Modeling the Role in pH on Contaminant Sequestration by Zerovalent Metals: Chromate Reduction by Zerovalent Magnesium
The role of pH in sequestration of Cr(VI) by zerovalent magnesium (ZVMg) was characterized by global fitting of a kinetic model to time-series data from unbuffered batch experiments with varying initial pH values. At initial pH values ranging from 2.0 to 6.8, ZVMg (0.5 g/L) completely reduced Cr(V...
Saved in:
Published in: | Environmental science & technology Vol. 58; no. 5; pp. 2564 - 2573 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
American Chemical Society
06-02-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The role of pH in sequestration of Cr(VI) by zerovalent magnesium (ZVMg) was characterized by global fitting of a kinetic model to time-series data from unbuffered batch experiments with varying initial pH values. At initial pH values ranging from 2.0 to 6.8, ZVMg (0.5 g/L) completely reduced Cr(VI) (18.1 μM) within 24 h, during which time pH rapidly increased to a plateau value of ∼10. Time-series correlation analysis of the pH and aqueous Cr(VI), Cr(III), and Mg(II) concentration data suggested that these conditions are controlled by combinations of reactions (involving Mg0 oxidative dissolution and Cr(VI) sequestration) that evolve over the time course of each experiment. Since this is also likely to occur during any engineering applications of ZVMg for remediation, we developed a kinetic model for dynamic pH changes coupled with ZVMg corrosion processes. Using this model, the synchronous changes in Cr(VI) and Mg(II) concentrations were fully predicted based on the Langmuir–Hinshelwood kinetics and transition-state theory, respectively. The reactivity of ZVMg was different in two pH regimes that were pH-dependent at pH < 4 and pH-independent at the higher pH. This contrasting pH effect could be ascribed to the shift of the primary oxidant of ZVMg from H+ to H2O at the lower and higher pH regimes, respectively. |
---|---|
AbstractList | The role of pH in sequestration of Cr(VI) by zerovalent magnesium (ZVMg) was characterized by global fitting of a kinetic model to time-series data from unbuffered batch experiments with varying initial pH values. At initial pH values ranging from 2.0 to 6.8, ZVMg (0.5 g/L) completely reduced Cr(VI) (18.1 μM) within 24 h, during which time pH rapidly increased to a plateau value of ∼10. Time-series correlation analysis of the pH and aqueous Cr(VI), Cr(III), and Mg(II) concentration data suggested that these conditions are controlled by combinations of reactions (involving Mg0 oxidative dissolution and Cr(VI) sequestration) that evolve over the time course of each experiment. Since this is also likely to occur during any engineering applications of ZVMg for remediation, we developed a kinetic model for dynamic pH changes coupled with ZVMg corrosion processes. Using this model, the synchronous changes in Cr(VI) and Mg(II) concentrations were fully predicted based on the Langmuir–Hinshelwood kinetics and transition-state theory, respectively. The reactivity of ZVMg was different in two pH regimes that were pH-dependent at pH < 4 and pH-independent at the higher pH. This contrasting pH effect could be ascribed to the shift of the primary oxidant of ZVMg from H+ to H2O at the lower and higher pH regimes, respectively. The role of pH in sequestration of Cr(VI) by zerovalent magnesium (ZVMg) was characterized by global fitting of a kinetic model to time-series data from unbuffered batch experiments with varying initial pH values. At initial pH values ranging from 2.0 to 6.8, ZVMg (0.5 g/L) completely reduced Cr(VI) (18.1 μM) within 24 h, during which time pH rapidly increased to a plateau value of ∼10. Time-series correlation analysis of the pH and aqueous Cr(VI), Cr(III), and Mg(II) concentration data suggested that these conditions are controlled by combinations of reactions (involving Mg oxidative dissolution and Cr(VI) sequestration) that evolve over the time course of each experiment. Since this is also likely to occur during any engineering applications of ZVMg for remediation, we developed a kinetic model for dynamic pH changes coupled with ZVMg corrosion processes. Using this model, the synchronous changes in Cr(VI) and Mg(II) concentrations were fully predicted based on the Langmuir-Hinshelwood kinetics and transition-state theory, respectively. The reactivity of ZVMg was different in two pH regimes that were pH-dependent at pH < 4 and pH-independent at the higher pH. This contrasting pH effect could be ascribed to the shift of the primary oxidant of ZVMg from H to H O at the lower and higher pH regimes, respectively. The role of pH in sequestration of Cr(VI) by zerovalent magnesium (ZVMg) was characterized by global fitting of a kinetic model to time-series data from unbuffered batch experiments with varying initial pH values. At initial pH values ranging from 2.0 to 6.8, ZVMg (0.5 g/L) completely reduced Cr(VI) (18.1 μM) within 24 h, during which time pH rapidly increased to a plateau value of ∼10. Time-series correlation analysis of the pH and aqueous Cr(VI), Cr(III), and Mg(II) concentration data suggested that these conditions are controlled by combinations of reactions (involving Mg0 oxidative dissolution and Cr(VI) sequestration) that evolve over the time course of each experiment. Since this is also likely to occur during any engineering applications of ZVMg for remediation, we developed a kinetic model for dynamic pH changes coupled with ZVMg corrosion processes. Using this model, the synchronous changes in Cr(VI) and Mg(II) concentrations were fully predicted based on the Langmuir–Hinshelwood kinetics and transition-state theory, respectively. The reactivity of ZVMg was different in two pH regimes that were pH-dependent at pH < 4 and pH-independent at the higher pH. This contrasting pH effect could be ascribed to the shift of the primary oxidant of ZVMg from H+ to H2O at the lower and higher pH regimes, respectively. |
Author | Tratnyek, Paul G. Bae, Jong-Seong Lee, Giehyeon Harvey, Omar R. Park, Jaeseon Bandstra, Joel Z. |
AuthorAffiliation | Department of Mathematics, Engineering, and Computer Science Korea Basic Science Institute Department of Earth System Sciences Oregon Health & Science University Yonsei University Department of Geological Sciences OHSU-PSU School of Public Health Division of High-Technology Materials Research, Busan Center |
AuthorAffiliation_xml | – name: Department of Earth System Sciences – name: Department of Mathematics, Engineering, and Computer Science – name: Department of Geological Sciences – name: OHSU-PSU School of Public Health – name: Korea Basic Science Institute – name: Oregon Health & Science University – name: Yonsei University – name: Division of High-Technology Materials Research, Busan Center |
Author_xml | – sequence: 1 givenname: Jaeseon orcidid: 0000-0003-2660-5924 surname: Park fullname: Park, Jaeseon organization: Yonsei University – sequence: 2 givenname: Joel Z. orcidid: 0009-0001-6162-7427 surname: Bandstra fullname: Bandstra, Joel Z. organization: Department of Mathematics, Engineering, and Computer Science – sequence: 3 givenname: Paul G. orcidid: 0000-0001-8818-6417 surname: Tratnyek fullname: Tratnyek, Paul G. email: tratnyek@ohsu.edu organization: Oregon Health & Science University – sequence: 4 givenname: Omar R. orcidid: 0000-0002-6604-7237 surname: Harvey fullname: Harvey, Omar R. organization: Department of Geological Sciences – sequence: 5 givenname: Jong-Seong orcidid: 0000-0003-0039-4030 surname: Bae fullname: Bae, Jong-Seong organization: Korea Basic Science Institute – sequence: 6 givenname: Giehyeon orcidid: 0000-0003-4914-1392 surname: Lee fullname: Lee, Giehyeon email: ghlee@yonsei.ac.kr organization: Yonsei University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38278139$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUtLw0AUhQdRbK2u3cmAG0HaziOTzLiT4gsqgg8QN2GS3LQpyUydSYT-e6e2uhBd3cX9zrmHew7QrrEGEDqmZEQJo2Od-xH4dsRzInmc7KA-FYwMhRR0F_UJoXyoePzaQwfeLwghjBO5j3pcskRSrvqou7cF1JWZ4XYO-NHWgCuDl7fYGjyxptVNZbRp8RO8d-GQ020VNtkKv4GzH7qGsLuHVtf-Ak_mzja6DTZQdPlfoJ4Z8FXXHKK9MkjgaDsH6OX66nlyO5w-3NxNLqdDzaloQ_SIqbKMuRaaiySOtIhkGScJlXHJCikyKgFizZmiURapJOaFEISVKlOU6owP0NnGd-nsV_60qXwOda0N2M6nTDGmIqnCnwbo9Be6sJ0zId2a4hFngqlAjTdU7qz3Dsp06apGu1VKSbpuJA2NpGv1tpGgONn6dlkDxQ__XUEAzjfAWvlz8z-7T2bPmAw |
Cites_doi | 10.1021/es049129p 10.1021/es011000h 10.1021/es950211h 10.1021/es062886y 10.1089/ees.2021.0054 10.2166/washdev.2021.006 10.1021/acsenvironau.1c00042 10.1021/es025562s 10.1016/j.jhazmat.2015.03.004 10.1021/acs.est.1c00653 10.1139/v75-556 10.1021/acs.est.8b06648 10.1021/acs.est.9b05565 10.1021/acs.est.5b05360 10.1016/j.gca.2012.10.031 10.1021/acs.est.8b04436 10.2475/ajs.282.3.237 10.1007/978-0-387-73563-4_5 10.1021/acs.est.2c01469 10.1016/S0169-7722(00)00122-4 10.1039/C9EM00592G 10.1016/j.jece.2019.102950 10.1016/j.watres.2012.11.028 10.1016/j.jhazmat.2011.11.089 10.1016/j.cej.2016.05.130 10.1149/1.2411579 10.1089/ees.2017.0067 10.1016/j.jhydrol.2005.07.007 10.1021/ie0200510 10.1016/j.chemosphere.2019.01.134 10.1089/ees.2012.0273 10.1016/j.watres.2018.02.030 10.1039/C9EM00557A 10.7844/kirr.2011.20.3.003 10.1021/acs.chemrev.0c01286 10.1016/j.advwatres.2012.02.005 10.1016/j.jece.2013.11.013 10.1016/j.actbio.2009.11.036 10.1016/j.chemosphere.2021.130766 10.1016/j.chemosphere.2009.05.007 10.1021/acs.est.7b04030 10.1016/S0043-1354(00)00408-5 10.1021/es060685o 10.1016/j.jes.2022.09.007 10.1007/BFb0067700 10.1021/jp0143847 10.1021/acs.est.6b03184 10.1007/s40726-019-00122-7 10.1016/j.chemosphere.2016.09.139 10.1179/imr.1993.38.3.138 10.1016/j.jcis.2017.07.024 10.1021/es010086b 10.1021/es104081p 10.1039/D1EW00897H 10.1016/j.jes.2023.04.024 10.1080/09593332708618659 10.1016/j.cej.2017.10.025 10.1038/s44221-023-00098-1 10.1021/acs.est.5b01298 10.1016/j.cej.2013.10.037 10.1016/j.chemosphere.2013.02.031 10.1016/j.jhazmat.2023.132325 10.1016/j.cej.2012.11.086 |
ContentType | Journal Article |
Copyright | 2024 American Chemical Society Copyright American Chemical Society Feb 6, 2024 |
Copyright_xml | – notice: 2024 American Chemical Society – notice: Copyright American Chemical Society Feb 6, 2024 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 |
