Surface Depletion Layers in Plasmonic Metal Oxide Nanocrystals

Conspectus Strong infrared (IR) light–matter interaction and spectral tunability combine to make plasmonic metal oxide nanocrystals (NCs) a compelling choice for IR applications. In particular, visible transparency paired with strong, dynamically tunable IR absorption has motivated their implementat...

Full description

Saved in:
Bibliographic Details
Published in:Accounts of chemical research Vol. 52; no. 9; pp. 2516 - 2524
Main Authors: Gibbs, Stephen L, Staller, Corey M, Milliron, Delia J
Format: Journal Article
Language:English
Published: United States American Chemical Society 17-09-2019
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Conspectus Strong infrared (IR) light–matter interaction and spectral tunability combine to make plasmonic metal oxide nanocrystals (NCs) a compelling choice for IR applications. In particular, visible transparency paired with strong, dynamically tunable IR absorption has motivated their implementation in electrochromic smart windows, but these NCs hold promise for a far broader range of plasmonically driven processes such as surface-enhanced infrared sensing, photothermal therapy, and enhanced photocatalysis. These unique properties result from localized surface plasmon resonance (LSPR) sustained by a relatively low free charge carrier concentration, which in turn requires consideration of distinct materials physics relative to traditional plasmonic materials (i.e., metals). Particularly important is the formation of insulating shells devoid of charge carriers (depletion layers) near the NC surface. Surface states as well as applied surface potentials can give rise to a potential difference between the NC surface and its core that depletes free charge carriers from the surface, forming an insulating shell that reduces the conductivity in NC films, lowers the dielectric sensitivity of the LSPR, and diminishes the incident electric field enhancement. In this Account, we report recent investigations of depletion layers in plasmonic metal oxide NCs that have advanced understanding of the semiconductor physics underlying the optoelectronic properties of these NCs and the electrochemical modulation of their LSPR, establishing a conceptual framework with which to broaden their applicability and optimize their performance. As a result of surface depletion, larger, highly doped NCs have improved dielectric sensitivity compared with their smaller, lightly doped counterparts. Concentrating dopants near the NC surface compresses the depletion layer, resulting in improved conductivity of NC films. Moreover, atomic layer deposition of alumina to infill NC films enhances the film conductivity by more than 2 orders of magnitude, ascribed to the elimination of depletion effects by reactive removal of surface water species. At the conclusion, we reflect on how our newfound understanding of surface depletion in plasmonic metal oxide NCs is quickly leading to rational material design. This insight is already resulting in significant performance improvements, and the same principles can be applied to new, exciting opportunities in hot carrier extraction and resonant IR energy transduction.
AbstractList Conspectus Strong infrared (IR) light–matter interaction and spectral tunability combine to make plasmonic metal oxide nanocrystals (NCs) a compelling choice for IR applications. In particular, visible transparency paired with strong, dynamically tunable IR absorption has motivated their implementation in electrochromic smart windows, but these NCs hold promise for a far broader range of plasmonically driven processes such as surface-enhanced infrared sensing, photothermal therapy, and enhanced photocatalysis. These unique properties result from localized surface plasmon resonance (LSPR) sustained by a relatively low free charge carrier concentration, which in turn requires consideration of distinct materials physics relative to traditional plasmonic materials (i.e., metals). Particularly important is the formation of insulating shells devoid of charge carriers (depletion layers) near the NC surface. Surface states as well as applied surface potentials can give rise to a potential difference between the NC surface and its core that depletes free charge carriers from the surface, forming an insulating shell that reduces the conductivity in NC films, lowers the dielectric sensitivity of the LSPR, and diminishes the incident electric field enhancement. In this Account, we report recent investigations of depletion layers in plasmonic metal oxide NCs that have advanced understanding of the semiconductor physics underlying the optoelectronic properties of these NCs and the electrochemical modulation of their LSPR, establishing a conceptual framework with which to broaden their applicability and optimize their performance. As a result of surface depletion, larger, highly doped NCs have improved dielectric sensitivity compared with their smaller, lightly doped counterparts. Concentrating dopants near the NC surface compresses the depletion layer, resulting in improved conductivity of NC films. Moreover, atomic layer deposition of alumina to infill NC films enhances the film conductivity by more than 2 orders of magnitude, ascribed to the elimination of depletion effects by reactive removal of surface water species. At the conclusion, we reflect on how our newfound understanding of surface depletion in plasmonic metal oxide NCs is quickly leading to rational material design. This insight is already resulting in significant performance improvements, and the same principles can be applied to new, exciting opportunities in hot carrier extraction and resonant IR energy transduction.
Strong infrared (IR) light-matter interaction and spectral tunability combine to make plasmonic metal oxide nanocrystals (NCs) a compelling choice for IR applications. In particular, visible transparency paired with strong, dynamically tunable IR absorption has motivated their implementation in electrochromic smart windows, but these NCs hold promise for a far broader range of plasmonically driven processes such as surface-enhanced infrared sensing, photothermal therapy, and enhanced photocatalysis. These unique properties result from localized surface plasmon resonance (LSPR) sustained by a relatively low free charge carrier concentration, which in turn requires consideration of distinct materials physics relative to traditional plasmonic materials (i.e., metals). Particularly important is the formation of insulating shells devoid of charge carriers (depletion layers) near the NC surface. Surface states as well as applied surface potentials can give rise to a potential difference between the NC surface and its core that depletes free charge carriers from the surface, forming an insulating shell that reduces the conductivity in NC films, lowers the dielectric sensitivity of the LSPR, and diminishes the incident electric field enhancement. In this Account, we report recent investigations of depletion layers in plasmonic metal oxide NCs that have advanced understanding of the semiconductor physics underlying the optoelectronic properties of these NCs and the electrochemical modulation of their LSPR, establishing a conceptual framework with which to broaden their applicability and optimize their performance. As a result of surface depletion, larger, highly doped NCs have improved dielectric sensitivity compared with their smaller, lightly doped counterparts. Concentrating dopants near the NC surface compresses the depletion layer, resulting in improved conductivity of NC films. Moreover, atomic layer deposition of alumina to infill NC films enhances the film conductivity by more than 2 orders of magnitude, ascribed to the elimination of depletion effects by reactive removal of surface water species. At the conclusion, we reflect on how our newfound understanding of surface depletion in plasmonic metal oxide NCs is quickly leading to rational material design. This insight is already resulting in significant performance improvements, and the same principles can be applied to new, exciting opportunities in hot carrier extraction and resonant IR energy transduction.
Author Staller, Corey M
Milliron, Delia J
Gibbs, Stephen L
AuthorAffiliation McKetta Department of Chemical Engineering
AuthorAffiliation_xml – name: McKetta Department of Chemical Engineering
Author_xml – sequence: 1
  givenname: Stephen L
  orcidid: 0000-0003-2533-0957
