Surface Depletion Layers in Plasmonic Metal Oxide Nanocrystals
Conspectus Strong infrared (IR) light–matter interaction and spectral tunability combine to make plasmonic metal oxide nanocrystals (NCs) a compelling choice for IR applications. In particular, visible transparency paired with strong, dynamically tunable IR absorption has motivated their implementat...
Saved in:
Published in: | Accounts of chemical research Vol. 52; no. 9; pp. 2516 - 2524 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
American Chemical Society
17-09-2019
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Conspectus Strong infrared (IR) light–matter interaction and spectral tunability combine to make plasmonic metal oxide nanocrystals (NCs) a compelling choice for IR applications. In particular, visible transparency paired with strong, dynamically tunable IR absorption has motivated their implementation in electrochromic smart windows, but these NCs hold promise for a far broader range of plasmonically driven processes such as surface-enhanced infrared sensing, photothermal therapy, and enhanced photocatalysis. These unique properties result from localized surface plasmon resonance (LSPR) sustained by a relatively low free charge carrier concentration, which in turn requires consideration of distinct materials physics relative to traditional plasmonic materials (i.e., metals). Particularly important is the formation of insulating shells devoid of charge carriers (depletion layers) near the NC surface. Surface states as well as applied surface potentials can give rise to a potential difference between the NC surface and its core that depletes free charge carriers from the surface, forming an insulating shell that reduces the conductivity in NC films, lowers the dielectric sensitivity of the LSPR, and diminishes the incident electric field enhancement. In this Account, we report recent investigations of depletion layers in plasmonic metal oxide NCs that have advanced understanding of the semiconductor physics underlying the optoelectronic properties of these NCs and the electrochemical modulation of their LSPR, establishing a conceptual framework with which to broaden their applicability and optimize their performance. As a result of surface depletion, larger, highly doped NCs have improved dielectric sensitivity compared with their smaller, lightly doped counterparts. Concentrating dopants near the NC surface compresses the depletion layer, resulting in improved conductivity of NC films. Moreover, atomic layer deposition of alumina to infill NC films enhances the film conductivity by more than 2 orders of magnitude, ascribed to the elimination of depletion effects by reactive removal of surface water species. At the conclusion, we reflect on how our newfound understanding of surface depletion in plasmonic metal oxide NCs is quickly leading to rational material design. This insight is already resulting in significant performance improvements, and the same principles can be applied to new, exciting opportunities in hot carrier extraction and resonant IR energy transduction. |
---|---|
AbstractList | Conspectus Strong infrared (IR) light–matter interaction and spectral tunability combine to make plasmonic metal oxide nanocrystals (NCs) a compelling choice for IR applications. In particular, visible transparency paired with strong, dynamically tunable IR absorption has motivated their implementation in electrochromic smart windows, but these NCs hold promise for a far broader range of plasmonically driven processes such as surface-enhanced infrared sensing, photothermal therapy, and enhanced photocatalysis. These unique properties result from localized surface plasmon resonance (LSPR) sustained by a relatively low free charge carrier concentration, which in turn requires consideration of distinct materials physics relative to traditional plasmonic materials (i.e., metals). Particularly important is the formation of insulating shells devoid of charge carriers (depletion layers) near the NC surface. Surface states as well as applied surface potentials can give rise to a potential difference between the NC surface and its core that depletes free charge carriers from the surface, forming an insulating shell that reduces the conductivity in NC films, lowers the dielectric sensitivity of the LSPR, and diminishes the incident electric field enhancement. In this Account, we report recent investigations of depletion layers in plasmonic metal oxide NCs that have advanced understanding of the semiconductor physics underlying the optoelectronic properties of these NCs and the electrochemical modulation of their LSPR, establishing a conceptual framework with which to broaden their applicability and optimize their performance. As a result of surface depletion, larger, highly doped NCs have improved dielectric sensitivity compared with their smaller, lightly doped counterparts. Concentrating dopants near the NC surface compresses the depletion layer, resulting in improved conductivity of NC films. Moreover, atomic layer deposition of alumina to infill NC films enhances the film conductivity by more than 2 orders of magnitude, ascribed to the elimination of depletion effects by reactive removal of surface water species. At the conclusion, we reflect on how our newfound understanding of surface depletion in plasmonic metal oxide NCs is quickly leading to rational material design. This insight is already resulting in significant performance improvements, and the same principles can be applied to new, exciting opportunities in hot carrier extraction and resonant IR energy transduction. Strong infrared (IR) light-matter interaction and spectral tunability combine to make plasmonic metal oxide nanocrystals (NCs) a compelling choice for IR applications. In particular, visible transparency paired with strong, dynamically tunable IR absorption has motivated their implementation in electrochromic smart windows, but these NCs hold promise for a far broader range of plasmonically driven processes such as surface-enhanced infrared sensing, photothermal therapy, and enhanced photocatalysis. These unique properties result from localized surface plasmon resonance (LSPR) sustained by a relatively low free charge carrier concentration, which in turn requires consideration of distinct materials physics relative to traditional plasmonic materials (i.e., metals). Particularly important is the formation of insulating shells devoid of charge carriers (depletion layers) near the NC surface. Surface states as well as applied surface potentials can give rise to a potential difference between the NC surface and its core that depletes free charge carriers from the surface, forming an insulating shell that reduces the conductivity in NC films, lowers the dielectric sensitivity of the LSPR, and diminishes the incident electric field enhancement. In this Account, we report recent investigations of depletion layers in plasmonic metal oxide NCs that have advanced understanding of the semiconductor physics underlying the optoelectronic properties of these NCs and the electrochemical modulation of their LSPR, establishing a conceptual framework with which to broaden their applicability and optimize their performance. As a result of surface depletion, larger, highly doped NCs have improved dielectric sensitivity compared with their smaller, lightly doped counterparts. Concentrating dopants near the NC surface compresses the depletion layer, resulting in improved conductivity of NC films. Moreover, atomic layer deposition of alumina to infill NC films enhances the film conductivity by more than 2 orders of magnitude, ascribed to the elimination of depletion effects by reactive removal of surface water species. At the conclusion, we reflect on how our newfound understanding of surface depletion in plasmonic metal oxide NCs is quickly leading to rational material design. This insight is already resulting in significant performance improvements, and the same principles can be applied to new, exciting opportunities in hot carrier extraction and resonant IR energy transduction. |
Author | Staller, Corey M Milliron, Delia J Gibbs, Stephen L |
AuthorAffiliation | McKetta Department of Chemical Engineering |
AuthorAffiliation_xml | – name: McKetta Department of Chemical Engineering |
Author_xml | – sequence: 1 givenname: Stephen L orcidid: 0000-0003-2533-0957 surname: Gibbs fullname: Gibbs, Stephen L – sequence: 2 givenname: Corey M orcidid: 0000-0001-8665-2840 surname: Staller fullname: Staller, Corey M – sequence: 3 givenname: Delia J orcidid: 0000-0002-8737-451X surname: Milliron fullname: Milliron, Delia J email: milliron@che.utexas.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31424914$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UNtKw0AUXKRiL_oHIvmB1L1lk7wIUq8QraA-h72chZR2t-wmYP_eLW199GnOHGYGZqZo5LwDhK4JnhNMya3UcS619oPr47xWGNOqPEMTUlCc86quRmiCMSbp5nSMpjGuEqVclBdozAinvCZ8gu4-h2ClhuwBtmvoO--yRu4gxKxz2cdaxo13nc7eoJfrbPnTGcjepfM67GL6xEt0bhPA1RFn6Pvp8WvxkjfL59fFfZNLRoo-LyvKABQrS8KMAqoUqY0SmNoCdOLCFFIYKYQxzCpbKiqV0Bx4QYyxgrAZ4odcHXyMAWy7Dd1Ghl1LcLufo01ztKc52uMcyXZzsG0HtQHzZzr1TwJ8EOztKz8El1r8n_kLs4tyow |
CitedBy_id | crossref_primary_10_1021_acs_chemmater_2c03694 crossref_primary_10_1021_acs_jpcc_9b11547 crossref_primary_10_1007_s12598_023_02511_w crossref_primary_10_1021_acs_jpcc_0c08195 crossref_primary_10_1149_2162_8777_ac5169 crossref_primary_10_1021_acsenergylett_0c01236 crossref_primary_10_1021_acsnano_3c04514 crossref_primary_10_1038_s41467_022_28140_y crossref_primary_10_1039_D0NR09163D crossref_primary_10_1002_adfm_202403912 crossref_primary_10_1016_j_clay_2021_106210 crossref_primary_10_1021_acs_nanolett_3c01943 crossref_primary_10_1002_aenm_202203751 crossref_primary_10_1021_acs_chemmater_0c02399 crossref_primary_10_1021_acs_chemmater_1c03635 crossref_primary_10_1002_anie_202402435 crossref_primary_10_1021_acs_chemmater_1c01951 crossref_primary_10_1039_D3TA07045J crossref_primary_10_1039_D3CP04131J crossref_primary_10_1002_smll_202204131 crossref_primary_10_1002_adma_202404738 crossref_primary_10_1002_adom_202400388 crossref_primary_10_1021_acs_jpcc_2c02865 crossref_primary_10_1039_D1TA04541E crossref_primary_10_1039_D1NA00656H crossref_primary_10_1002_ange_202402435 crossref_primary_10_1021_acs_nanolett_0c02772 crossref_primary_10_1021_acs_nanolett_0c02992 crossref_primary_10_1021_acsnano_4c02875 crossref_primary_10_1021_acs_jpcc_2c08495 crossref_primary_10_1021_acsnano_4c02223 crossref_primary_10_1021_acsmaterialslett_4c00220 crossref_primary_10_1021_acsmaterialslett_4c00341 crossref_primary_10_1021_jacs_9b13909 crossref_primary_10_1021_acs_nanolett_1c00006 crossref_primary_10_1021_acs_nanolett_2c04199 crossref_primary_10_1021_acs_jpcc_2c05582 crossref_primary_10_1021_acsphotonics_3c01813 crossref_primary_10_1016_j_jhazmat_2024_133924 crossref_primary_10_1063_5_0130817 |
Cites_doi | 10.1021/jp057170o 10.1038/s41929-018-0138-x 10.1038/s41563-018-0130-5 10.1021/jp9003592 10.1021/acsnano.6b02796 10.1021/jp062536y 10.1039/b714950f 10.1039/C4CC03109A 10.1021/nl900034v 10.1038/nphoton.2012.161 10.1126/science.aat6967 10.1073/pnas.2232479100 10.1021/cr900137k 10.1021/jp0256793 10.1021/acs.nanolett.7b05484 10.1021/acsphotonics.7b00429 10.1146/annurev-matsci-070616-124259 10.1021/acs.nanolett.7b00992 10.1021/acs.chemrev.7b00613 10.1103/PhysRev.120.745 10.1021/nl203030f 10.1021/acs.nanolett.9b00079 10.1038/nchem.1032 10.1063/1.1723358 10.1021/jp9835566 10.1021/acsphotonics.7b01587 10.1021/acs.chemmater.6b02414 10.1021/cr100313v 10.1038/ncomms6822 10.1021/nl202597n 10.1146/annurev.physchem.58.032806.104607 10.1021/nn401888h 10.1146/annurev-physchem-052516-044948 10.1016/S0030-4018(03)01357-9 10.1073/pnas.1609769113 10.1021/acsnano.7b01053 10.1103/PhysRevLett.78.1667 10.1038/ncomms10545 10.1021/jp0010031 10.1103/PhysRevB.70.205120 10.1038/nnano.2014.311 10.1039/C7TC00600D 10.1021/nl049681c 10.1063/1.3604792 10.1021/acs.chemrev.6b00743 10.1103/RevModPhys.79.469 10.1021/jp9917648 10.1021/cr0680134 10.1038/nmat3151 10.1021/la800305j |
ContentType | Journal Article |
DBID | NPM AAYXX CITATION |
DOI | 10.1021/acs.accounts.9b00287 |
DatabaseName | PubMed CrossRef |
DatabaseTitle | PubMed CrossRef |
DatabaseTitleList | PubMed |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-4898 |
EndPage | 2524 |
ExternalDocumentID | 10_1021_acs_accounts_9b00287 31424914 b497908074 |
Genre | Journal Article |
GroupedDBID | - .K2 02 23M 53G 55A 5GY 5VS 7~N 85S AABXI ABFLS ABMVS ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ K2 LG6 P2P RNS ROL TWZ UI2 UPT VF5 VG9 W1F WH7 X YZZ --- -DZ -~X 4.4 5ZA 6J9 6P2 ABJNI ABQRX ACGFO ADHLV AFXLT AGXLV AHGAQ CUPRZ GGK IH2 NPM XSW ZCA ~02 AAYXX CITATION |
ID | FETCH-LOGICAL-a315t-7823eeb37713dbe2bb19db602f5ecbe26d5a6da66dd3fbf7b2ab6c4e451ddf613 |
IEDL.DBID | ACS |
ISSN | 0001-4842 |
IngestDate | Fri Aug 23 03:33:16 EDT 2024 Sat Sep 28 08:34:50 EDT 2024 Thu Aug 27 13:43:57 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a315t-7823eeb37713dbe2bb19db602f5ecbe26d5a6da66dd3fbf7b2ab6c4e451ddf613 |
ORCID | 0000-0003-2533-0957 0000-0002-8737-451X 0000-0001-8665-2840 |
PMID | 31424914 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1021_acs_accounts_9b00287 pubmed_primary_31424914 acs_journals_10_1021_acs_accounts_9b00287 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 2019-09-17 |
PublicationDateYYYYMMDD | 2019-09-17 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-17 day: 17 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Accounts of chemical research |
PublicationTitleAlternate | Acc. Chem. Res |
PublicationYear | 2019 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref19/cit19 ref21/cit21 ref46/cit46 Efros A. (ref42/cit42) 1984 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref27/cit27 doi: 10.1021/jp057170o – ident: ref49/cit49 doi: 10.1038/s41929-018-0138-x – ident: ref18/cit18 doi: 10.1038/s41563-018-0130-5 – ident: ref13/cit13 doi: 10.1021/jp9003592 – ident: ref40/cit40 doi: 10.1021/acsnano.6b02796 – ident: ref28/cit28 doi: 10.1021/jp062536y – ident: ref30/cit30 doi: 10.1039/b714950f – ident: ref5/cit5 doi: 10.1039/C4CC03109A – ident: ref33/cit33 doi: 10.1021/nl900034v – ident: ref7/cit7 doi: 10.1038/nphoton.2012.161 – ident: ref46/cit46 doi: 10.1126/science.aat6967 – ident: ref14/cit14 doi: 10.1073/pnas.2232479100 – ident: ref35/cit35 doi: 10.1021/cr900137k – ident: ref25/cit25 doi: 10.1021/jp0256793 – ident: ref20/cit20 doi: 10.1021/acs.nanolett.7b05484 – ident: ref6/cit6 doi: 10.1021/acsphotonics.7b00429 – ident: ref1/cit1 doi: 10.1146/annurev-matsci-070616-124259 – ident: ref12/cit12 doi: 10.1021/acs.nanolett.7b00992 – ident: ref2/cit2 doi: 10.1021/acs.chemrev.7b00613 – ident: ref37/cit37 doi: 10.1103/PhysRev.120.745 – ident: ref3/cit3 doi: 10.1021/nl203030f – ident: ref31/cit31 doi: 10.1021/acs.nanolett.9b00079 – ident: ref9/cit9 doi: 10.1038/nchem.1032 – ident: ref22/cit22 doi: 10.1063/1.1723358 – ident: ref23/cit23 doi: 10.1021/jp9835566 – ident: ref19/cit19 doi: 10.1021/acsphotonics.7b01587 – ident: ref21/cit21 doi: 10.1021/acs.chemmater.6b02414 – ident: ref26/cit26 doi: 10.1021/cr100313v – ident: ref38/cit38 doi: 10.1038/ncomms6822 – ident: ref4/cit4 doi: 10.1021/nl202597n – ident: ref15/cit15 doi: 10.1146/annurev.physchem.58.032806.104607 – ident: ref39/cit39 doi: 10.1021/nn401888h – ident: ref10/cit10 doi: 10.1146/annurev-physchem-052516-044948 – ident: ref34/cit34 doi: 10.1016/S0030-4018(03)01357-9 – ident: ref51/cit51 doi: 10.1073/pnas.1609769113 – ident: ref41/cit41 doi: 10.1021/acsnano.7b01053 – volume-title: Electronic Properties of Doped Semiconductors year: 1984 ident: ref42/cit42 contributor: fullname: Efros A. – ident: ref17/cit17 doi: 10.1103/PhysRevLett.78.1667 – ident: ref50/cit50 doi: 10.1038/ncomms10545 – ident: ref24/cit24 doi: 10.1021/jp0010031 – ident: ref43/cit43 doi: 10.1103/PhysRevB.70.205120 – ident: ref11/cit11 doi: 10.1038/nnano.2014.311 – ident: ref48/cit48 doi: 10.1039/C7TC00600D – ident: ref32/cit32 doi: 10.1021/nl049681c – ident: ref8/cit8 doi: 10.1063/1.3604792 – ident: ref16/cit16 doi: 10.1021/acs.chemrev.6b00743 – ident: ref44/cit44 doi: 10.1103/RevModPhys.79.469 – ident: ref47/cit47 doi: 10.1021/jp9917648 – ident: ref36/cit36 doi: 10.1021/cr0680134 – ident: ref45/cit45 doi: 10.1038/nmat3151 – ident: ref29/cit29 doi: 10.1021/la800305j |
SSID | ssj0002467 |
Score | 2.529 |
Snippet | Conspectus Strong infrared (IR) light–matter interaction and spectral tunability combine to make plasmonic metal oxide nanocrystals (NCs) a compelling choice... Strong infrared (IR) light-matter interaction and spectral tunability combine to make plasmonic metal oxide nanocrystals (NCs) a compelling choice for IR... |
SourceID | crossref pubmed acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 2516 |
Title | Surface Depletion Layers in Plasmonic Metal Oxide Nanocrystals |
URI | http://dx.doi.org/10.1021/acs.accounts.9b00287 https://www.ncbi.nlm.nih.gov/pubmed/31424914 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JasMwEBVNemgv3Zd0Q4deenAaybJkXQolCz10g7TQm5EsCQKpE-IE2r_vyEsgh1BylBCyPCNm3rOsNwjduo6KNbMm0A6YDjPSBUqoNJASyISOIt_wny6G4vUr7vW9TE57zQk-JfcqzWHqonJC3pYFSRANtE0FgAUPhbrDZeSljJcamUCRWcxofVVuzSw-IaX5SkJagZZFihnsb7q4A7RXgUn8WHr_EG3Z7AjtdOsabsfoYbiYOZVa3LNTr7I9yfCz8iAbjzL8DsD52yvj4hcLEBy__YyMxRBuJ-nsF0DjOD9Bn4P-R_cpqComBCok0TyAdB9aoMcCqKfRlmpNpNG8Q11kU2hzEyluFOfGhE47oanSPGWWRcQYB5n9FDWzSWbPEVadMLLcxOA-wxRAcCcgRjsmXUxCbWUL3cHLJ9WOz5PiMJuSxHfWFkkqi7RQUJs4mZYiGv-MPyv9sBwd-gt5krCLDZ56iXYB3RQ_hBFxhZrz2cJeo0ZuFjfFtvkDUqPC3w |
link.rule.ids | 315,782,786,2769,27085,27933,27934,56747,56797 |
linkProvider | American Chemical Society |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA86D_Pi98f8zMGLh-rSJmlzEWQfTNymsAneStIkMNBurBvof-9Lu052ENFjQkjTl8d7v1_T9wtCV7YuI0WN9pQFpkO1sJ4MZeIJAWRCMeYa7tPFIOy_Rs2Wk8lhZS0MLCKDmbL8EP9bXYDcuj5ZXKCQ3YicK4TraINxwMMOETUGywDsU15IZQJTphH1y4q5H2ZxeSnJVvLSCsLMM017-59r3EFbC2iJ7wtf2EVrJt1D1UZ5o9s-uhvMp1YmBjfNxGluj1PclQ5y41GKnwFGvzudXNwzAMjx08dIGwzBd5xMPwFCvmUH6KXdGjY63uL-BE8GhM08SP6BAbIcAhHVyvhKEaEVr_uWmQTaXDPJteRc68AqGypfKp5QQxnR2kKeP0SVdJyaY4RlPWCG6wg2U1MJgNyGELEtFTYigTKihq7h5eOF_2dxfrTtk9h1lhaJFxapIa-0dDwpJDV-GX9UbMdydODK8wShJ3946iWqdoa9btx96D-eok3APfmvYiQ8Q5XZdG7O0Xqm5xe5J30BkI7LTA |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JSwMxFA62gnpxX-qagxcPo52ZLJOLULqgWGuhCt6GZJJAQael04L-e19mKXgQEY8JIZN5Sd77vsnkewhd2qaMFDHaUxaYDtHCepLLxBMCyISi1BXcp4sRH7xGna6TyVmm-oJBZNBTlh_iu1091bZUGPBvXL0skihk1yLnC7yGVinjwvGuVnu0dMIBYYVcJrBlEpGgujX3Qy8uNiXZt9j0DWXm0aa39Y9xbqPNEmLiVrEmdtCKSXfRervK7LaHbkeLmZWJwR0zddrbkxT3pYPeeJziIcDpd6eXix8NAHP89DHWBoMTniSzT4CSb9k-eul1n9t3XplHwZOhT-cegIDQAGnmQEi1MoFSvtCKNQNLTQJlpqlkWjKmdWiV5SqQiiXEEOprbSHeH6B6OknNEcKyGVLDdASTqokEYG45eG5LhI38UBnRQFfw8nG5D7I4P-IO_NhVVhaJS4s0kFdZO54W0hq_tD8spmTZOnTX9IRPjv_w1Au0Nuz04v794OEEbQD8yf8Y8_kpqs9nC3OGaplenOeL6Qs_as3P |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface+Depletion+Layers+in+Plasmonic+Metal+Oxide+Nanocrystals&rft.jtitle=Accounts+of+chemical+research&rft.au=Gibbs%2C+Stephen+L.&rft.au=Staller%2C+Corey+M.&rft.au=Milliron%2C+Delia+J.&rft.date=2019-09-17&rft.issn=0001-4842&rft.eissn=1520-4898&rft.volume=52&rft.issue=9&rft.spage=2516&rft.epage=2524&rft_id=info:doi/10.1021%2Facs.accounts.9b00287&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_accounts_9b00287 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon |