Effect of Selectivity Enhancers on the Structure of Palladium during High-Pressure Continuous-Flow Direct Synthesis of Hydrogen Peroxide in Ethanol

A potentially green process to produce hydrogen peroxide (H2O2) is its direct synthesis from molecular hydrogen and oxygen. Still, the lack of mechanistic understanding of the reaction impedes a knowledge-based catalyst design for improved selectivity and stability. In this study, we employed X-ray...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physical chemistry. C Vol. 125; no. 6; pp. 3451 - 3462
Main Authors: Deschner, Benedikt J, Doronkin, Dmitry E, Sheppard, Thomas L, Zimina, Anna, Grunwaldt, Jan-Dierk, Dittmeyer, Roland
Format: Journal Article
Language:English
Published: American Chemical Society 18-02-2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A potentially green process to produce hydrogen peroxide (H2O2) is its direct synthesis from molecular hydrogen and oxygen. Still, the lack of mechanistic understanding of the reaction impedes a knowledge-based catalyst design for improved selectivity and stability. In this study, we employed X-ray absorption spectroscopy (XAS) to obtain structural information on a titania-supported palladium (Pd) catalyst under H2O2 synthesis conditions. The study focuses on the effect of the liquid-phase H2:O2 ratio between 0.67 and 3 and solvent composition under industrially relevant conditions, that is ethanol with and without H2SO4 and NaBr as selectivity enhancers at 40 bar. The X-ray near-edge structure of the absorption spectra (XANES) and the extended X-ray absorption fine structure (EXAFS) revealed that ethanol fully reduces Pd nanoparticles, even when saturated with oxygen. Oxygen presence at the Pd surface could only be suspected based on its small contribution to the EXAFS signal. A palladium hydride phase is detected under stoichiometric conditions due to lattice expansion. Addition of H2SO4 causes Pd lattice expansion and an increased yield at stoichiometric conditions. Further addition of bromide did not lead to any significant change in catalyst state and activity.
AbstractList A potentially green process to produce hydrogen peroxide (H2O2) is its direct synthesis from molecular hydrogen and oxygen. Still, the lack of mechanistic understanding of the reaction impedes a knowledge-based catalyst design for improved selectivity and stability. In this study, we employed X-ray absorption spectroscopy (XAS) to obtain structural information on a titania-supported palladium (Pd) catalyst under H2O2 synthesis conditions. The study focuses on the effect of the liquid-phase H2:O2 ratio between 0.67 and 3 and solvent composition under industrially relevant conditions, that is ethanol with and without H2SO4 and NaBr as selectivity enhancers at 40 bar. The X-ray near-edge structure of the absorption spectra (XANES) and the extended X-ray absorption fine structure (EXAFS) revealed that ethanol fully reduces Pd nanoparticles, even when saturated with oxygen. Oxygen presence at the Pd surface could only be suspected based on its small contribution to the EXAFS signal. A palladium hydride phase is detected under stoichiometric conditions due to lattice expansion. Addition of H2SO4 causes Pd lattice expansion and an increased yield at stoichiometric conditions. Further addition of bromide did not lead to any significant change in catalyst state and activity.
Author Grunwaldt, Jan-Dierk
Doronkin, Dmitry E
Dittmeyer, Roland
Deschner, Benedikt J
Sheppard, Thomas L
Zimina, Anna
AuthorAffiliation Institute of Catalysis Research and Technology
Karlsruhe Institute of Technology
Institute for Micro Process Engineering
Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology
AuthorAffiliation_xml – name: Institute for Micro Process Engineering
– name: Karlsruhe Institute of Technology
– name: Institute of Catalysis Research and Technology
– name: Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology
Author_xml – sequence: 1
  givenname: Benedikt J
  orcidid: 0000-0001-5800-7510
  surname: Deschner
  fullname: Deschner, Benedikt J
  email: benedikt.deschner@kit.edu
  organization: Karlsruhe Institute of Technology
– sequence: 2
  givenname: Dmitry E
  orcidid: 0000-0003-3930-3204
  surname: Doronkin
  fullname: Doronkin, Dmitry E
  email: dmitry.doronkin@kit.edu
  organization: Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology
– sequence: 3
  givenname: Thomas L
  orcidid: 0000-0002-8891-985X
  surname: Sheppard
  fullname: Sheppard, Thomas L
  organization: Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology
– sequence: 4
  givenname: Anna
  orcidid: 0000-0002-3111-7741
  surname: Zimina
  fullname: Zimina, Anna
  organization: Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology
– sequence: 5
  givenname: Jan-Dierk
  orcidid: 0000-0003-3606-0956
  surname: Grunwaldt
  fullname: Grunwaldt, Jan-Dierk
  organization: Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology
– sequence: 6
  givenname: Roland
  orcidid: 0000-0002-3110-6989
  surname: Dittmeyer
  fullname: Dittmeyer, Roland
  organization: Karlsruhe Institute of Technology
BookMark eNp1UF1LwzAUDTLBOX33MT_AzqRp2uVRZueEgYPpc0nzsWV0yUhStb_DP2zrhm_ChXvgno_LuQYj66wC4A6jKUYpfuAiTPdHIaZIYJxm-QUYY0bSpMgoHf3hrLgC1yHsEaIEYTIG36XWSkToNNyopkfmw8QOlnbHrVA-QGdh3Cm4ib4VsfVqYK5503Bp2gOUrTd2C5dmu0vWXoUwMObORmNb14Zk0bhP-GT8ELHpbO8UTBgslp30bqssXCvvvoxU0FhYxj7VNTfgUvMmqNvznoD3Rfk2Xyar1-eX-eMq4SRNY0JnlGeZYgXCtSKUSFbUOudEkhoxrWUtJaU5HkbLGVMyFwxrjqVkFLOckglAJ1_hXQhe6erozYH7rsKoGkqt-lKrodTqXGovuT9Jfi-u9bZ_8H_6DxQYgF0
CitedBy_id crossref_primary_10_1016_j_apcata_2023_119330
crossref_primary_10_1007_s12274_021_3786_0
crossref_primary_10_1016_j_apcata_2024_119630
crossref_primary_10_1016_j_catcom_2022_106585
crossref_primary_10_1134_S0023158423060022
crossref_primary_10_1007_s10563_022_09362_y
crossref_primary_10_1134_S0023158423601249
crossref_primary_10_31857_S0453881123060023
Cites_doi 10.1021/acs.jpcc.9b04229
10.1007/s10562-004-0769-1
10.1021/acscatal.7b04107
10.1016/S1381-1169(01)00154-6
10.1021/acscatal.8b00217
10.1016/j.cattod.2014.03.055
10.1038/srep38454
10.1016/j.apcata.2008.07.043
10.1021/jp4056297
10.1021/jp510730a
10.1021/je049922y
10.1021/jp500734p
10.1016/j.susc.2010.01.023
10.1021/jacs.5b10669
10.1039/C5RE00073D
10.1016/j.cej.2016.12.043
10.1016/S0360-0564(08)60363-6
10.1016/S0360-0564(08)60484-8
10.1021/acssuschemeng.6b02595
10.1016/j.jcat.2005.11.024
10.1007/BF02667685
10.1063/1.4999928
10.1039/C5CY01567G
10.3390/catal8090379
10.1016/j.catcom.2007.05.007
10.1021/i260040a020
10.5194/acp-15-4399-2015
10.1107/S0909049505012719
10.1021/ie202128v
10.1016/j.fluid.2014.10.025
10.1016/j.cattod.2007.01.043
10.1021/ie061277w
10.1021/jp066949a
10.1021/acs.nanolett.7b03589
10.1002/aenm.201801909
10.1063/1.2644598
10.1002/cssc.201600895
10.1016/S0021-9517(02)00070-2
10.1016/S0360-0564(08)60390-9
10.1039/C9SE00848A
10.1002/cctc.201801435
10.1016/j.jcat.2006.12.011
10.1103/RevModPhys.72.621
10.1016/j.jcat.2018.12.017
10.1103/PhysRevLett.53.74
10.1002/anie.200503779
10.1002/aic.15382
10.1103/PhysRevB.92.064202
10.1039/D0CY00553C
10.1126/science.aay1844
10.1016/j.susc.2010.05.026
10.1021/je00056a029
10.1021/jp710447j
10.1039/C5GC01600B
10.1021/acscatal.0c01305
10.1016/j.cattod.2014.10.001
10.1016/j.jcat.2004.12.001
10.1021/jp205951c
10.1016/j.chemosphere.2019.03.042
10.3390/catal9030251
10.1016/j.apcata.2006.08.014
10.3390/catal8110556
10.1021/acscatal.7b03514
10.1016/S0926-3373(02)00232-1
10.1002/cctc.201500496
10.1063/1.4807287
10.1039/C8RA08429G
10.1016/0021-9517(83)90117-3
10.1021/acs.jpcc.7b04152
10.1016/S0021-9517(02)00171-9
10.1016/j.cattod.2014.04.012
ContentType Journal Article
Copyright 2021 The Authors. Published by American Chemical Society
Copyright_xml – notice: 2021 The Authors. Published by American Chemical Society
DBID AAYXX
CITATION
DOI 10.1021/acs.jpcc.0c11246
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1932-7455
EndPage 3462
ExternalDocumentID 10_1021_acs_jpcc_0c11246
b371952524
GroupedDBID .K2
55A
5GY
5VS
7~N
85S
8RP
AABXI
ABFLS
ABMVS
ABPPZ
ABUCX
ACGFS
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DU5
EBS
ED
ED~
F5P
GNL
IH9
IHE
JG
JG~
K2
RNS
ROL
UI2
UKR
VF5
VG9
VQA
W1F
4.4
53G
AAYXX
ABJNI
ABQRX
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
ID FETCH-LOGICAL-a322t-585a44e9701be353d97bf6a3d3b09ffdbdd55615615fd89ed6c91fa1dd9519653
IEDL.DBID ACS
ISSN 1932-7447
IngestDate Fri Aug 23 01:15:12 EDT 2024
Sat Feb 20 04:00:06 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a322t-585a44e9701be353d97bf6a3d3b09ffdbdd55615615fd89ed6c91fa1dd9519653
ORCID 0000-0001-5800-7510
0000-0002-3110-6989
0000-0003-3930-3204
0000-0002-3111-7741
0000-0003-3606-0956
0000-0002-8891-985X
OpenAccessLink https://publikationen.bibliothek.kit.edu/1000129430/101912389
PageCount 12
ParticipantIDs crossref_primary_10_1021_acs_jpcc_0c11246
acs_journals_10_1021_acs_jpcc_0c11246
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 20210218
2021-02-18
PublicationDateYYYYMMDD 2021-02-18
PublicationDate_xml – month: 02
  year: 2021
  text: 20210218
  day: 18
PublicationDecade 2020
PublicationTitle Journal of physical chemistry. C
PublicationTitleAlternate J. Phys. Chem. C
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref71/cit71
ref37/cit37
ref20/cit20
ref60/cit60
ref74/cit74
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref75/cit75
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref72/cit72
ref76/cit76
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref73/cit73
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
(ref48/cit48) 1990
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref73/cit73
  doi: 10.1021/acs.jpcc.9b04229
– ident: ref64/cit64
  doi: 10.1007/s10562-004-0769-1
– ident: ref14/cit14
  doi: 10.1021/acscatal.7b04107
– ident: ref75/cit75
  doi: 10.1016/S1381-1169(01)00154-6
– ident: ref9/cit9
  doi: 10.1021/acscatal.8b00217
– ident: ref3/cit3
  doi: 10.1016/j.cattod.2014.03.055
– ident: ref12/cit12
  doi: 10.1038/srep38454
– ident: ref19/cit19
  doi: 10.1016/j.apcata.2008.07.043
– ident: ref23/cit23
  doi: 10.1021/jp4056297
– ident: ref58/cit58
  doi: 10.1021/jp510730a
– ident: ref44/cit44
– ident: ref49/cit49
  doi: 10.1021/je049922y
– ident: ref56/cit56
  doi: 10.1021/jp500734p
– ident: ref63/cit63
  doi: 10.1016/j.susc.2010.01.023
– ident: ref25/cit25
  doi: 10.1021/jacs.5b10669
– ident: ref35/cit35
  doi: 10.1039/C5RE00073D
– ident: ref13/cit13
  doi: 10.1016/j.cej.2016.12.043
– ident: ref66/cit66
  doi: 10.1016/S0360-0564(08)60363-6
– ident: ref76/cit76
  doi: 10.1016/S0360-0564(08)60484-8
– ident: ref6/cit6
  doi: 10.1021/acssuschemeng.6b02595
– ident: ref31/cit31
  doi: 10.1016/j.jcat.2005.11.024
– ident: ref61/cit61
  doi: 10.1007/BF02667685
– ident: ref54/cit54
  doi: 10.1063/1.4999928
– ident: ref7/cit7
  doi: 10.1039/C5CY01567G
– ident: ref15/cit15
  doi: 10.3390/catal8090379
– ident: ref5/cit5
  doi: 10.1016/j.catcom.2007.05.007
– ident: ref53/cit53
  doi: 10.1021/i260040a020
– ident: ref69/cit69
  doi: 10.5194/acp-15-4399-2015
– ident: ref51/cit51
– ident: ref55/cit55
  doi: 10.1107/S0909049505012719
– ident: ref34/cit34
  doi: 10.1021/ie202128v
– ident: ref50/cit50
  doi: 10.1016/j.fluid.2014.10.025
– ident: ref21/cit21
  doi: 10.1016/j.cattod.2007.01.043
– ident: ref45/cit45
  doi: 10.1021/ie061277w
– ident: ref70/cit70
  doi: 10.1021/jp066949a
– ident: ref41/cit41
  doi: 10.1021/acs.nanolett.7b03589
– ident: ref8/cit8
  doi: 10.1002/aenm.201801909
– ident: ref36/cit36
  doi: 10.1063/1.2644598
– ident: ref2/cit2
  doi: 10.1002/cssc.201600895
– ident: ref30/cit30
  doi: 10.1016/S0021-9517(02)00070-2
– ident: ref52/cit52
  doi: 10.1016/S0360-0564(08)60390-9
– ident: ref43/cit43
– ident: ref72/cit72
  doi: 10.1039/C9SE00848A
– ident: ref16/cit16
  doi: 10.1002/cctc.201801435
– ident: ref67/cit67
  doi: 10.1016/j.jcat.2006.12.011
– ident: ref37/cit37
  doi: 10.1103/RevModPhys.72.621
– ident: ref28/cit28
  doi: 10.1016/j.jcat.2018.12.017
– ident: ref57/cit57
  doi: 10.1103/PhysRevLett.53.74
– ident: ref1/cit1
  doi: 10.1002/anie.200503779
– ident: ref29/cit29
  doi: 10.1002/aic.15382
– ident: ref59/cit59
  doi: 10.1103/PhysRevB.92.064202
– ident: ref42/cit42
  doi: 10.1039/D0CY00553C
– ident: ref11/cit11
  doi: 10.1126/science.aay1844
– ident: ref22/cit22
  doi: 10.1016/j.susc.2010.05.026
– ident: ref47/cit47
  doi: 10.1021/je00056a029
– ident: ref62/cit62
  doi: 10.1021/jp710447j
– ident: ref46/cit46
– ident: ref71/cit71
  doi: 10.1039/C5GC01600B
– ident: ref26/cit26
  doi: 10.1021/acscatal.0c01305
– ident: ref39/cit39
  doi: 10.1016/j.cattod.2014.10.001
– volume-title: DIN 1343:1990-01, Reference Conditions, Normal Conditions, Normal Volume: Concepts and Values
  year: 1990
  ident: ref48/cit48
– ident: ref65/cit65
  doi: 10.1016/j.jcat.2004.12.001
– ident: ref74/cit74
  doi: 10.1021/jp205951c
– ident: ref10/cit10
  doi: 10.1016/j.chemosphere.2019.03.042
– ident: ref17/cit17
  doi: 10.3390/catal9030251
– ident: ref33/cit33
  doi: 10.1016/j.apcata.2006.08.014
– ident: ref18/cit18
  doi: 10.3390/catal8110556
– ident: ref27/cit27
  doi: 10.1021/acscatal.7b03514
– ident: ref32/cit32
  doi: 10.1016/S0926-3373(02)00232-1
– ident: ref40/cit40
  doi: 10.1002/cctc.201500496
– ident: ref38/cit38
  doi: 10.1063/1.4807287
– ident: ref24/cit24
  doi: 10.1039/C8RA08429G
– ident: ref68/cit68
  doi: 10.1016/0021-9517(83)90117-3
– ident: ref60/cit60
  doi: 10.1021/acs.jpcc.7b04152
– ident: ref20/cit20
  doi: 10.1016/S0021-9517(02)00171-9
– ident: ref4/cit4
  doi: 10.1016/j.cattod.2014.04.012
SSID ssj0053013
Score 2.443207
Snippet A potentially green process to produce hydrogen peroxide (H2O2) is its direct synthesis from molecular hydrogen and oxygen. Still, the lack of mechanistic...
SourceID crossref
acs
SourceType Aggregation Database
Publisher
StartPage 3451
SubjectTerms C: Spectroscopy and Dynamics of Nano, Hybrid, and Low-Dimensional Materials
Title Effect of Selectivity Enhancers on the Structure of Palladium during High-Pressure Continuous-Flow Direct Synthesis of Hydrogen Peroxide in Ethanol
URI http://dx.doi.org/10.1021/acs.jpcc.0c11246
Volume 125
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5sPejFt1hf7EEPHrYm2TyPpab0JIUoeAvZ7AQjdVMSg_Z3-IfdSVIooqCQUxgmYR47szuz3xByFQBkjgTOpCUMZqeOzYThanfnGEw8w4cGrmkaefdP_l24DpPzvYJvmbdJWg1fFmk6NFKdG9huj2xamge2743G0WrVdbSh8raCrDNG_ZWuJPkTBwxEabUWiNYiymT3P_-yR3a6vJGOWkXvkw1QB2RrvBrXdkg-WxxiWmQ0ambbNFMhaKieUa9lRQtFdbJHowYwti4BKWd4jC7z-pW21xUptn2w9sqgpkDoqlzVRV2xybx4p-36SKOl0pyqvEIW06UsC22FdAZl8ZFLoLmiIR7IF_Mj8jgJH8ZT1k1cYIl27Dem9w6JbUPgGaYA7nAZeCJzEy65MIIsk0JKHKeJTyb9AKSbBmaWmFLqRC1wHX5M-qpQcEKojRtvaWYIaGaDCz54IjESBHwXnrCSAbnW0ow7j6niphhumXHzUos47kQ8IDcrNcWLFoDjV9rTP_I8I9sWtqbgXBf_nPS14OGC9CpZXzZG9QX3GMo7
link.rule.ids 315,782,786,2769,27085,27933,27934,56747,56797
linkProvider American Chemical Society
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66HtaLb3F95qAHD9W-H0dZu6y4LgtdwVtpmhQra7s0Ft3f4R92pg_cg4IIPYVhGjJJ5ksm8w0h554QicWFoXCdqYoZW6bCVBuWu4HOxFFdUdE1DQNn_OTe-kiTo7W5MNAJCZpkFcT_ZhfQrrHtZR7HV2oMEMG0V8maZQMWRjTUD9rN14L5atSBZACO8LMmMvmTBvRHsVzyR0uOZbD5jy5tkY0GRdKb2uzbZEVkO6Tbb4u37ZLPmpWY5gkNqko3VY0I6mfPaOVC0jyjAP1oUNHHloVAyQleqvO0fKV18iLFRyBKnUAIEkhklWZlXkplMMvfab1b0mCRgSaZSlQxXPAihzlJJ6LIP1IuaJpRH6_n89keeRz40_5QaeovKBEs8zcFThKRaQrPUTUmDMvgnsMSOzK4wVQvSTjjHItr4pdw1xPcjj0tiTTOAbZ5tmXsk06WZ-KAUBOP4VxLkN7MFLZwhcMiNUL6d-YwPeqRCxjNsFk_MqxC47oWVo0wxGEzxD1y2VornNd0HL_KHv5R5xnpDqcPo3B0N74_Ius6PlrBii_uMemAEcQJWZW8PK3m2RcQOtKo
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66gnrxLb7NQQ8equ32fVz2wYqyLFTBW2k6CVa0XTYW3d_hH3am7cIeFEToKQzTMI_MJJN8w9hFKKVyQdoGtIVpOKnrGML00N1tCia-GcgKrmkY-aOnoNcnmBx3_hYGJ6GRk66K-OTVE1ANwoB1Q-MvkzS9NlNMExxvma24nh_SnqvTjeYLsIs2a9fFZEwe8YdNdfInDhSTUr0QkxaCy2Dzn9PaYhtNNsk7tfq32ZLMd9had97EbZd91ejEvFA8qjreVL0ieD9_Jm1PNS9yjikgjyoY2XIqiXJMh-uQlW-8fsTI6TKIUT8kRAoCtMrysii1MXgtPni9avJoliMnnWliMZzBtEDb5GM5LT4zkDzLeZ-O6YvXPfY46D90h0bTh8FI0N3fDdxRJI4jQ9-0hLRdG0JfKC-xwRZmqBQIAGqySZ-CIJTgpaGlEgsA07fQc-191sqLXB4w7tB2HCxFMGeO9GQgfZGYCcHAC1-0k0N2idKMGz_ScVUib1txNYgijhsRH7KrucbiSQ3L8Svt0R95nrPVcW8Q39-O7o7ZepvurlDjl-CEtVAH8pQtayjPKlP7Bvhh1Ss
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Selectivity+Enhancers+on+the+Structure+of+Palladium+during+High-Pressure+Continuous-Flow+Direct+Synthesis+of+Hydrogen+Peroxide+in+Ethanol&rft.jtitle=Journal+of+physical+chemistry.+C&rft.au=Deschner%2C+Benedikt+J&rft.au=Doronkin%2C+Dmitry+E&rft.au=Sheppard%2C+Thomas+L&rft.au=Zimina%2C+Anna&rft.date=2021-02-18&rft.pub=American+Chemical+Society&rft.issn=1932-7447&rft.eissn=1932-7455&rft.volume=125&rft.issue=6&rft.spage=3451&rft.epage=3462&rft_id=info:doi/10.1021%2Facs.jpcc.0c11246&rft.externalDocID=b371952524
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7447&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7447&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7447&client=summon