  surname: Gibbs
  fullname: Gibbs, Stephen L
– sequence: 2
  givenname: Corey M
  orcidid: 0000-0001-8665-2840
  surname: Staller
  fullname: Staller, Corey M
– sequence: 3
  givenname: Delia J
  orcidid: 0000-0002-8737-451X
  surname: Milliron
  fullname: Milliron, Delia J
  email: milliron@che.utexas.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31424914$$D View this record in MEDLINE/PubMed
BookMark eNp9UNtKw0AUXKRiL_oHIvmB1L1lk7wIUq8QraA-h72chZR2t-wmYP_eLW199GnOHGYGZqZo5LwDhK4JnhNMya3UcS619oPr47xWGNOqPEMTUlCc86quRmiCMSbp5nSMpjGuEqVclBdozAinvCZ8gu4-h2ClhuwBtmvoO--yRu4gxKxz2cdaxo13nc7eoJfrbPnTGcjepfM67GL6xEt0bhPA1RFn6Pvp8WvxkjfL59fFfZNLRoo-LyvKABQrS8KMAqoUqY0SmNoCdOLCFFIYKYQxzCpbKiqV0Bx4QYyxgrAZ4odcHXyMAWy7Dd1Ghl1LcLufo01ztKc52uMcyXZzsG0HtQHzZzr1TwJ8EOztKz8El1r8n_kLs4tyow
CitedBy_id crossref_primary_10_1021_acs_chemmater_2c03694
crossref_primary_10_1021_acs_jpcc_9b11547
crossref_primary_10_1007_s12598_023_02511_w
crossref_primary_10_1021_acs_jpcc_0c08195
crossref_primary_10_1149_2162_8777_ac5169
crossref_primary_10_1021_acsenergylett_0c01236
crossref_primary_10_1021_acsnano_3c04514
crossref_primary_10_1038_s41467_022_28140_y
crossref_primary_10_1039_D0NR09163D
crossref_primary_10_1002_adfm_202403912
crossref_primary_10_1016_j_clay_2021_106210
crossref_primary_10_1021_acs_nanolett_3c01943
crossref_primary_10_1002_aenm_202203751
crossref_primary_10_1021_acs_chemmater_0c02399
crossref_primary_10_1021_acs_chemmater_1c03635
crossref_primary_10_1002_anie_202402435
crossref_primary_10_1021_acs_chemmater_1c01951
crossref_primary_10_1039_D3TA07045J
crossref_primary_10_1039_D3CP04131J
crossref_primary_10_1002_smll_202204131
crossref_primary_10_1002_adma_202404738
crossref_primary_10_1002_adom_202400388
crossref_primary_10_1021_acs_jpcc_2c02865
crossref_primary_10_1039_D1TA04541E
crossref_primary_10_1039_D1NA00656H
crossref_primary_10_1002_ange_202402435
crossref_primary_10_1021_acs_nanolett_0c02772
crossref_primary_10_1021_acs_nanolett_0c02992
crossref_primary_10_1021_acsnano_4c02875
crossref_primary_10_1021_acs_jpcc_2c08495
crossref_primary_10_1021_acsnano_4c02223
crossref_primary_10_1021_acsmaterialslett_4c00220
crossref_primary_10_1021_acsmaterialslett_4c00341
crossref_primary_10_1021_jacs_9b13909
crossref_primary_10_1021_acs_nanolett_1c00006
crossref_primary_10_1021_acs_nanolett_2c04199
crossref_primary_10_1021_acs_jpcc_2c05582
crossref_primary_10_1021_acsphotonics_3c01813
crossref_primary_10_1016_j_jhazmat_2024_133924
crossref_primary_10_1063_5_0130817
Cites_doi 10.1021/jp057170o
10.1038/s41929-018-0138-x
10.1038/s41563-018-0130-5
10.1021/jp9003592
10.1021/acsnano.6b02796
10.1021/jp062536y
10.1039/b714950f
10.1039/C4CC03109A
10.1021/nl900034v
10.1038/nphoton.2012.161
10.1126/science.aat6967
10.1073/pnas.2232479100