DOI | 10.1021/acs.est.3c08367 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Biotechnology Research Abstracts MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1520-5851 |
EndPage | 2573 |
ExternalDocumentID | 10_1021_acs_est_3c08367 38278139 c89963193 |
Genre | Journal Article |
GroupedDBID | --- -DZ -~X ..I .DC .K2 3R3 4.4 4R4 55A 5GY 5VS 63O 6TJ 7~N 85S AABXI ABFRP ABJNI ABMVS ABOGM ABPPZ ABQRX ABUCX ACGFS ACGOD ACIWK ACJ ACPRK ACS ADHLV AEESW AENEX AFEFF AFRAH AGHSJ AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 EBS ED~ F5P GGK GNL IH9 JG~ LG6 MS~ MW2 PQQKQ ROL RXW TN5 TWZ U5U UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 XSW XZL YZZ ZCA 53G AAHBH ADUKH CGR CUPRZ CUY CVF ECM EIF NPM AAYXX CITATION 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 |
ID | FETCH-LOGICAL-a315t-93429ff63a5a35764a548f677186f2d85b18ee6a32914b49763d5502f9b911ab3 |
IEDL.DBID | ACS |
ISSN | 0013-936X |
IngestDate | Sat Aug 17 02:22:04 EDT 2024 Tue Nov 26 10:59:28 EST 2024 Fri Aug 23 01:40:35 EDT 2024 Sat Nov 02 12:27:43 EDT 2024 Wed Feb 07 03:23:58 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | pH dependence comprehensive kinetic model corrosion zerovalent magnesium (ZVMg) reduction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a315t-93429ff63a5a35764a548f677186f2d85b18ee6a32914b49763d5502f9b911ab3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-8818-6417 0000-0003-0039-4030 0000-0003-4914-1392 0000-0003-2660-5924 0009-0001-6162-7427 0000-0002-6604-7237 |
PMID | 38278139 |
PQID | 2923432529 |
PQPubID | 45412 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2922948901 proquest_journals_2923432529 crossref_primary_10_1021_acs_est_3c08367 pubmed_primary_38278139 acs_journals_10_1021_acs_est_3c08367 |
PublicationCentury | 2000 |
PublicationDate | 2024-02-06 |
PublicationDateYYYYMMDD | 2024-02-06 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-06 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Easton |
PublicationTitle | Environmental science & technology |
PublicationTitleAlternate | Environ. Sci. Technol |
PublicationYear | 2024 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref52/cit52 ref23/cit23 ref31/cit31 ref59/cit59 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 Brantley S. L. (ref64/cit64) 2008 ref61/cit61 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 Filip J. (ref8/cit8) 2019 Tratnyek P. G. (ref2/cit2) 2014 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 Moré J. J. (ref54/cit54) 1978 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 Bajpai P. (ref16/cit16) 2018 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref5/cit5 doi: 10.1021/es049129p – ident: ref60/cit60 doi: 10.1021/es011000h – ident: ref4/cit4 doi: 10.1021/es950211h – ident: ref22/cit22 doi: 10.1021/es062886y – ident: ref42/cit42 doi: 10.1089/ees.2021.0054 – ident: ref9/cit9 doi: 10.2166/washdev.2021.006 – ident: ref20/cit20 – ident: ref38/cit38 doi: 10.1021/acsenvironau.1c00042 – ident: ref45/cit45 doi: 10.1021/es025562s – ident: ref31/cit31 doi: 10.1016/j.jhazmat.2015.03.004 – start-page: 157 volume-title: Nanoscale Zerovalent Iron Particles for Environmental Restoration year: 2019 ident: ref8/cit8 contributor: fullname: Filip J. – ident: ref57/cit57 doi: 10.1021/acs.est.1c00653 – ident: ref50/cit50 – ident: ref17/cit17 doi: 10.1139/v75-556 – ident: ref67/cit67 doi: 10.1021/acs.est.8b06648 – ident: ref35/cit35 doi: 10.1021/acs.est.9b05565 – ident: ref59/cit59 doi: 10.1021/acs.est.5b05360 – ident: ref18/cit18 doi: 10.1016/j.gca.2012.10.031 – ident: ref46/cit46 doi: 10.1021/acs.est.8b04436 – ident: ref63/cit63 doi: 10.2475/ajs.282.3.237 – start-page: 151 volume-title: Kinetics of Water-Rock Interaction year: 2008 ident: ref64/cit64 doi: 10.1007/978-0-387-73563-4_5 contributor: fullname: Brantley S. L. – ident: ref68/cit68 doi: 10.1021/acs.est.2c01469 – ident: ref7/cit7 doi: 10.1016/S0169-7722(00)00122-4 – ident: ref13/cit13 doi: 10.1039/C9EM00592G – ident: ref30/cit30 doi: 10.1016/j.jece.2019.102950 – ident: ref19/cit19 doi: 10.1016/j.watres.2012.11.028 – ident: ref26/cit26 doi: 10.1016/j.jhazmat.2011.11.089 – ident: ref41/cit41 doi: 10.1016/j.cej.2016.05.130 – ident: ref56/cit56 doi: 10.1149/1.2411579 – ident: ref37/cit37 doi: 10.1089/ees.2017.0067 – ident: ref65/cit65 doi: 10.1016/j.jhydrol.2005.07.007 – ident: ref25/cit25 doi: 10.1021/ie0200510 – ident: ref53/cit53 – ident: ref29/cit29 doi: 10.1016/j.chemosphere.2019.01.134 – ident: ref43/cit43 doi: 10.1089/ees.2012.0273 – volume-title: Biermann’s Handbook of Pulp and Paper: Vol. 2: Paper and Board Making, Chapter 20 Introductory Chemistry Reviews year: 2018 ident: ref16/cit16 contributor: fullname: Bajpai P. – ident: ref58/cit58 doi: 10.1016/j.watres.2018.02.030 – ident: ref11/cit11 doi: 10.1039/C9EM00557A – ident: ref69/cit69 doi: 10.7844/kirr.2011.20.3.003 – ident: ref1/cit1 doi: 10.1021/acs.chemrev.0c01286 – ident: ref3/cit3 doi: 10.1016/j.advwatres.2012.02.005 – ident: ref44/cit44 doi: 10.1016/j.jece.2013.11.013 – ident: ref21/cit21 doi: 10.1016/j.actbio.2009.11.036 – ident: ref6/cit6 doi: 10.1016/j.chemosphere.2021.130766 – ident: ref23/cit23 doi: 10.1016/j.chemosphere.2009.05.007 – ident: ref48/cit48 doi: 10.1021/acs.est.7b04030 – ident: ref52/cit52 doi: 10.1016/S0043-1354(00)00408-5 – ident: ref66/cit66 doi: 10.1021/es060685o – ident: ref32/cit32 doi: 10.1016/j.jes.2022.09.007 – start-page: 105 volume-title: Numerical analysis year: 1978 ident: ref54/cit54 doi: 10.1007/BFb0067700 contributor: fullname: Moré J. J. – ident: ref15/cit15 doi: 10.1021/jp0143847 – start-page: 307 volume-title: Chlorinated Solvent Source Zone Remediation year: 2014 ident: ref2/cit2 contributor: fullname: Tratnyek P. G. – ident: ref47/cit47 doi: 10.1021/acs.est.6b03184 – ident: ref10/cit10 doi: 10.1007/s40726-019-00122-7 – ident: ref28/cit28 doi: 10.1016/j.chemosphere.2016.09.139 – ident: ref55/cit55 doi: 10.1179/imr.1993.38.3.138 – ident: ref61/cit61 doi: 10.1016/j.jcis.2017.07.024 – ident: ref62/cit62 doi: 10.1021/es010086b – ident: ref12/cit12 doi: 10.1021/es104081p – ident: ref36/cit36 doi: 10.1039/D1EW00897H – ident: ref14/cit14 doi: 10.1016/j.jes.2023.04.024 – ident: ref24/cit24 doi: 10.1080/09593332708618659 – ident: ref49/cit49 doi: 10.1016/j.cej.2017.10.025 – ident: ref34/cit34 doi: 10.1038/s44221-023-00098-1 – ident: ref51/cit51 doi: 10.1021/acs.est.5b01298 – ident: ref39/cit39 doi: 10.1016/j.cej.2013.10.037 – ident: ref27/cit27 doi: 10.1016/j.chemosphere.2013.02.031 – ident: ref33/cit33 doi: 10.1016/j.jhazmat.2023.132325 – ident: ref40/cit40 doi: 10.1016/j.cej.2012.11.086 |
SSID | ssj0002308 |
Score | 2.4954643 |
Snippet | The role of pH in sequestration of Cr(VI) by zerovalent magnesium (ZVMg) was characterized by global fitting of a kinetic model to time-series data from... The role of pH in sequestration of Cr(VI) by zerovalent magnesium (ZVMg) was characterized by global fitting of a kinetic model to time-series data from... |
SourceID | proquest crossref pubmed acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 2564 |
SubjectTerms | Adsorption Chromate Chromates Chromates - chemistry Chromium Chromium - analysis Chromium - chemistry Contaminants Correlation analysis Hydrogen-Ion Concentration Iron - chemistry Kinetics Magnesium Metals Oxidants Oxidizing agents pH effects Physico-Chemical Treatment and Resource Recovery Time series Water Pollutants, Chemical - analysis |
Title | Modeling the Role in pH on Contaminant Sequestration by Zerovalent Metals: Chromate Reduction by Zerovalent Magnesium |
URI | http://dx.doi.org/10.1021/acs.est.3c08367 https://www.ncbi.nlm.nih.gov/pubmed/38278139 https://www.proquest.com/docview/2923432529 https://search.proquest.com/docview/2922948901 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED3RssDAR6FQKMhIDDCkNHbiOGwIWnWBgYKEWCI7sVElSBBpBv495yQtIKgEa3K6OOfz3Tud_QxwrN1QSkmxNhE6cbwgiB1l-szxE24bfy4Xxh4UHo2DmwdxNbA0OacLOvjUPZNx3sMA2WOxJVIOGrBMA8QJFgVdjudBF5G0mF1WEDL-MGfx-aHApqE4_56GFmDLMscM1_8xug1Yq4EkuahmfhOWdNqC1S_0gi1oDz5PsaFovYzzLSjsDWj2HDpB-Edus2dNJil5HZEsJZauSlb7Y8hYl-OtnISod_Ko3zJ0TdRHrjXqzM-JZddF1ItqLAnsb4LyCcPppHjZhvvh4O5y5NT3LziSuf4U7YjJyhjOpC8Z1iWexPLG8ADTGTc0Eb5yhdZcMhq6nvIQ2LAECx5qQoUhVCrWhmaapXoXSIK-0pfGTySPPdaPhfGVkFoYRWMWKNGBY7RkVK-fPCpb49SN7EP8z6g2bwdOZrMWvVZsHItFu7NZ_VRLEc56jPo07MDR_DUuKNslkanOilKGhp5AnNSBncob5t9iggYCMfPe34a7DysUMVC5yZt3oTl9K_QBNPKkOCy99wOGVOt3 |
link.rule.ids | 315,782,786,2769,27085,27933,27934,56747,56797 |
linkProvider | American Chemical Society |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZ4HIAD78FgQJA4cCmsSZum3BAMDTE4MJAQlyppEzQJ2onSA_8ep-02ECDBtY1cN3Hsz3L8BeBAu6GUkmJuInTieEEQO8q0meMn3Bb-XC6MbRTu9oObB3HesTQ57VEvDCqRo6S8LOJP2AXcY_sM_eQRiy2fcjANsz5HKGzB0Fl_7HsRUIvRnQUh4w9jMp9vAmw0ivOv0egXiFmGmoul_yu5DIs1rCSnlR2swJROV2HhE9ngKjQ6k542HFpv6nwNCnsfmu1KJwgGyW32rMkgJcMuyVJiyatkdVqG9HWpdmUyRL2TR_2aoaGiPHKtUWZ-QizXLmJgFGMpYX8aKJ_QuQ6Kl3W4v-jcnXWd-jYGRzLXf8PpxNBlDGfSlwyzFE9ismN4gMGNG5oIX7lCay4ZDV1PeQhzWILpDzWhQocqFWvATJqlehNIgpbTlsZPJI891o6F8ZWQWhhFYxYo0YQDnMmo3k15VBbKqRvZh_ifUT29TTgcLV40rLg5fh_aGi3uRCxFcOsx6tOwCfvj17i9bM1EpjoryjE09ASipiZsVEYx_hYTNBCIoLf-pu4ezHXvrntR7_LmahvmKaKj8vg3b8HM22uhd2A6T4rd0qA_AGgq8-Q |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58gOjB9-r6jODBS3WbtGnqTXSXFR-IqyBeStImImi7bLcH_72TtrsqKojXNkzTZB7fMJkvAPvaDaWUFHMToRPHC4LYUabFHD_htvDncmFso3C3F1w_iLO2pcnxRr0wOIkcJeVlEd9adT8xNcOAe2Sfo688ZLHlVA4mYdrnQWhTrpPT3tj_IqgWo3sLQsYfxoQ-3wTYiBTnXyPSLzCzDDedhf9NdBHma3hJTip9WIIJnS7D3CfSwWVotD9623Bobdz5ChT2XjTbnU4QFJLb7EWT55T0uyRLiSWxktWpGdLT5dQr1SHqjTzqQYYKi_LIlUaZ-TGxnLuIhVGMpYb9aaB8Qif7XLyuwn2nfXfadepbGRzJXH-IS4ohzBjOpC8ZZiuexKTH8ACDHDc0Eb5yhdZcMhq6nvIQ7rAE0yBqQoWOVSrWgKk0S_U6kAQ1qCWNn0gee6wVC-MrIbUwisYsUKIJ-7iSUW1VeVQWzKkb2Yf4n1G9vE04GG1g1K84On4fujXa4A-xFEGux6hPwybsjV-jmdnaiUx1VpRjaOgJRE9NWKsUY_wtJmggEElv_G26uzBzc9aJLs-vLzZhliJIKk-B8y2YGg4KvQ2TeVLslDr9DlpW9mc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+the+Role+in+pH+on+Contaminant+Sequestration+by+Zerovalent+Metals%3A+Chromate+Reduction+by+Zerovalent+Magnesium&rft.jtitle=Environmental+science+%26+technology&rft.au=Park%2C+Jaeseon&rft.au=Bandstra%2C+Joel+Z&rft.au=Tratnyek%2C+Paul+G&rft.au=Harvey%2C+Omar+R&rft.date=2024-02-06&rft.eissn=1520-5851&rft.volume=58&rft.issue=5&rft.spage=2564&rft.epage=2573&rft_id=info:doi/10.1021%2Facs.est.3c08367&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon |