_9370037
crossref_primary_10_1021_acsanm_1c03727
crossref_primary_10_1002_adfm_201905739
crossref_primary_10_1002_solr_202200021
crossref_primary_10_1002_aenm_202202438
crossref_primary_10_1039_D1EE01562A
crossref_primary_10_1002_chem_201805032
crossref_primary_10_1002_smll_202302021
crossref_primary_10_1039_C9EE00476A
crossref_primary_10_1038_s41598_020_63674_5
crossref_primary_10_1016_j_joule_2019_04_012
crossref_primary_10_1002_solr_202100842
crossref_primary_10_1021_acsenergylett_2c01766
crossref_primary_10_1021_acsaem_9b01924
crossref_primary_10_1021_acsami_0c14540
crossref_primary_10_1021_acsenergylett_0c00450
crossref_primary_10_3390_en14175431
crossref_primary_10_1002_adma_202103394
crossref_primary_10_1002_adfm_201806479
crossref_primary_10_1016_j_heliyon_2024_e24689
crossref_primary_10_1016_j_joule_2019_08_001
crossref_primary_10_1021_acsami_4c03285
crossref_primary_10_1002_solr_202100295
Cites_doi 10.1038/nature25989
10.1021/acs.nanolett.6b04453
10.1126/science.aad5845
10.1039/C7TA00562H
10.1021/jacs.7b09096
10.1021/acsenergylett.7b00647
10.1039/C6EE03014A
10.1021/acsenergylett.7b00525
10.1017/S0885715613001188
10.1021/acsenergylett.6b00495
10.1039/C7TA00404D
10.1016/j.nanoen.2017.10.006
10.1021/acsenergylett.7b00278
10.1021/acsenergylett.7b01255
10.1002/ejic.201601499
10.1039/C4SC03141E
10.1016/0001-6160(53)90006-6
10.1002/aenm.201500799
10.1021/acs.inorgchem.7b01204
10.1038/s41467-017-00284-2
10.1021/jacs.7b12860
10.1021/acs.jpclett.7b01185
10.1002/anie.201607397
10.1038/s41560-017-0054-3
10.1021/acsami.7b06816
10.1039/C6EE01969B
10.1021/acsenergylett.7b00357
10.1063/1.4898346
10.1126/science.aah5557
10.1016/0927-0248(92)90016-I
10.1021/acs.nanolett.6b03857
10.1107/S0021889869006558
10.1039/C6TA08418D
10.1107/S0021889804004583
10.1021/acs.jpcc.5b10728
10.1038/nenergy.2017.9
10.1021/acs.nanolett.5b04060
10.1002/adma.201702140
10.1021/acsenergylett.7b00282
10.1002/adma.201706275
ContentType Journal Article
CorporateAuthor Univ. of Washington, Seattle, WA (United States)
CorporateAuthor_xml – name: Univ. of Washington, Seattle, WA (United States)
DBID AAYXX
CITATION
OTOTI
DOI 10.1021/acsenergylett.8b00576
DatabaseName CrossRef
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 2380-8195
EndPage 1268
ExternalDocumentID 1539547
10_1021_acsenergylett_8b00576
c842903953
GroupedDBID ABUCX
ACGFS
ACS
AFEFF
ALMA_UNASSIGNED_HOLDINGS
EBS
EJD
VF5
VG9
AAYXX
ABQRX
AHGAQ
BAANH
CITATION
CUPRZ
GGK
ABFRP
OTOTI
ID FETCH-LOGICAL-a322t-6d1afb9cfa6f45226785f4c90dfcfda31030dc2877d71e3a2b283e5e10c2b1e03
IEDL.DBID ACS
ISSN 2380-8195
IngestDate Fri May 19 02:13:57 EDT 2023
Fri Aug 23 00:52:10 EDT 2024
Thu Aug 27 13:44:51 EDT 2020
IsPeerReviewed false
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a322t-6d1afb9cfa6f45226785f4c90dfcfda31030dc2877d71e3a2b283e5e10c2b1e03
Notes EE0006710
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
ORCID 0000-0002-7010-0424
0000-0001-9806-080X
0000-0003-2069-7899
0000-0003-1071-6443
0000-0002-9219-7749
0000000310716443
000000019806080X
0000000320697899
0000000292197749
0000000270100424
PageCount 8
ParticipantIDs osti_scitechconnect_1539547
crossref_primary_10_1021_acsenergylett_8b00576
acs_journals_10_1021_acsenergylett_8b00576
ProviderPackageCode ACS
VG9
ABUCX
AFEFF
VF5
PublicationCentury 2000
PublicationDate 2018-06-08
PublicationDateYYYYMMDD 2018-06-08
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-08
  day: 08
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS energy letters
PublicationTitleAlternate ACS Energy Lett
PublicationYear 2018
Publisher American Chemical Society
American Chemical Society (ACS)
Publisher_xml – name: American Chemical Society
– name: American Chemical Society (ACS)
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
Warren B. E. (ref27/cit27) 1969
ref21/cit21
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – ident: ref40/cit40
  doi: 10.1038/nature25989
– ident: ref37/cit37
  doi: 10.1021/acs.nanolett.6b04453
– ident: ref8/cit8
  doi: 10.1126/science.aad5845
– ident: ref39/cit39
  doi: 10.1039/C7TA00562H
– ident: ref23/cit23
  doi: 10.1021/jacs.7b09096
– ident: ref1/cit1
  doi: 10.1021/acsenergylett.7b00647
– ident: ref9/cit9
  doi: 10.1039/C6EE03014A
– ident: ref4/cit4
  doi: 10.1021/acsenergylett.7b00525
– ident: ref31/cit31
  doi: 10.1017/S0885715613001188
– ident: ref34/cit34
  doi: 10.1021/acsenergylett.6b00495
– ident: ref7/cit7
  doi: 10.1039/C7TA00404D
– ident: ref19/cit19
  doi: 10.1016/j.nanoen.2017.10.006
– ident: ref11/cit11
  doi: 10.1021/acsenergylett.7b00278
– ident: ref15/cit15
  doi: 10.1021/acsenergylett.7b01255
– ident: ref21/cit21
  doi: 10.1002/ejic.201601499
– ident: ref3/cit3
  doi: 10.1039/C4SC03141E
– ident: ref29/cit29
  doi: 10.1016/0001-6160(53)90006-6
– ident: ref14/cit14
  doi: 10.1002/aenm.201500799
– ident: ref22/cit22
  doi: 10.1021/acs.inorgchem.7b01204
– ident: ref38/cit38
  doi: 10.1038/s41467-017-00284-2
– ident: ref26/cit26
  doi: 10.1021/jacs.7b12860
– ident: ref33/cit33
  doi: 10.1021/acs.jpclett.7b01185
– ident: ref24/cit24
  doi: 10.1002/anie.201607397
– ident: ref25/cit25
  doi: 10.1038/s41560-017-0054-3
– ident: ref5/cit5
  doi: 10.1021/acsami.7b06816
– ident: ref32/cit32
  doi: 10.1039/C6EE01969B
– ident: ref36/cit36
  doi: 10.1021/acsenergylett.7b00357
– volume-title: X-ray Diffraction
  year: 1969
  ident: ref27/cit27
  contributor:
    fullname: Warren B. E.
– ident: ref16/cit16
  doi: 10.1063/1.4898346
– ident: ref12/cit12
  doi: 10.1126/science.aah5557
– ident: ref17/cit17
  doi: 10.1016/0927-0248(92)90016-I
– ident: ref10/cit10
  doi: 10.1021/acs.nanolett.6b03857
– ident: ref28/cit28
  doi: 10.1107/S0021889869006558
– ident: ref20/cit20
  doi: 10.1039/C6TA08418D
– ident: ref30/cit30
  doi: 10.1107/S0021889804004583
– ident: ref6/cit6
  doi: 10.1021/acs.jpcc.5b10728
– ident: ref13/cit13
  doi: 10.1038/nenergy.2017.9
– ident: ref18/cit18
  doi: 10.1021/acs.nanolett.5b04060
– ident: ref2/cit2
  doi: 10.1002/adma.201702140
– ident: ref35/cit35
  doi: 10.1021/acsenergylett.7b00282
– ident: ref41/cit41
  doi: 10.1002/adma.201706275
SSID ssj0001685858
Score 2.457285
Snippet The open-circuit voltages (V OC) of hybrid perovskite (HP) solar cells do not increase sufficiently with increasing bandgap (for Eg > 1.70eV). We study the...
Not provided.
SourceID osti
crossref
acs
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 1261
SubjectTerms Chemistry
Electrochemistry
Energy & Fuels
Materials Science
Science & Technology - Other Topics
Title Enhancing Defect Tolerance and Phase Stability of High-Bandgap Perovskites via Guanidinium Alloying
URI http://dx.doi.org/10.1021/acsenergylett.8b00576
https://www.osti.gov/biblio/1539547
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTwJBDJ4IXvTg24iomYMnk5V9MjtHRAgnQwIm3jazMx0gwV3CAon_3naBiAdjOE_2NW23X6ftV8YelYgjXJOOsJJaciB1pA2N4ylpZZBCqAQ1CvcG4u0jfu0QTU7jjwy-7zWULqBsg8PvWDzHpDaiWWGHvkC0QFioPfg5VCnZ1MspdEHsOpQj2nbt_HUn8kq6-OWVqjla146X6Z7u_X5n7GQDKHlrrQHn7ACyC3a8QzN4yXQnGxOtRjbir0DlG3yYT4EmagBXmeH9MboyjrCzLJT94rnlVP7hvODiSM14H-b5qqBj3oKvJoqjWmUT9HmT5SdvTac5dUpdsfduZ9juOZvhCo5CG144TeMpm0ptVdMSqzo6rciGWrrGamtUOX7MaIynhBEeBMpPEYhABJ6r_dQDN7hm1SzP4IZxcKXBuC4NQ61CG6cqNSYKASNPFEYT4hp7wk1KNsZRJGXe2_eSXzuXbHauxp63kkhma8KN_y6ok7wSRAxEe6upPkgvEvyTyygUt_s8u86OEA_FZSVYfMeqi_kS7lmlMMuHUs--AZxs1UM
link.rule.ids 230,315,782,786,887,2769,27085,27933,27934,56747,56797
linkProvider American Chemical Society
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4UD-rBtxHx0YMnk8Vd2FePKBCMaEzAxNum206VBHcJCyT-e2cqRDwYo9dttu22MzvftDPfMHYhozjANuFERlBKDqSOML52PCmMqKfgy4gShTu96OE5braIJidc5MLgJArsqbCX-F_sAt4VPgObDYefM6nGJD1RuMrWghABMUGim97X2YolVbfF6Oqx69BV0SJ556eeyDip4ptxKuWoZEvGpr3932nusK05vOSNT3nYZSuQ7bHNJdLBfaZa2SuRbGQvvAkUzMH7-RCovgZwmWn--IqGjSMItWGz7zw3nIJBnGtsfJEj_gjjfFbQoW_BZwPJUciyAVrAwfSNN4bDnPKmDthTu9W_6TjzUguORI2eOKH2pEmFMjI0xLGOJiwwvhKuNspoaYuRaYXeVaQjD-qyliIsgQA8V9VSD9z6IStleQZHjIMrNHp5qe8r6Zs4lanWgQ_oh-KehBCX2SUuUjJXlSKxt-A1L_m2csl85cqsutiQZPRJv_HbCxXatgTxA5HgKooWUpME_-si8KPjv4x9ztY7_ftu0r19uKuwDURKsY0Ri09YaTKewilbLfT0zIreB8sy3bA
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA86QfTBb3F-5sEnodpubdP4Nt2GoshABd9KmlzmYLbDbgP_e-9ih_ogIr42NEkvd7273N3vGDtWIolwTHrCSirJgcyTNjReoKSVzQxCJahQ-Ope3D0l7Q7B5JzPamFwEyXOVLogPkn1yNgKYSA4w-fgKuLwk8anCXGQiOfZQhQLSY5X6_L-837FAau7hnTNxPcoXDQr4PlpJlJQuvymoGoFCtoXhdNd_c9W19hKZWby1gdfrLM5yDfY8hfwwU2mO_kzgW3kfd4GSurgD8UQqM8GcJUb3ntGBcfRGHXps2-8sJySQrwLHOyrEe_BazEt6fK35NOB4shs-QA14WDywlvDYUH1U1vssdt5uLzyqpYLnkLJHnuxCZTNpLYqtoS1jqossqGWvrHaGuWakhmNXpYwIoCmamRonkAEga8bWQB-c5vV8iKHHcbBlwa9vSwMtQptkqnMmCgE9EfxXGJI6uwEiZRWIlOmLhreCNJvlEsrytXZ6exQ0tEHDMdvL-zR0aVoRxAYrqasIT1O8f8uo1Ds_mXtI7bYa3fT2-u7mz22hAZT4lLFkn1WG79O4IDNl2Zy6LjvHffI4DM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Defect+Tolerance+and+Phase+Stability+of+High-Bandgap+Perovskites+via+Guanidinium+Alloying&rft.jtitle=ACS+energy+letters&rft.au=Stoddard%2C+Ryan+J.&rft.au=Rajagopal%2C+Adharsh&rft.au=Palmer%2C+Ray+L.&rft.au=Braly%2C+Ian+L.&rft.date=2018-06-08&rft.pub=American+Chemical+Society+%28ACS%29&rft.issn=2380-8195&rft.eissn=2380-8195&rft.volume=3&rft.issue=6&rft_id=info:doi/10.1021%2Facsenergylett.8b00576&rft.externalDocID=1539547
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2380-8195&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2380-8195&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2380-8195&client=summon