10.1021/cr900137k
10.1021/jp0256793
10.1021/acs.nanolett.7b05484
10.1021/acsphotonics.7b00429
10.1146/annurev-matsci-070616-124259
10.1021/acs.nanolett.7b00992
10.1021/acs.chemrev.7b00613
10.1103/PhysRev.120.745
10.1021/nl203030f
10.1021/acs.nanolett.9b00079
10.1038/nchem.1032
10.1063/1.1723358
10.1021/jp9835566
10.1021/acsphotonics.7b01587
10.1021/acs.chemmater.6b02414
10.1021/cr100313v
10.1038/ncomms6822
10.1021/nl202597n
10.1146/annurev.physchem.58.032806.104607
10.1021/nn401888h
10.1146/annurev-physchem-052516-044948
10.1016/S0030-4018(03)01357-9
10.1073/pnas.1609769113
10.1021/acsnano.7b01053
10.1103/PhysRevLett.78.1667
10.1038/ncomms10545
10.1021/jp0010031
10.1103/PhysRevB.70.205120
10.1038/nnano.2014.311
10.1039/C7TC00600D
10.1021/nl049681c
10.1063/1.3604792
10.1021/acs.chemrev.6b00743
10.1103/RevModPhys.79.469
10.1021/jp9917648
10.1021/cr0680134
10.1038/nmat3151
10.1021/la800305j
ContentType Journal Article
DBID NPM
AAYXX
CITATION
DOI 10.1021/acs.accounts.9b00287
DatabaseName PubMed
CrossRef
DatabaseTitle PubMed
CrossRef
DatabaseTitleList
PubMed
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-4898
EndPage 2524
ExternalDocumentID 10_1021_acs_accounts_9b00287
31424914
b497908074
Genre Journal Article
GroupedDBID -
.K2
02
23M
53G
55A
5GY
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
RNS
ROL
TWZ
UI2
UPT
VF5
VG9
W1F
WH7
X
YZZ
---
-DZ
-~X
4.4
5ZA
6J9
6P2
ABJNI
ABQRX
ACGFO
ADHLV
AFXLT
AGXLV
AHGAQ
CUPRZ
GGK
IH2
NPM
XSW
ZCA
~02
AAYXX
CITATION
ID FETCH-LOGICAL-a315t-7823eeb37713dbe2bb19db602f5ecbe26d5a6da66dd3fbf7b2ab6c4e451ddf613
IEDL.DBID ACS
ISSN 0001-4842
IngestDate Fri Aug 23 03:33:16 EDT 2024
Sat Sep 28 08:34:50 EDT 2024
Thu Aug 27 13:43:57 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a315t-7823eeb37713dbe2bb19db602f5ecbe26d5a6da66dd3fbf7b2ab6c4e451ddf613
ORCID 0000-0003-2533-0957
0000-0002-8737-451X
0000-0001-8665-2840
PMID 31424914
PageCount 9
ParticipantIDs crossref_primary_10_1021_acs_accounts_9b00287
pubmed_primary_31424914
acs_journals_10_1021_acs_accounts_9b00287
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2019-09-17
PublicationDateYYYYMMDD 2019-09-17
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-17
  day: 17
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Accounts of chemical research
PublicationTitleAlternate Acc. Chem. Res
PublicationYear 2019
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref19/cit19
ref21/cit21
ref46/cit46
Efros A. (ref42/cit42) 1984
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref27/cit27
  doi: 10.1021/jp057170o
– ident: ref49/cit49
  doi: 10.1038/s41929-018-0138-x
– ident: ref18/cit18
  doi: 10.1038/s41563-018-0130-5
– ident: ref13/cit13
  doi: 10.1021/jp9003592
– ident: ref40/cit40
  doi: 10.1021/acsnano.6b02796
– ident: ref28/cit28
  doi: 10.1021/jp062536y
– ident: ref30/cit30
  doi: 10.1039/b714950f
– ident: ref5/cit5
  doi: 10.1039/C4CC03109A
– ident: ref33/cit33
  doi: 10.1021/nl900034v
– ident: ref7/cit7
  doi: 10.1038/nphoton.2012.161
– ident: ref46/cit46
  doi: 10.1126/science.aat6967
– ident: ref14/cit14
  doi: 10.1073/pnas.2232479100
– ident: ref35/cit35
  doi: 10.1021/cr900137k
– ident: ref25/cit25
  doi: 10.1021/jp0256793
– ident: ref20/cit20
  doi: 10.1021/acs.nanolett.7b05484
– ident: ref6/cit6
  doi: 10.1021/acsphotonics.7b00429
– ident: ref1/cit1
  doi: 10.1146/annurev-matsci-070616-124259
– ident: ref12/cit12
  doi: 10.1021/acs.nanolett.7b00992
– ident: ref2/cit2
  doi: 10.1021/acs.chemrev.7b00613
– ident: ref37/cit37
  doi: 10.1103/PhysRev.120.745
– ident: ref3/cit3
  doi: 10.1021/nl203030f
– ident: ref31/cit31
  doi: 10.1021/acs.nanolett.9b00079
– ident: ref9/cit9
  doi: 10.1038/nchem.1032
– ident: ref22/cit22
  doi: 10.1063/1.1723358
– ident: ref23/cit23
  doi: 10.1021/jp9835566
– ident: ref19/cit19
  doi: 10.1021/acsphotonics.7b01587
– ident: ref21/cit21
  doi: 10.1021/acs.chemmater.6b02414
– ident: ref26/cit26
  doi: 10.1021/cr100313v
– ident: ref38/cit38
  doi: 10.1038/ncomms6822
– ident: ref4/cit4
  doi: 10.1021/nl202597n
– ident: ref15/cit15
  doi: 10.1146/annurev.physchem.58.032806.104607
– ident: ref39/cit39
  doi: 10.1021/nn401888h
– ident: ref10/cit10
  doi: 10.1146/annurev-physchem-052516-044948
– ident: ref34/cit34
  doi: 10.1016/S0030-4018(03)01357-9
– ident: ref51/cit51
  doi: 10.1073/pnas.1609769113
– ident: ref41/cit41
  doi: 10.1021/acsnano.7b01053
– volume-title: Electronic Properties of Doped Semiconductors
  year: 1984
  ident: ref42/cit42
  contributor:
    fullname: Efros A.
– ident: ref17/cit17
  doi: 10.1103/PhysRevLett.78.1667
– ident: ref50/cit50
  doi: 10.1038/ncomms10545
– ident: ref24/cit24
  doi: 10.1021/jp0010031
– ident: ref43/cit43
  doi: 10.1103/PhysRevB.70.205120
– ident: ref11/cit11
  doi: 10.1038/nnano.2014.311
– ident: ref48/cit48
  doi: 10.1039/C7TC00600D
– ident: ref32/cit32
  doi: 10.1021/nl049681c
– ident: ref8/cit8
  doi: 10.1063/1.3604792
– ident: ref16/cit16
  doi: 10.1021/acs.chemrev.6b00743
– ident: ref44/cit44
  doi: 10.1103/RevModPhys.79.469
– ident: ref47/cit47
  doi: 10.1021/jp9917648
– ident: ref36/cit36
  doi: 10.1021/cr0680134
– ident: ref45/cit45
  doi: 10.1038/nmat3151
– ident: ref29/cit29
  doi: 10.1021/la800305j
SSID ssj0002467
Score 2.529
Snippet Conspectus Strong infrared (IR) light–matter interaction and spectral tunability combine to make plasmonic metal oxide nanocrystals (NCs) a compelling choice...
Strong infrared (IR) light-matter interaction and spectral tunability combine to make plasmonic metal oxide nanocrystals (NCs) a compelling choice for IR...
SourceID crossref
pubmed
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 2516
Title Surface Depletion Layers in Plasmonic Metal Oxide Nanocrystals
URI http://dx.doi.org/10.1021/acs.accounts.9b00287
https://www.ncbi.nlm.nih.gov/pubmed/31424914
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JasMwEBVNemgv3Zd0Q4deenAaybJkXQolCz10g7TQm5EsCQKpE-IE2r_vyEsgh1BylBCyPCNm3rOsNwjduo6KNbMm0A6YDjPSBUqoNJASyISOIt_wny6G4vUr7vW9TE57zQk-JfcqzWHqonJC3pYFSRANtE0FgAUPhbrDZeSljJcamUCRWcxofVVuzSw-IaX5SkJagZZFihnsb7q4A7RXgUn8WHr_EG3Z7AjtdOsabsfoYbiYOZVa3LNTr7I9yfCz8iAbjzL8DsD52yvj4hcLEBy__YyMxRBuJ-nsF0DjOD9Bn4P-R_cpqComBCok0TyAdB9aoMcCqKfRlmpNpNG8Q11kU2hzEyluFOfGhE47oanSPGWWRcQYB5n9FDWzSWbPEVadMLLcxOA-wxRAcCcgRjsmXUxCbWUL3cHLJ9WOz5PiMJuSxHfWFkkqi7RQUJs4mZYiGv-MPyv9sBwd-gt5krCLDZ56iXYB3RQ_hBFxhZrz2cJeo0ZuFjfFtvkDUqPC3w
link.rule.ids 315,782,786,2769,27085,27933,27934,56747,56797
linkProvider American Chemical Society
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA86D_Pi98f8zMGLh-rSJmlzEWQfTNymsAneStIkMNBurBvof-9Lu052ENFjQkjTl8d7v1_T9wtCV7YuI0WN9pQFpkO1sJ4MZeIJAWRCMeYa7tPFIOy_Rs2Wk8lhZS0MLCKDmbL8EP9bXYDcuj5ZXKCQ3YicK4TraINxwMMOETUGywDsU15IZQJTphH1y4q5H2ZxeSnJVvLSCsLMM017-59r3EFbC2iJ7wtf2EVrJt1D1UZ5o9s-uhvMp1YmBjfNxGluj1PclQ5y41GKnwFGvzudXNwzAMjx08dIGwzBd5xMPwFCvmUH6KXdGjY63uL-BE8GhM08SP6BAbIcAhHVyvhKEaEVr_uWmQTaXDPJteRc68AqGypfKp5QQxnR2kKeP0SVdJyaY4RlPWCG6wg2U1MJgNyGELEtFTYigTKihq7h5eOF_2dxfrTtk9h1lhaJFxapIa-0dDwpJDV-GX9UbMdydODK8wShJ3946iWqdoa9btx96D-eok3APfmvYiQ8Q5XZdG7O0Xqm5xe5J30BkI7LTA
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JSwMxFA62gnpxX-qagxcPo52ZLJOLULqgWGuhCt6GZJJAQael04L-e19mKXgQEY8JIZN5Sd77vsnkewhd2qaMFDHaUxaYDtHCepLLxBMCyISi1BXcp4sRH7xGna6TyVmm-oJBZNBTlh_iu1091bZUGPBvXL0skihk1yLnC7yGVinjwvGuVnu0dMIBYYVcJrBlEpGgujX3Qy8uNiXZt9j0DWXm0aa39Y9xbqPNEmLiVrEmdtCKSXfRervK7LaHbkeLmZWJwR0zddrbkxT3pYPeeJziIcDpd6eXix8NAHP89DHWBoMTniSzT4CSb9k-eul1n9t3XplHwZOhT-cegIDQAGnmQEi1MoFSvtCKNQNLTQJlpqlkWjKmdWiV5SqQiiXEEOprbSHeH6B6OknNEcKyGVLDdASTqokEYG45eG5LhI38UBnRQFfw8nG5D7I4P-IO_NhVVhaJS4s0kFdZO54W0hq_tD8spmTZOnTX9IRPjv_w1Au0Nuz04v794OEEbQD8yf8Y8_kpqs9nC3OGaplenOeL6Qs_as3P
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface+Depletion+Layers+in+Plasmonic+Metal+Oxide+Nanocrystals&rft.jtitle=Accounts+of+chemical+research&rft.au=Gibbs%2C+Stephen+L.&rft.au=Staller%2C+Corey+M.&rft.au=Milliron%2C+Delia+J.&rft.date=2019-09-17&rft.issn=0001-4842&rft.eissn=1520-4898&rft.volume=52&rft.issue=9&rft.spage=2516&rft.epage=2524&rft_id=info:doi/10.1021%2Facs.accounts.9b00287&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_accounts_9b00287
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon