Effect of Selectivity Enhancers on the Structure of Palladium during High-Pressure Continuous-Flow Direct Synthesis of Hydrogen Peroxide in Ethanol
A potentially green process to produce hydrogen peroxide (H2O2) is its direct synthesis from molecular hydrogen and oxygen. Still, the lack of mechanistic understanding of the reaction impedes a knowledge-based catalyst design for improved selectivity and stability. In this study, we employed X-ray...
Saved in:
Published in: | Journal of physical chemistry. C Vol. 125; no. 6; pp. 3451 - 3462 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
American Chemical Society
18-02-2021
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | A potentially green process to produce hydrogen peroxide (H2O2) is its direct synthesis from molecular hydrogen and oxygen. Still, the lack of mechanistic understanding of the reaction impedes a knowledge-based catalyst design for improved selectivity and stability. In this study, we employed X-ray absorption spectroscopy (XAS) to obtain structural information on a titania-supported palladium (Pd) catalyst under H2O2 synthesis conditions. The study focuses on the effect of the liquid-phase H2:O2 ratio between 0.67 and 3 and solvent composition under industrially relevant conditions, that is ethanol with and without H2SO4 and NaBr as selectivity enhancers at 40 bar. The X-ray near-edge structure of the absorption spectra (XANES) and the extended X-ray absorption fine structure (EXAFS) revealed that ethanol fully reduces Pd nanoparticles, even when saturated with oxygen. Oxygen presence at the Pd surface could only be suspected based on its small contribution to the EXAFS signal. A palladium hydride phase is detected under stoichiometric conditions due to lattice expansion. Addition of H2SO4 causes Pd lattice expansion and an increased yield at stoichiometric conditions. Further addition of bromide did not lead to any significant change in catalyst state and activity. |
---|---|
AbstractList | A potentially green process to produce hydrogen peroxide (H2O2) is its direct synthesis from molecular hydrogen and oxygen. Still, the lack of mechanistic understanding of the reaction impedes a knowledge-based catalyst design for improved selectivity and stability. In this study, we employed X-ray absorption spectroscopy (XAS) to obtain structural information on a titania-supported palladium (Pd) catalyst under H2O2 synthesis conditions. The study focuses on the effect of the liquid-phase H2:O2 ratio between 0.67 and 3 and solvent composition under industrially relevant conditions, that is ethanol with and without H2SO4 and NaBr as selectivity enhancers at 40 bar. The X-ray near-edge structure of the absorption spectra (XANES) and the extended X-ray absorption fine structure (EXAFS) revealed that ethanol fully reduces Pd nanoparticles, even when saturated with oxygen. Oxygen presence at the Pd surface could only be suspected based on its small contribution to the EXAFS signal. A palladium hydride phase is detected under stoichiometric conditions due to lattice expansion. Addition of H2SO4 causes Pd lattice expansion and an increased yield at stoichiometric conditions. Further addition of bromide did not lead to any significant change in catalyst state and activity. |
Author | Grunwaldt, Jan-Dierk Doronkin, Dmitry E Dittmeyer, Roland Deschner, Benedikt J Sheppard, Thomas L Zimina, Anna |
AuthorAffiliation | Institute of Catalysis Research and Technology Karlsruhe Institute of Technology Institute for Micro Process Engineering Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology |
AuthorAffiliation_xml | – name: Institute for Micro Process Engineering – name: Karlsruhe Institute of Technology – name: Institute of Catalysis Research and Technology – name: Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology |
Author_xml | – sequence: 1 givenname: Benedikt J orcidid: 0000-0001-5800-7510 surname: Deschner fullname: Deschner, Benedikt J email: benedikt.deschner@kit.edu organization: Karlsruhe Institute of Technology – sequence: 2 givenname: Dmitry E orcidid: 0000-0003-3930-3204 surname: Doronkin fullname: Doronkin, Dmitry E email: dmitry.doronkin@kit.edu organization: Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology – sequence: 3 givenname: Thomas L orcidid: 0000-0002-8891-985X surname: Sheppard fullname: Sheppard, Thomas L organization: Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology – sequence: 4 givenname: Anna orcidid: 0000-0002-3111-7741 surname: Zimina fullname: Zimina, Anna organization: Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology – sequence: 5 givenname: Jan-Dierk orcidid: 0000-0003-3606-0956 surname: Grunwaldt fullname: Grunwaldt, Jan-Dierk organization: Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology – sequence: 6 givenname: Roland orcidid: 0000-0002-3110-6989 surname: Dittmeyer fullname: Dittmeyer, Roland organization: Karlsruhe Institute of Technology |
BookMark | eNp1UF1LwzAUDTLBOX33MT_AzqRp2uVRZueEgYPpc0nzsWV0yUhStb_DP2zrhm_ChXvgno_LuQYj66wC4A6jKUYpfuAiTPdHIaZIYJxm-QUYY0bSpMgoHf3hrLgC1yHsEaIEYTIG36XWSkToNNyopkfmw8QOlnbHrVA-QGdh3Cm4ib4VsfVqYK5503Bp2gOUrTd2C5dmu0vWXoUwMObORmNb14Zk0bhP-GT8ELHpbO8UTBgslp30bqssXCvvvoxU0FhYxj7VNTfgUvMmqNvznoD3Rfk2Xyar1-eX-eMq4SRNY0JnlGeZYgXCtSKUSFbUOudEkhoxrWUtJaU5HkbLGVMyFwxrjqVkFLOckglAJ1_hXQhe6erozYH7rsKoGkqt-lKrodTqXGovuT9Jfi-u9bZ_8H_6DxQYgF0 |
CitedBy_id | crossref_primary_10_1016_j_apcata_2023_119330 crossref_primary_10_1007_s12274_021_3786_0 crossref_primary_10_1016_j_apcata_2024_119630 crossref_primary_10_1016_j_catcom_2022_106585 crossref_primary_10_1134_S0023158423060022 crossref_primary_10_1007_s10563_022_09362_y crossref_primary_10_1134_S0023158423601249 crossref_primary_10_31857_S0453881123060023 |
Cites_doi | 10.1021/acs.jpcc.9b04229 10.1007/s10562-004-0769-1 10.1021/acscatal.7b04107 10.1016/S1381-1169(01)00154-6 10.1021/acscatal.8b00217 10.1016/j.cattod.2014.03.055 10.1038/srep38454 10.1016/j.apcata.2008.07.043 10.1021/jp4056297 10.1021/jp510730a 10.1021/je049922y 10.1021/jp500734p 10.1016/j.susc.2010.01.023 10.1021/jacs.5b10669 10.1039/C5RE00073D 10.1016/j.cej.2016.12.043 10.1016/S0360-0564(08)60363-6 10.1016/S0360-0564(08)60484-8 10.1021/acssuschemeng.6b02595 10.1016/j.jcat.2005.11.024 10.1007/BF02667685 10.1063/1.4999928 10.1039/C5CY01567G 10.3390/catal8090379 10.1016/j.catcom.2007.05.007 10.1021/i260040a020 10.5194/acp-15-4399-2015 10.1107/S0909049505012719 10.1021/ie202128v 10.1016/j.fluid.2014.10.025 10.1016/j.cattod.2007.01.043 10.1021/ie061277w 10.1021/jp066949a 10.1021/acs.nanolett.7b03589 10.1002/aenm.201801909 10.1063/1.2644598 10.1002/cssc.201600895 10.1016/S0021-9517(02)00070-2 10.1016/S0360-0564(08)60390-9 10.1039/C9SE00848A 10.1002/cctc.201801435 10.1016/j.jcat.2006.12.011 10.1103/RevModPhys.72.621 10.1016/j.jcat.2018.12.017 10.1103/PhysRevLett.53.74 10.1002/anie.200503779 10.1002/aic.15382 10.1103/PhysRevB.92.064202 10.1039/D0CY00553C 10.1126/science.aay1844 10.1016/j.susc.2010.05.026 10.1021/je00056a029 10.1021/jp710447j 10.1039/C5GC01600B 10.1021/acscatal.0c01305 10.1016/j.cattod.2014.10.001 10.1016/j.jcat.2004.12.001 10.1021/jp205951c 10.1016/j.chemosphere.2019.03.042 10.3390/catal9030251 10.1016/j.apcata.2006.08.014 10.3390/catal8110556 10.1021/acscatal.7b03514 10.1016/S0926-3373(02)00232-1 10.1002/cctc.201500496 10.1063/1.4807287 10.1039/C8RA08429G 10.1016/0021-9517(83)90117-3 10.1021/acs.jpcc.7b04152 10.1016/S0021-9517(02)00171-9 10.1016/j.cattod.2014.04.012 |
ContentType | Journal Article |
Copyright | 2021 The
Authors. Published by American
Chemical Society |
Copyright_xml | – notice: 2021 The Authors. Published by American Chemical Society |
DBID | AAYXX CITATION |
DOI | 10.1021/acs.jpcc.0c11246 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1932-7455 |
EndPage | 3462 |
ExternalDocumentID | 10_1021_acs_jpcc_0c11246 b371952524 |
GroupedDBID | .K2 55A 5GY 5VS 7~N 85S 8RP AABXI ABFLS ABMVS ABPPZ ABUCX ACGFS ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DU5 EBS ED ED~ F5P GNL IH9 IHE JG JG~ K2 RNS ROL UI2 UKR VF5 VG9 VQA W1F 4.4 53G AAYXX ABJNI ABQRX ADHLV AHGAQ CITATION CUPRZ GGK |
ID | FETCH-LOGICAL-a322t-585a44e9701be353d97bf6a3d3b09ffdbdd55615615fd89ed6c91fa1dd9519653 |
IEDL.DBID | ACS |
ISSN | 1932-7447 |
IngestDate | Fri Aug 23 01:15:12 EDT 2024 Sat Feb 20 04:00:06 EST 2021 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a322t-585a44e9701be353d97bf6a3d3b09ffdbdd55615615fd89ed6c91fa1dd9519653 |
ORCID | 0000-0001-5800-7510 0000-0002-3110-6989 0000-0003-3930-3204 0000-0002-3111-7741 0000-0003-3606-0956 0000-0002-8891-985X |
OpenAccessLink | https://publikationen.bibliothek.kit.edu/1000129430/101912389 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1021_acs_jpcc_0c11246 acs_journals_10_1021_acs_jpcc_0c11246 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 20210218 2021-02-18 |
PublicationDateYYYYMMDD | 2021-02-18 |
PublicationDate_xml | – month: 02 year: 2021 text: 20210218 day: 18 |
PublicationDecade | 2020 |
PublicationTitle | Journal of physical chemistry. C |
PublicationTitleAlternate | J. Phys. Chem. C |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref71/cit71 ref37/cit37 ref20/cit20 ref60/cit60 ref74/cit74 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref75/cit75 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref72/cit72 ref76/cit76 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref73/cit73 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 (ref48/cit48) 1990 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref70/cit70 ref7/cit7 |
References_xml | – ident: ref73/cit73 doi: 10.1021/acs.jpcc.9b04229 – ident: ref64/cit64 doi: 10.1007/s10562-004-0769-1 – ident: ref14/cit14 doi: 10.1021/acscatal.7b04107 – ident: ref75/cit75 doi: 10.1016/S1381-1169(01)00154-6 – ident: ref9/cit9 doi: 10.1021/acscatal.8b00217 – ident: ref3/cit3 doi: 10.1016/j.cattod.2014.03.055 – ident: ref12/cit12 doi: 10.1038/srep38454 – ident: ref19/cit19 doi: 10.1016/j.apcata.2008.07.043 – ident: ref23/cit23 doi: 10.1021/jp4056297 – ident: ref58/cit58 doi: 10.1021/jp510730a – ident: ref44/cit44 – ident: ref49/cit49 doi: 10.1021/je049922y – ident: ref56/cit56 doi: 10.1021/jp500734p – ident: ref63/cit63 doi: 10.1016/j.susc.2010.01.023 – ident: ref25/cit25 doi: 10.1021/jacs.5b10669 – ident: ref35/cit35 doi: 10.1039/C5RE00073D – ident: ref13/cit13 doi: 10.1016/j.cej.2016.12.043 – ident: ref66/cit66 doi: 10.1016/S0360-0564(08)60363-6 – ident: ref76/cit76 doi: 10.1016/S0360-0564(08)60484-8 – ident: ref6/cit6 doi: 10.1021/acssuschemeng.6b02595 – ident: ref31/cit31 doi: 10.1016/j.jcat.2005.11.024 – ident: ref61/cit61 doi: 10.1007/BF02667685 – ident: ref54/cit54 doi: 10.1063/1.4999928 – ident: ref7/cit7 doi: 10.1039/C5CY01567G – ident: ref15/cit15 doi: 10.3390/catal8090379 – ident: ref5/cit5 doi: 10.1016/j.catcom.2007.05.007 – ident: ref53/cit53 doi: 10.1021/i260040a020 – ident: ref69/cit69 doi: 10.5194/acp-15-4399-2015 – ident: ref51/cit51 – ident: ref55/cit55 doi: 10.1107/S0909049505012719 – ident: ref34/cit34 doi: 10.1021/ie202128v – ident: ref50/cit50 doi: 10.1016/j.fluid.2014.10.025 – ident: ref21/cit21 doi: 10.1016/j.cattod.2007.01.043 – ident: ref45/cit45 doi: 10.1021/ie061277w – ident: ref70/cit70 doi: 10.1021/jp066949a – ident: ref41/cit41 doi: 10.1021/acs.nanolett.7b03589 – ident: ref8/cit8 doi: 10.1002/aenm.201801909 – ident: ref36/cit36 doi: 10.1063/1.2644598 – ident: ref2/cit2 doi: 10.1002/cssc.201600895 – ident: ref30/cit30 doi: 10.1016/S0021-9517(02)00070-2 – ident: ref52/cit52 doi: 10.1016/S0360-0564(08)60390-9 – ident: ref43/cit43 – ident: ref72/cit72 doi: 10.1039/C9SE00848A – ident: ref16/cit16 doi: 10.1002/cctc.201801435 – ident: ref67/cit67 doi: 10.1016/j.jcat.2006.12.011 – ident: ref37/cit37 doi: 10.1103/RevModPhys.72.621 – ident: ref28/cit28 doi: 10.1016/j.jcat.2018.12.017 – ident: ref57/cit57 doi: 10.1103/PhysRevLett.53.74 – ident: ref1/cit1 doi: 10.1002/anie.200503779 – ident: ref29/cit29 doi: 10.1002/aic.15382 – ident: ref59/cit59 doi: 10.1103/PhysRevB.92.064202 – ident: ref42/cit42 doi: 10.1039/D0CY00553C – ident: ref11/cit11 doi: 10.1126/science.aay1844 – ident: ref22/cit22 doi: 10.1016/j.susc.2010.05.026 – ident: ref47/cit47 doi: 10.1021/je00056a029 – ident: ref62/cit62 doi: 10.1021/jp710447j – ident: ref46/cit46 – ident: ref71/cit71 doi: 10.1039/C5GC01600B – ident: ref26/cit26 doi: 10.1021/acscatal.0c01305 – ident: ref39/cit39 doi: 10.1016/j.cattod.2014.10.001 – volume-title: DIN 1343:1990-01, Reference Conditions, Normal Conditions, Normal Volume: Concepts and Values year: 1990 ident: ref48/cit48 – ident: ref65/cit65 doi: 10.1016/j.jcat.2004.12.001 – ident: ref74/cit74 doi: 10.1021/jp205951c – ident: ref10/cit10 doi: 10.1016/j.chemosphere.2019.03.042 – ident: ref17/cit17 doi: 10.3390/catal9030251 – ident: ref33/cit33 doi: 10.1016/j.apcata.2006.08.014 – ident: ref18/cit18 doi: 10.3390/catal8110556 – ident: ref27/cit27 doi: 10.1021/acscatal.7b03514 – ident: ref32/cit32 doi: 10.1016/S0926-3373(02)00232-1 – ident: ref40/cit40 doi: 10.1002/cctc.201500496 – ident: ref38/cit38 doi: 10.1063/1.4807287 – ident: ref24/cit24 doi: 10.1039/C8RA08429G – ident: ref68/cit68 doi: 10.1016/0021-9517(83)90117-3 – ident: ref60/cit60 doi: 10.1021/acs.jpcc.7b04152 – ident: ref20/cit20 doi: 10.1016/S0021-9517(02)00171-9 – ident: ref4/cit4 doi: 10.1016/j.cattod.2014.04.012 |
SSID | ssj0053013 |
Score | 2.443207 |
Snippet | A potentially green process to produce hydrogen peroxide (H2O2) is its direct synthesis from molecular hydrogen and oxygen. Still, the lack of mechanistic... |
SourceID | crossref acs |
SourceType | Aggregation Database Publisher |
StartPage | 3451 |
SubjectTerms | C: Spectroscopy and Dynamics of Nano, Hybrid, and Low-Dimensional Materials |
Title | Effect of Selectivity Enhancers on the Structure of Palladium during High-Pressure Continuous-Flow Direct Synthesis of Hydrogen Peroxide in Ethanol |
URI | http://dx.doi.org/10.1021/acs.jpcc.0c11246 |
Volume | 125 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5sPejFt1hf7EEPHrYm2TyPpab0JIUoeAvZ7AQjdVMSg_Z3-IfdSVIooqCQUxgmYR47szuz3xByFQBkjgTOpCUMZqeOzYThanfnGEw8w4cGrmkaefdP_l24DpPzvYJvmbdJWg1fFmk6NFKdG9huj2xamge2743G0WrVdbSh8raCrDNG_ZWuJPkTBwxEabUWiNYiymT3P_-yR3a6vJGOWkXvkw1QB2RrvBrXdkg-WxxiWmQ0ambbNFMhaKieUa9lRQtFdbJHowYwti4BKWd4jC7z-pW21xUptn2w9sqgpkDoqlzVRV2xybx4p-36SKOl0pyqvEIW06UsC22FdAZl8ZFLoLmiIR7IF_Mj8jgJH8ZT1k1cYIl27Dem9w6JbUPgGaYA7nAZeCJzEy65MIIsk0JKHKeJTyb9AKSbBmaWmFLqRC1wHX5M-qpQcEKojRtvaWYIaGaDCz54IjESBHwXnrCSAbnW0ow7j6niphhumXHzUos47kQ8IDcrNcWLFoDjV9rTP_I8I9sWtqbgXBf_nPS14OGC9CpZXzZG9QX3GMo7 |
link.rule.ids | 315,782,786,2769,27085,27933,27934,56747,56797 |
linkProvider | American Chemical Society |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66HtaLb3F95qAHD9W-H0dZu6y4LgtdwVtpmhQra7s0Ft3f4R92pg_cg4IIPYVhGjJJ5ksm8w0h554QicWFoXCdqYoZW6bCVBuWu4HOxFFdUdE1DQNn_OTe-kiTo7W5MNAJCZpkFcT_ZhfQrrHtZR7HV2oMEMG0V8maZQMWRjTUD9rN14L5atSBZACO8LMmMvmTBvRHsVzyR0uOZbD5jy5tkY0GRdKb2uzbZEVkO6Tbb4u37ZLPmpWY5gkNqko3VY0I6mfPaOVC0jyjAP1oUNHHloVAyQleqvO0fKV18iLFRyBKnUAIEkhklWZlXkplMMvfab1b0mCRgSaZSlQxXPAihzlJJ6LIP1IuaJpRH6_n89keeRz40_5QaeovKBEs8zcFThKRaQrPUTUmDMvgnsMSOzK4wVQvSTjjHItr4pdw1xPcjj0tiTTOAbZ5tmXsk06WZ-KAUBOP4VxLkN7MFLZwhcMiNUL6d-YwPeqRCxjNsFk_MqxC47oWVo0wxGEzxD1y2VornNd0HL_KHv5R5xnpDqcPo3B0N74_Ius6PlrBii_uMemAEcQJWZW8PK3m2RcQOtKo |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66gnrxLb7NQQ8equ32fVz2wYqyLFTBW2k6CVa0XTYW3d_hH3am7cIeFEToKQzTMI_MJJN8w9hFKKVyQdoGtIVpOKnrGML00N1tCia-GcgKrmkY-aOnoNcnmBx3_hYGJ6GRk66K-OTVE1ANwoB1Q-MvkzS9NlNMExxvma24nh_SnqvTjeYLsIs2a9fFZEwe8YdNdfInDhSTUr0QkxaCy2Dzn9PaYhtNNsk7tfq32ZLMd9had97EbZd91ejEvFA8qjreVL0ieD9_Jm1PNS9yjikgjyoY2XIqiXJMh-uQlW-8fsTI6TKIUT8kRAoCtMrysii1MXgtPni9avJoliMnnWliMZzBtEDb5GM5LT4zkDzLeZ-O6YvXPfY46D90h0bTh8FI0N3fDdxRJI4jQ9-0hLRdG0JfKC-xwRZmqBQIAGqySZ-CIJTgpaGlEgsA07fQc-191sqLXB4w7tB2HCxFMGeO9GQgfZGYCcHAC1-0k0N2idKMGz_ScVUib1txNYgijhsRH7KrucbiSQ3L8Svt0R95nrPVcW8Q39-O7o7ZepvurlDjl-CEtVAH8pQtayjPKlP7Bvhh1Ss |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Selectivity+Enhancers+on+the+Structure+of+Palladium+during+High-Pressure+Continuous-Flow+Direct+Synthesis+of+Hydrogen+Peroxide+in+Ethanol&rft.jtitle=Journal+of+physical+chemistry.+C&rft.au=Deschner%2C+Benedikt+J&rft.au=Doronkin%2C+Dmitry+E&rft.au=Sheppard%2C+Thomas+L&rft.au=Zimina%2C+Anna&rft.date=2021-02-18&rft.pub=American+Chemical+Society&rft.issn=1932-7447&rft.eissn=1932-7455&rft.volume=125&rft.issue=6&rft.spage=3451&rft.epage=3462&rft_id=info:doi/10.1021%2Facs.jpcc.0c11246&rft.externalDocID=b371952524 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7447&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7447&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7447&client=summon |