Modeling the Role in pH on Contaminant Sequestration by Zerovalent Metals: Chromate Reduction by Zerovalent Magnesium

The role of pH in sequestration of Cr­(VI) by zerovalent magnesium (ZVMg) was characterized by global fitting of a kinetic model to time-series data from unbuffered batch experiments with varying initial pH values. At initial pH values ranging from 2.0 to 6.8, ZVMg (0.5 g/L) completely reduced Cr­(V...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science & technology Vol. 58; no. 5; pp. 2564 - 2573
Main Authors: Park, Jaeseon, Bandstra, Joel Z., Tratnyek, Paul G., Harvey, Omar R., Bae, Jong-Seong, Lee, Giehyeon
Format: Journal Article
Language:English
Published: United States American Chemical Society 06-02-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The role of pH in sequestration of Cr­(VI) by zerovalent magnesium (ZVMg) was characterized by global fitting of a kinetic model to time-series data from unbuffered batch experiments with varying initial pH values. At initial pH values ranging from 2.0 to 6.8, ZVMg (0.5 g/L) completely reduced Cr­(VI) (18.1 μM) within 24 h, during which time pH rapidly increased to a plateau value of ∼10. Time-series correlation analysis of the pH and aqueous Cr­(VI), Cr­(III), and Mg­(II) concentration data suggested that these conditions are controlled by combinations of reactions (involving Mg0 oxidative dissolution and Cr­(VI) sequestration) that evolve over the time course of each experiment. Since this is also likely to occur during any engineering applications of ZVMg for remediation, we developed a kinetic model for dynamic pH changes coupled with ZVMg corrosion processes. Using this model, the synchronous changes in Cr­(VI) and Mg­(II) concentrations were fully predicted based on the Langmuir–Hinshelwood kinetics and transition-state theory, respectively. The reactivity of ZVMg was different in two pH regimes that were pH-dependent at pH < 4 and pH-independent at the higher pH. This contrasting pH effect could be ascribed to the shift of the primary oxidant of ZVMg from H+ to H2O at the lower and higher pH regimes, respectively.
AbstractList The role of pH in sequestration of Cr(VI) by zerovalent magnesium (ZVMg) was characterized by global fitting of a kinetic model to time-series data from unbuffered batch experiments with varying initial pH values. At initial pH values ranging from 2.0 to 6.8, ZVMg (0.5 g/L) completely reduced Cr(VI) (18.1 μM) within 24 h, during which time pH rapidly increased to a plateau value of ∼10. Time-series correlation analysis of the pH and aqueous Cr(VI), Cr(III), and Mg(II) concentration data suggested that these conditions are controlled by combinations of reactions (involving Mg0 oxidative dissolution and Cr(VI) sequestration) that evolve over the time course of each experiment. Since this is also likely to occur during any engineering applications of ZVMg for remediation, we developed a kinetic model for dynamic pH changes coupled with ZVMg corrosion processes. Using this model, the synchronous changes in Cr(VI) and Mg(II) concentrations were fully predicted based on the Langmuir–Hinshelwood kinetics and transition-state theory, respectively. The reactivity of ZVMg was different in two pH regimes that were pH-dependent at pH < 4 and pH-independent at the higher pH. This contrasting pH effect could be ascribed to the shift of the primary oxidant of ZVMg from H+ to H2O at the lower and higher pH regimes, respectively.
The role of pH in sequestration of Cr(VI) by zerovalent magnesium (ZVMg) was characterized by global fitting of a kinetic model to time-series data from unbuffered batch experiments with varying initial pH values. At initial pH values ranging from 2.0 to 6.8, ZVMg (0.5 g/L) completely reduced Cr(VI) (18.1 μM) within 24 h, during which time pH rapidly increased to a plateau value of ∼10. Time-series correlation analysis of the pH and aqueous Cr(VI), Cr(III), and Mg(II) concentration data suggested that these conditions are controlled by combinations of reactions (involving Mg oxidative dissolution and Cr(VI) sequestration) that evolve over the time course of each experiment. Since this is also likely to occur during any engineering applications of ZVMg for remediation, we developed a kinetic model for dynamic pH changes coupled with ZVMg corrosion processes. Using this model, the synchronous changes in Cr(VI) and Mg(II) concentrations were fully predicted based on the Langmuir-Hinshelwood kinetics and transition-state theory, respectively. The reactivity of ZVMg was different in two pH regimes that were pH-dependent at pH < 4 and pH-independent at the higher pH. This contrasting pH effect could be ascribed to the shift of the primary oxidant of ZVMg from H to H O at the lower and higher pH regimes, respectively.
The role of pH in sequestration of Cr­(VI) by zerovalent magnesium (ZVMg) was characterized by global fitting of a kinetic model to time-series data from unbuffered batch experiments with varying initial pH values. At initial pH values ranging from 2.0 to 6.8, ZVMg (0.5 g/L) completely reduced Cr­(VI) (18.1 μM) within 24 h, during which time pH rapidly increased to a plateau value of ∼10. Time-series correlation analysis of the pH and aqueous Cr­(VI), Cr­(III), and Mg­(II) concentration data suggested that these conditions are controlled by combinations of reactions (involving Mg0 oxidative dissolution and Cr­(VI) sequestration) that evolve over the time course of each experiment. Since this is also likely to occur during any engineering applications of ZVMg for remediation, we developed a kinetic model for dynamic pH changes coupled with ZVMg corrosion processes. Using this model, the synchronous changes in Cr­(VI) and Mg­(II) concentrations were fully predicted based on the Langmuir–Hinshelwood kinetics and transition-state theory, respectively. The reactivity of ZVMg was different in two pH regimes that were pH-dependent at pH < 4 and pH-independent at the higher pH. This contrasting pH effect could be ascribed to the shift of the primary oxidant of ZVMg from H+ to H2O at the lower and higher pH regimes, respectively.
Author Tratnyek, Paul G.
Bae, Jong-Seong
Lee, Giehyeon
Harvey, Omar R.
Park, Jaeseon
Bandstra, Joel Z.
AuthorAffiliation Department of Mathematics, Engineering, and Computer Science
Korea Basic Science Institute
Department of Earth System Sciences
Oregon Health & Science University
Yonsei University
Department of Geological Sciences
OHSU-PSU School of Public Health
Division of High-Technology Materials Research, Busan Center
AuthorAffiliation_xml – name: Department of Earth System Sciences
– name: Department of Mathematics, Engineering, and Computer Science
– name: Department of Geological Sciences
– name: OHSU-PSU School of Public Health
– name: Korea Basic Science Institute
– name: Oregon Health & Science University
– name: Yonsei University
– name: Division of High-Technology Materials Research, Busan Center
Author_xml – sequence: 1
  givenname: Jaeseon
  orcidid: 0000-0003-2660-5924
  surname: Park
  fullname: Park, Jaeseon
  organization: Yonsei University
– sequence: 2
  givenname: Joel Z.
  orcidid: 0009-0001-6162-7427
  surname: Bandstra
  fullname: Bandstra, Joel Z.
  organization: Department of Mathematics, Engineering, and Computer Science
– sequence: 3
  givenname: Paul G.
  orcidid: 0000-0001-8818-6417
  surname: Tratnyek
  fullname: Tratnyek, Paul G.
  email: tratnyek@ohsu.edu
  organization: Oregon Health & Science University
– sequence: 4
  givenname: Omar R.
  orcidid: 0000-0002-6604-7237
  surname: Harvey
  fullname: Harvey, Omar R.
  organization: Department of Geological Sciences
– sequence: 5
  givenname: Jong-Seong
  orcidid: 0000-0003-0039-4030
  surname: Bae
  fullname: Bae, Jong-Seong
  organization: Korea Basic Science Institute
– sequence: 6
  givenname: Giehyeon
  orcidid: 0000-0003-4914-1392
  surname: Lee
  fullname: Lee, Giehyeon
  email: ghlee@yonsei.ac.kr
  organization: Yonsei University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38278139$$D View this record in MEDLINE/PubMed
BookMark eNp1kUtLw0AUhQdRbK2u3cmAG0HaziOTzLiT4gsqgg8QN2GS3LQpyUydSYT-e6e2uhBd3cX9zrmHew7QrrEGEDqmZEQJo2Od-xH4dsRzInmc7KA-FYwMhRR0F_UJoXyoePzaQwfeLwghjBO5j3pcskRSrvqou7cF1JWZ4XYO-NHWgCuDl7fYGjyxptVNZbRp8RO8d-GQ020VNtkKv4GzH7qGsLuHVtf-Ak_mzja6DTZQdPlfoJ4Z8FXXHKK9MkjgaDsH6OX66nlyO5w-3NxNLqdDzaloQ_SIqbKMuRaaiySOtIhkGScJlXHJCikyKgFizZmiURapJOaFEISVKlOU6owP0NnGd-nsV_60qXwOda0N2M6nTDGmIqnCnwbo9Be6sJ0zId2a4hFngqlAjTdU7qz3Dsp06apGu1VKSbpuJA2NpGv1tpGgONn6dlkDxQ__XUEAzjfAWvlz8z-7T2bPmAw
Cites_doi 10.1021/es049129p
10.1021/es011000h
10.1021/es950211h
10.1021/es062886y
10.1089/ees.2021.0054
10.2166/washdev.2021.006
10.1021/acsenvironau.1c00042
10.1021/es025562s
10.1016/j.jhazmat.2015.03.004
10.1021/acs.est.1c00653
10.1139/v75-556
10.1021/acs.est.8b06648
10.1021/acs.est.9b05565
10.1021/acs.est.5b05360
10.1016/j.gca.2012.10.031
10.1021/acs.est.8b04436
10.2475/ajs.282.3.237
10.1007/978-0-387-73563-4_5
10.1021/acs.est.2c01469
10.1016/S0169-7722(00)00122-4
10.1039/C9EM00592G
10.1016/j.jece.2019.102950
10.1016/j.watres.2012.11.028
10.1016/j.jhazmat.2011.11.089
10.1016/j.cej.2016.05.130
10.1149/1.2411579
10.1089/ees.2017.0067
10.1016/j.jhydrol.2005.07.007
10.1021/ie0200510
10.1016/j.chemosphere.2019.01.134
10.1089/ees.2012.0273
10.1016/j.watres.2018.02.030
10.1039/C9EM00557A
10.7844/kirr.2011.20.3.003
10.1021/acs.chemrev.0c01286
10.1016/j.advwatres.2012.02.005
10.1016/j.jece.2013.11.013
10.1016/j.actbio.2009.11.036
10.1016/j.chemosphere.2021.130766
10.1016/j.chemosphere.2009.05.007
10.1021/acs.est.7b04030
10.1016/S0043-1354(00)00408-5
10.1021/es060685o
10.1016/j.jes.2022.09.007
10.1007/BFb0067700
10.1021/jp0143847
10.1021/acs.est.6b03184
10.1007/s40726-019-00122-7
10.1016/j.chemosphere.2016.09.139
10.1179/imr.1993.38.3.138
10.1016/j.jcis.2017.07.024
10.1021/es010086b
10.1021/es104081p
10.1039/D1EW00897H
10.1016/j.jes.2023.04.024
10.1080/09593332708618659
10.1016/j.cej.2017.10.025
10.1038/s44221-023-00098-1
10.1021/acs.est.5b01298
10.1016/j.cej.2013.10.037
10.1016/j.chemosphere.2013.02.031
10.1016/j.jhazmat.2023.132325
10.1016/j.cej.2012.11.086
ContentType Journal Article
Copyright 2024 American Chemical Society
Copyright American Chemical Society Feb 6, 2024
Copyright_xml – notice: 2024 American Chemical Society
– notice: Copyright American Chemical Society Feb 6, 2024
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
DOI 10.1021/acs.est.3c08367
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Biotechnology Research Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Biotechnology Research Abstracts
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1520-5851
EndPage 2573
ExternalDocumentID 10_1021_acs_est_3c08367
38278139
c89963193
Genre Journal Article
GroupedDBID ---
-DZ
-~X
..I
.DC
.K2
3R3
4.4
4R4
55A
5GY
5VS
63O
6TJ
7~N
85S
AABXI
ABFRP
ABJNI
ABMVS
ABOGM
ABPPZ
ABQRX
ABUCX
ACGFS
ACGOD
ACIWK
ACJ
ACPRK
ACS
ADHLV
AEESW
AENEX
AFEFF
AFRAH
AGHSJ
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
EBS
ED~
F5P
GGK
GNL
IH9
JG~
LG6
MS~
MW2
PQQKQ
ROL
RXW
TN5
TWZ
U5U
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
XSW
XZL
YZZ
ZCA
53G
AAHBH
ADUKH
CGR
CUPRZ
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
ID FETCH-LOGICAL-a315t-93429ff63a5a35764a548f677186f2d85b18ee6a32914b49763d5502f9b911ab3
IEDL.DBID ACS
ISSN 0013-936X
IngestDate Sat Aug 17 02:22:04 EDT 2024
Tue Nov 26 10:59:28 EST 2024
Fri Aug 23 01:40:35 EDT 2024
Sat Nov 02 12:27:43 EDT 2024
Wed Feb 07 03:23:58 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords pH dependence
comprehensive kinetic model
corrosion
zerovalent magnesium (ZVMg)
reduction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a315t-93429ff63a5a35764a548f677186f2d85b18ee6a32914b49763d5502f9b911ab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8818-6417
0000-0003-0039-4030
0000-0003-4914-1392
0000-0003-2660-5924
0009-0001-6162-7427
0000-0002-6604-7237
PMID 38278139
PQID 2923432529
PQPubID 45412
PageCount 10
ParticipantIDs proquest_miscellaneous_2922948901
proquest_journals_2923432529
crossref_primary_10_1021_acs_est_3c08367
pubmed_primary_38278139
acs_journals_10_1021_acs_est_3c08367
PublicationCentury 2000
PublicationDate 2024-02-06
PublicationDateYYYYMMDD 2024-02-06
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-06
  day: 06
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Easton
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ. Sci. Technol
PublicationYear 2024
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref52/cit52
ref23/cit23
ref31/cit31
ref59/cit59
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
Brantley S. L. (ref64/cit64) 2008
ref61/cit61
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
Filip J. (ref8/cit8) 2019
Tratnyek P. G. (ref2/cit2) 2014
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
Moré J. J. (ref54/cit54) 1978
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
Bajpai P. (ref16/cit16) 2018
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref5/cit5
  doi: 10.1021/es049129p
– ident: ref60/cit60
  doi: 10.1021/es011000h
– ident: ref4/cit4
  doi: 10.1021/es950211h
– ident: ref22/cit22
  doi: 10.1021/es062886y
– ident: ref42/cit42
  doi: 10.1089/ees.2021.0054
– ident: ref9/cit9
  doi: 10.2166/washdev.2021.006
– ident: ref20/cit20
– ident: ref38/cit38
  doi: 10.1021/acsenvironau.1c00042
– ident: ref45/cit45
  doi: 10.1021/es025562s
– ident: ref31/cit31
  doi: 10.1016/j.jhazmat.2015.03.004
– start-page: 157
  volume-title: Nanoscale Zerovalent Iron Particles for Environmental Restoration
  year: 2019
  ident: ref8/cit8
  contributor:
    fullname: Filip J.
– ident: ref57/cit57
  doi: 10.1021/acs.est.1c00653
– ident: ref50/cit50
– ident: ref17/cit17
  doi: 10.1139/v75-556
– ident: ref67/cit67
  doi: 10.1021/acs.est.8b06648
– ident: ref35/cit35
  doi: 10.1021/acs.est.9b05565
– ident: ref59/cit59
  doi: 10.1021/acs.est.5b05360
– ident: ref18/cit18
  doi: 10.1016/j.gca.2012.10.031
– ident: ref46/cit46
  doi: 10.1021/acs.est.8b04436
– ident: ref63/cit63
  doi: 10.2475/ajs.282.3.237
– start-page: 151
  volume-title: Kinetics of Water-Rock Interaction
  year: 2008
  ident: ref64/cit64
  doi: 10.1007/978-0-387-73563-4_5
  contributor:
    fullname: Brantley S. L.
– ident: ref68/cit68
  doi: 10.1021/acs.est.2c01469
– ident: ref7/cit7
  doi: 10.1016/S0169-7722(00)00122-4
– ident: ref13/cit13
  doi: 10.1039/C9EM00592G
– ident: ref30/cit30
  doi: 10.1016/j.jece.2019.102950
– ident: ref19/cit19
  doi: 10.1016/j.watres.2012.11.028
– ident: ref26/cit26
  doi: 10.1016/j.jhazmat.2011.11.089
– ident: ref41/cit41
  doi: 10.1016/j.cej.2016.05.130
– ident: ref56/cit56
  doi: 10.1149/1.2411579
– ident: ref37/cit37
  doi: 10.1089/ees.2017.0067
– ident: ref65/cit65
  doi: 10.1016/j.jhydrol.2005.07.007
– ident: ref25/cit25
  doi: 10.1021/ie0200510
– ident: ref53/cit53
– ident: ref29/cit29
  doi: 10.1016/j.chemosphere.2019.01.134
– ident: ref43/cit43
  doi: 10.1089/ees.2012.0273
– volume-title: Biermann’s Handbook of Pulp and Paper: Vol. 2: Paper and Board Making, Chapter 20 Introductory Chemistry Reviews
  year: 2018
  ident: ref16/cit16
  contributor:
    fullname: Bajpai P.
– ident: ref58/cit58
  doi: 10.1016/j.watres.2018.02.030
– ident: ref11/cit11
  doi: 10.1039/C9EM00557A
– ident: ref69/cit69
  doi: 10.7844/kirr.2011.20.3.003
– ident: ref1/cit1
  doi: 10.1021/acs.chemrev.0c01286
– ident: ref3/cit3
  doi: 10.1016/j.advwatres.2012.02.005
– ident: ref44/cit44
  doi: 10.1016/j.jece.2013.11.013
– ident: ref21/cit21
  doi: 10.1016/j.actbio.2009.11.036
– ident: ref6/cit6
  doi: 10.1016/j.chemosphere.2021.130766
– ident: ref23/cit23
  doi: 10.1016/j.chemosphere.2009.05.007
– ident: ref48/cit48
  doi: 10.1021/acs.est.7b04030
– ident: ref52/cit52
  doi: 10.1016/S0043-1354(00)00408-5
– ident: ref66/cit66
  doi: 10.1021/es060685o
– ident: ref32/cit32
  doi: 10.1016/j.jes.2022.09.007
– start-page: 105
  volume-title: Numerical analysis
  year: 1978
  ident: ref54/cit54
  doi: 10.1007/BFb0067700
  contributor:
    fullname: Moré J. J.
– ident: ref15/cit15
  doi: 10.1021/jp0143847
– start-page: 307
  volume-title: Chlorinated Solvent Source Zone Remediation
  year: 2014
  ident: ref2/cit2
  contributor:
    fullname: Tratnyek P. G.
– ident: ref47/cit47
  doi: 10.1021/acs.est.6b03184
– ident: ref10/cit10
  doi: 10.1007/s40726-019-00122-7
– ident: ref28/cit28
  doi: 10.1016/j.chemosphere.2016.09.139
– ident: ref55/cit55
  doi: 10.1179/imr.1993.38.3.138
– ident: ref61/cit61
  doi: 10.1016/j.jcis.2017.07.024
– ident: ref62/cit62
  doi: 10.1021/es010086b
– ident: ref12/cit12
  doi: 10.1021/es104081p
– ident: ref36/cit36
  doi: 10.1039/D1EW00897H
– ident: ref14/cit14
  doi: 10.1016/j.jes.2023.04.024
– ident: ref24/cit24
  doi: 10.1080/09593332708618659
– ident: ref49/cit49
  doi: 10.1016/j.cej.2017.10.025
– ident: ref34/cit34
  doi: 10.1038/s44221-023-00098-1
– ident: ref51/cit51
  doi: 10.1021/acs.est.5b01298
– ident: ref39/cit39
  doi: 10.1016/j.cej.2013.10.037
– ident: ref27/cit27
  doi: 10.1016/j.chemosphere.2013.02.031
– ident: ref33/cit33
  doi: 10.1016/j.jhazmat.2023.132325
– ident: ref40/cit40
  doi: 10.1016/j.cej.2012.11.086
SSID ssj0002308
Score 2.4954643
Snippet The role of pH in sequestration of Cr­(VI) by zerovalent magnesium (ZVMg) was characterized by global fitting of a kinetic model to time-series data from...
The role of pH in sequestration of Cr(VI) by zerovalent magnesium (ZVMg) was characterized by global fitting of a kinetic model to time-series data from...
SourceID proquest
crossref
pubmed
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 2564
SubjectTerms Adsorption
Chromate
Chromates
Chromates - chemistry
Chromium
Chromium - analysis
Chromium - chemistry
Contaminants
Correlation analysis
Hydrogen-Ion Concentration
Iron - chemistry
Kinetics
Magnesium
Metals
Oxidants
Oxidizing agents
pH effects
Physico-Chemical Treatment and Resource Recovery
Time series
Water Pollutants, Chemical - analysis
Title Modeling the Role in pH on Contaminant Sequestration by Zerovalent Metals: Chromate Reduction by Zerovalent Magnesium
URI http://dx.doi.org/10.1021/acs.est.3c08367
https://www.ncbi.nlm.nih.gov/pubmed/38278139
https://www.proquest.com/docview/2923432529
https://search.proquest.com/docview/2922948901
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED3RssDAR6FQKMhIDDCkNHbiOGwIWnWBgYKEWCI7sVElSBBpBv495yQtIKgEa3K6OOfz3Tud_QxwrN1QSkmxNhE6cbwgiB1l-szxE24bfy4Xxh4UHo2DmwdxNbA0OacLOvjUPZNx3sMA2WOxJVIOGrBMA8QJFgVdjudBF5G0mF1WEDL-MGfx-aHApqE4_56GFmDLMscM1_8xug1Yq4EkuahmfhOWdNqC1S_0gi1oDz5PsaFovYzzLSjsDWj2HDpB-Edus2dNJil5HZEsJZauSlb7Y8hYl-OtnISod_Ko3zJ0TdRHrjXqzM-JZddF1ItqLAnsb4LyCcPppHjZhvvh4O5y5NT3LziSuf4U7YjJyhjOpC8Z1iWexPLG8ADTGTc0Eb5yhdZcMhq6nvIQ2LAECx5qQoUhVCrWhmaapXoXSIK-0pfGTySPPdaPhfGVkFoYRWMWKNGBY7RkVK-fPCpb49SN7EP8z6g2bwdOZrMWvVZsHItFu7NZ_VRLEc56jPo07MDR_DUuKNslkanOilKGhp5AnNSBncob5t9iggYCMfPe34a7DysUMVC5yZt3oTl9K_QBNPKkOCy99wOGVOt3
link.rule.ids 315,782,786,2769,27085,27933,27934,56747,56797
linkProvider American Chemical Society
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZ4HIAD78FgQJA4cCmsSZum3BAMDTE4MJAQlyppEzQJ2onSA_8ep-02ECDBtY1cN3Hsz3L8BeBAu6GUkmJuInTieEEQO8q0meMn3Bb-XC6MbRTu9oObB3HesTQ57VEvDCqRo6S8LOJP2AXcY_sM_eQRiy2fcjANsz5HKGzB0Fl_7HsRUIvRnQUh4w9jMp9vAmw0ivOv0egXiFmGmoul_yu5DIs1rCSnlR2swJROV2HhE9ngKjQ6k542HFpv6nwNCnsfmu1KJwgGyW32rMkgJcMuyVJiyatkdVqG9HWpdmUyRL2TR_2aoaGiPHKtUWZ-QizXLmJgFGMpYX8aKJ_QuQ6Kl3W4v-jcnXWd-jYGRzLXf8PpxNBlDGfSlwyzFE9ismN4gMGNG5oIX7lCay4ZDV1PeQhzWILpDzWhQocqFWvATJqlehNIgpbTlsZPJI891o6F8ZWQWhhFYxYo0YQDnMmo3k15VBbKqRvZh_ifUT29TTgcLV40rLg5fh_aGi3uRCxFcOsx6tOwCfvj17i9bM1EpjoryjE09ASipiZsVEYx_hYTNBCIoLf-pu4ezHXvrntR7_LmahvmKaKj8vg3b8HM22uhd2A6T4rd0qA_AGgq8-Q
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58gOjB9-r6jODBS3WbtGnqTXSXFR-IqyBeStImImi7bLcH_72TtrsqKojXNkzTZB7fMJkvAPvaDaWUFHMToRPHC4LYUabFHD_htvDncmFso3C3F1w_iLO2pcnxRr0wOIkcJeVlEd9adT8xNcOAe2Sfo688ZLHlVA4mYdrnQWhTrpPT3tj_IqgWo3sLQsYfxoQ-3wTYiBTnXyPSLzCzDDedhf9NdBHma3hJTip9WIIJnS7D3CfSwWVotD9623Bobdz5ChT2XjTbnU4QFJLb7EWT55T0uyRLiSWxktWpGdLT5dQr1SHqjTzqQYYKi_LIlUaZ-TGxnLuIhVGMpYb9aaB8Qif7XLyuwn2nfXfadepbGRzJXH-IS4ohzBjOpC8ZZiuexKTH8ACDHDc0Eb5yhdZcMhq6nvIQ7rAE0yBqQoWOVSrWgKk0S_U6kAQ1qCWNn0gee6wVC-MrIbUwisYsUKIJ-7iSUW1VeVQWzKkb2Yf4n1G9vE04GG1g1K84On4fujXa4A-xFEGux6hPwybsjV-jmdnaiUx1VpRjaOgJRE9NWKsUY_wtJmggEElv_G26uzBzc9aJLs-vLzZhliJIKk-B8y2YGg4KvQ2TeVLslDr9DlpW9mc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+the+Role+in+pH+on+Contaminant+Sequestration+by+Zerovalent+Metals%3A+Chromate+Reduction+by+Zerovalent+Magnesium&rft.jtitle=Environmental+science+%26+technology&rft.au=Park%2C+Jaeseon&rft.au=Bandstra%2C+Joel+Z&rft.au=Tratnyek%2C+Paul+G&rft.au=Harvey%2C+Omar+R&rft.date=2024-02-06&rft.eissn=1520-5851&rft.volume=58&rft.issue=5&rft.spage=2564&rft.epage=2573&rft_id=info:doi/10.1021%2Facs.est.3c08367&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon