Insight into the Mechanisms of Cocrystallization of Pharmaceuticals in Supercritical Solvents
Carbon dioxide has been extensively used as a green solvent medium for the crystallization of active pharmaceutical ingredients (APIs) by replacing harmful organic solvents. This work explores the mechanisms underlying a novel recrystallization methodcocrystallization with supercritical solvent (CS...
Saved in:
Published in: | Crystal growth & design Vol. 15; no. 7; pp. 3175 - 3181 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
American Chemical Society
01-07-2015
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Carbon dioxide has been extensively used as a green solvent medium for the crystallization of active pharmaceutical ingredients (APIs) by replacing harmful organic solvents. This work explores the mechanisms underlying a novel recrystallization methodcocrystallization with supercritical solvent (CSS)which enables APIs cocrystallization by suspending powders in pure CO2. Six well-known APIs that form cocrystals with saccharin (SAC) were processed by CSS, namely, theophylline (TPL), indomethacin (IND), carbamazepine (CBZ), caffeine (CAF), sulfamethazine (SFZ), and acetylsalicylic acid (ASA). Pure cocrystals were obtained for TPL, IND, and CBZ (with SAC) after 2 h of CSS processing. Convection was revealed to be a determining parameter for successful cocrystallization with high-yield levels. TPL–SAC was selected as a model system to study the cocrystallization kinetics in the gas, supercritical, and liquid phases under different conditions of pressure (8–20 MPa), temperature (30 to 70 °C), and convection regimes. The solubility of each substance in CO2 was measured at the selected working conditions. TPL–SAC showed a cocrystallization rate of 2.9% min–1, two times higher than that of IND–SAC, due to the higher solubility of TPL in CO2. The cocrystallization kinetics was also improved by increasing the CO2 density, showing that cocrystallization was limited by the dissolution of cocrystal formers. Overall, the CSS process has a potential for scale-up as a novel, simple, solvent-free batch process whenever the cocrystal phase is formed in the CO2 media. |
---|---|
AbstractList | Carbon dioxide has been extensively used as a green solvent medium for the crystallization of active pharmaceutical ingredients (APIs) by replacing harmful organic solvents. This work explores the mechanisms underlying a novel recrystallization methodcocrystallization with supercritical solvent (CSS)which enables APIs cocrystallization by suspending powders in pure CO2. Six well-known APIs that form cocrystals with saccharin (SAC) were processed by CSS, namely, theophylline (TPL), indomethacin (IND), carbamazepine (CBZ), caffeine (CAF), sulfamethazine (SFZ), and acetylsalicylic acid (ASA). Pure cocrystals were obtained for TPL, IND, and CBZ (with SAC) after 2 h of CSS processing. Convection was revealed to be a determining parameter for successful cocrystallization with high-yield levels. TPL–SAC was selected as a model system to study the cocrystallization kinetics in the gas, supercritical, and liquid phases under different conditions of pressure (8–20 MPa), temperature (30 to 70 °C), and convection regimes. The solubility of each substance in CO2 was measured at the selected working conditions. TPL–SAC showed a cocrystallization rate of 2.9% min–1, two times higher than that of IND–SAC, due to the higher solubility of TPL in CO2. The cocrystallization kinetics was also improved by increasing the CO2 density, showing that cocrystallization was limited by the dissolution of cocrystal formers. Overall, the CSS process has a potential for scale-up as a novel, simple, solvent-free batch process whenever the cocrystal phase is formed in the CO2 media. Carbon dioxide has been extensively used as a green solvent medium for the crystallization of active pharmaceutical ingredients (APIs) by replacing harmful organic solvents. This work explores the mechanisms underlying a novel recrystallization method-cocrystallization with supercritical solvent (CSS)-which enables APIs cocrystallization by suspending powders in pure CO2. Six well-known APIs that form cocrystals with saccharin (SAC) were processed by CSS, namely, theophylline (TPL), indomethacin (IND), carbamazepine (CBZ), caffeine (CAF), sulfamethazine (SFZ), and acetylsalicylic acid (ASA). Pure cocrystals were obtained for TPL, IND, and CBZ (with SAC) after 2 h of CSS processing. Convection was revealed to be a determining parameter for successful cocrystallization with high-yield levels. TPL-SAC was selected as a model system to study the cocrystallization kinetics in the gas, supercritical, and liquid phases under different conditions of pressure (8-20 MPa), temperature (30 to 70 degrees C), and convection regimes. The solubility of each substance in CO2 was measured at the selected working conditions. TPL-SAC showed a cocrystallization rate of 2.9% min(-1), two times higher than that of IND-SAC, due to the higher solubility of TPL in CO2. The cocrystallization kinetics was also improved by increasing the CO2 density, showing that cocrystallization was limited by the dissolution of cocrystal formers. Overall, the CSS process has a potential for scale-up as a novel, simple, solvent-free batch process whenever the cocrystal phase is formed in the CO2 media. |
Author | Padrela, Luis Tiago, João Velaga, Sitaram P de Azevedo, Edmundo Gomes Matos, Henrique A Rodrigues, Miguel A |
AuthorAffiliation | Centro de Química Estrutural and Department of Chemical Engineering, Instituto Superior Técnico Department of Health Sciences Universidade de Lisboa Luleå University of Technology |
AuthorAffiliation_xml | – name: Luleå University of Technology – name: Centro de Química Estrutural and Department of Chemical Engineering, Instituto Superior Técnico – name: Universidade de Lisboa – name: Department of Health Sciences |
Author_xml | – sequence: 1 givenname: Luis surname: Padrela fullname: Padrela, Luis – sequence: 2 givenname: Miguel A surname: Rodrigues fullname: Rodrigues, Miguel A email: miguelrodrigues@tecnico.ulisboa.pt – sequence: 3 givenname: João surname: Tiago fullname: Tiago, João – sequence: 4 givenname: Sitaram P surname: Velaga fullname: Velaga, Sitaram P – sequence: 5 givenname: Henrique A surname: Matos fullname: Matos, Henrique A – sequence: 6 givenname: Edmundo Gomes surname: de Azevedo fullname: de Azevedo, Edmundo Gomes |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-14547$$DView record from Swedish Publication Index |
BookMark | eNp1kN9PwjAQxxuDiYA--7p33Wi3jm6PBH-RYDRBfTPNtXSsZLSk7TT41zsEffPpLnefzyX3HaCesUYhdElwQnBKRiB9IlfLJBcYpxifoD7J0yJmOc57vz0tsjM08H6NMWbjLOuj95nxelWHSJtgo1Cr6FHJGoz2Gx_ZKppa6XY-QNPoLwjamv3wuQa3AanaoCU0vnOjRbtVTjr9M4kWtvlQJvhzdFp1gLo41iF6vbt9mT7E86f72XQyjyEjNMSVqlTBQKaqBCFASArLgooiLRmGZU4VY6XMRMVSnFVYUjIGVaaiJHkhygJkNkTXh7v-U21bwbdOb8DtuAXNb_TbhFu34k1oOaE5ZR0-OuDSWe-dqv4Egvk-TN6Fybsw-THMzrg6GPvF2rbOdO_8S38DQCJ8gQ |
CitedBy_id | crossref_primary_10_1016_j_supflu_2020_105134 crossref_primary_10_1021_acs_cgd_6b00697 crossref_primary_10_3390_pharmaceutics13060898 crossref_primary_10_1016_j_supflu_2023_105976 crossref_primary_10_1016_j_supflu_2023_106029 crossref_primary_10_1016_j_tifs_2021_01_035 crossref_primary_10_1021_acs_cgd_0c00571 crossref_primary_10_1016_j_supflu_2023_106022 crossref_primary_10_1016_j_supflu_2023_105990 crossref_primary_10_1021_acs_cgd_0c01427 crossref_primary_10_1021_acs_cgd_8b00385 crossref_primary_10_1021_acs_cgd_8b01034 crossref_primary_10_1002_slct_202202588 crossref_primary_10_1016_j_indcrop_2019_111537 crossref_primary_10_1021_acs_cgd_8b01015 crossref_primary_10_3390_pharmaceutics11120629 crossref_primary_10_1016_j_supflu_2021_105190 crossref_primary_10_1016_j_supflu_2020_104813 crossref_primary_10_1021_acs_oprd_9b00545 crossref_primary_10_22159_ijcpr_2022v14i5_2038 crossref_primary_10_1016_j_molliq_2021_116117 crossref_primary_10_3389_fphar_2021_780582 crossref_primary_10_3390_cryst10090760 crossref_primary_10_1021_acsapm_1c01626 crossref_primary_10_1016_j_supflu_2018_11_014 crossref_primary_10_1016_j_addr_2018_07_010 crossref_primary_10_1016_j_supflu_2019_104564 crossref_primary_10_1021_acs_cgd_5b01809 crossref_primary_10_1134_S0022476618050268 crossref_primary_10_3390_cryst11030303 crossref_primary_10_1016_j_supflu_2018_02_004 crossref_primary_10_1016_j_addr_2017_07_008 crossref_primary_10_1016_j_cej_2016_05_129 crossref_primary_10_1021_acs_cgd_8b00933 crossref_primary_10_1039_C6RA10917A crossref_primary_10_1021_acs_cgd_2c01553 crossref_primary_10_1016_j_addr_2017_08_006 crossref_primary_10_1021_acs_cgd_1c00418 crossref_primary_10_1039_D0MD00400F crossref_primary_10_1016_j_ejps_2019_104971 |
Cites_doi | 10.1016/j.supflu.2010.01.010 10.1111/j.2042-7158.2010.01189.x 10.1021/cg060327x 10.1016/j.supflu.2011.05.012 10.1021/cg401131x 10.1016/j.drudis.2008.03.004 10.1039/9781849733502-00247 10.1016/j.supflu.2011.03.002 10.1021/cg900003m 10.1021/cg900129f 10.1016/j.ejps.2009.05.010 10.1007/s11095-007-9394-1 10.1016/S0928-0987(01)00115-4 10.3109/03639045.2011.633263 10.1007/s11095-006-9032-3 10.1021/cg800936d 10.1002/jps.21962 10.1039/b801713c 10.1038/nchem.1256 10.1016/j.supflu.2006.08.008 10.1021/cg034212u 10.1021/cg060834e 10.1039/b402150a 10.1021/cg034172u 10.1016/0378-3812(94)80070-7 10.1021/cg800764n |
ContentType | Journal Article |
Copyright | Copyright © American Chemical Society |
Copyright_xml | – notice: Copyright © American Chemical Society |
DBID | AAYXX CITATION ADTPV AOWAS |
DOI | 10.1021/acs.cgd.5b00200 |
DatabaseName | CrossRef SwePub SwePub Articles |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1528-7505 |
EndPage | 3181 |
ExternalDocumentID | oai_DiVA_org_ltu_14547 10_1021_acs_cgd_5b00200 c687420837 |
GroupedDBID | 4.4 55A 5GY 5VS 7~N AABXI ABMVS ABPTK ABUCX ACGFS ACS AEESW AENEX AFEFF AFFNX ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ LG6 P2P RNS ROL TN5 UI2 VF5 VG9 W1F X -~X 6J9 AAYXX ABJNI ABQRX ADHLV AHGAQ CITATION CUPRZ GGK ADTPV AOWAS |
ID | FETCH-LOGICAL-a314t-fefe87ac2e9abbabc4ad84b82970ad54e779c3bf7203f0c416ae92b9158b98ac3 |
IEDL.DBID | ACS |
ISSN | 1528-7483 1528-7505 |
IngestDate | Sat Aug 24 00:47:59 EDT 2024 Fri Aug 23 03:21:53 EDT 2024 Thu Aug 27 13:51:23 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a314t-fefe87ac2e9abbabc4ad84b82970ad54e779c3bf7203f0c416ae92b9158b98ac3 |
PageCount | 7 |
ParticipantIDs | swepub_primary_oai_DiVA_org_ltu_14547 crossref_primary_10_1021_acs_cgd_5b00200 acs_journals_10_1021_acs_cgd_5b00200 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 2015-07-01 |
PublicationDateYYYYMMDD | 2015-07-01 |
PublicationDate_xml | – month: 07 year: 2015 text: 2015-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Crystal growth & design |
PublicationTitleAlternate | Cryst. Growth Des |
PublicationYear | 2015 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Padrela L. (ref25/cit25) 2012; 38 Bettini R (ref14/cit14) 2009; 99 Bouchard A. (ref17/cit17) 2007; 7 Shan N. (ref7/cit7) 2008; 13 Padrela L. (ref20/cit20) 2009; 38 Padrela L. (ref21/cit21) 2010; 53 Tiago J. M. (ref22/cit22) 2013; 13 McNamara D. P. (ref5/cit5) 2006; 23 Wuest J. D. (ref6/cit6) 2012; 4 ref23/cit23 Miroshnyk I. (ref9/cit9) 2009; 6 Mazzotti M. (ref13/cit13) 2004; 4 Basavoju S. (ref2/cit2) 2008; 25 Almarsson Ö. (ref1/cit1) 2004; 17 Johannsen M. (ref26/cit26) 1994; 95 ref28/cit28 Basavoju S. (ref3/cit3) 2006; 6 Bettini R. (ref15/cit15) 2001; 13 Lu E. (ref24/cit24) 2008; 10 Rodrigues M. (ref18/cit18) 2011; 58 Schultheiss N. (ref8/cit8) 2009; 9 Diankov S. (ref29/cit29) 2007; 41 Min-Sook J. (ref4/cit4) 2010; 62 Weyna D. R. (ref10/cit10) 2009; 9 Uchida H. (ref12/cit12) 2004; 4 Friščić T. (ref11/cit11) 2009; 9 Martín Á. (ref16/cit16) 2009; 9 Roy C. (ref19/cit19) 2011; 57 |
References_xml | – volume: 53 start-page: 156 year: 2010 ident: ref21/cit21 publication-title: J. Supercrit. Fluids doi: 10.1016/j.supflu.2010.01.010 contributor: fullname: Padrela L. – volume: 62 start-page: 1560 year: 2010 ident: ref4/cit4 publication-title: J. Pharm. Pharmacol. doi: 10.1111/j.2042-7158.2010.01189.x contributor: fullname: Min-Sook J. – volume: 6 start-page: 2699 year: 2006 ident: ref3/cit3 publication-title: Cryst. Growth Des. doi: 10.1021/cg060327x contributor: fullname: Basavoju S. – volume: 58 start-page: 303 year: 2011 ident: ref18/cit18 publication-title: J. Supercrit. Fluids doi: 10.1016/j.supflu.2011.05.012 contributor: fullname: Rodrigues M. – volume: 13 start-page: 4940 year: 2013 ident: ref22/cit22 publication-title: Cryst. Growth Des. doi: 10.1021/cg401131x contributor: fullname: Tiago J. M. – volume: 13 start-page: 440 year: 2008 ident: ref7/cit7 publication-title: Drug Discovery Today doi: 10.1016/j.drudis.2008.03.004 contributor: fullname: Shan N. – ident: ref28/cit28 doi: 10.1039/9781849733502-00247 – volume: 57 start-page: 267 year: 2011 ident: ref19/cit19 publication-title: J. Supercrit. Fluids doi: 10.1016/j.supflu.2011.03.002 contributor: fullname: Roy C. – volume: 9 start-page: 2504 year: 2009 ident: ref16/cit16 publication-title: Cryst. Growth Des. doi: 10.1021/cg900003m contributor: fullname: Martín Á. – volume: 9 start-page: 2950 year: 2009 ident: ref8/cit8 publication-title: Cryst. Growth Des. doi: 10.1021/cg900129f contributor: fullname: Schultheiss N. – volume: 38 start-page: 9 year: 2009 ident: ref20/cit20 publication-title: Eur. J. Pharm. Sci. doi: 10.1016/j.ejps.2009.05.010 contributor: fullname: Padrela L. – volume: 25 start-page: 530 year: 2008 ident: ref2/cit2 publication-title: Pharm. Res. doi: 10.1007/s11095-007-9394-1 contributor: fullname: Basavoju S. – volume: 13 start-page: 281 year: 2001 ident: ref15/cit15 publication-title: Eur. J. Pharm. Sci. doi: 10.1016/S0928-0987(01)00115-4 contributor: fullname: Bettini R. – ident: ref23/cit23 – volume: 38 start-page: 923 year: 2012 ident: ref25/cit25 publication-title: Drug Dev. Ind. Pharm. doi: 10.3109/03639045.2011.633263 contributor: fullname: Padrela L. – volume: 23 start-page: 1888 year: 2006 ident: ref5/cit5 publication-title: Pharm. Res. doi: 10.1007/s11095-006-9032-3 contributor: fullname: McNamara D. P. – volume: 9 start-page: 1106 year: 2009 ident: ref10/cit10 publication-title: Cryst. Growth Des. doi: 10.1021/cg800936d contributor: fullname: Weyna D. R. – volume: 99 start-page: 1855 year: 2009 ident: ref14/cit14 publication-title: J. Pharm. Sci. doi: 10.1002/jps.21962 contributor: fullname: Bettini R – volume: 10 start-page: 665 year: 2008 ident: ref24/cit24 publication-title: CrystEngComm doi: 10.1039/b801713c contributor: fullname: Lu E. – volume: 4 start-page: 74 year: 2012 ident: ref6/cit6 publication-title: Nature Chem. doi: 10.1038/nchem.1256 contributor: fullname: Wuest J. D. – volume: 6 start-page: 333 year: 2009 ident: ref9/cit9 publication-title: Adv. Drug Delivery Rev. contributor: fullname: Miroshnyk I. – volume: 41 start-page: 164 year: 2007 ident: ref29/cit29 publication-title: J. Supercrit. Fluids doi: 10.1016/j.supflu.2006.08.008 contributor: fullname: Diankov S. – volume: 4 start-page: 937 year: 2004 ident: ref12/cit12 publication-title: Cryst. Growth Des. doi: 10.1021/cg034212u contributor: fullname: Uchida H. – volume: 7 start-page: 1432 year: 2007 ident: ref17/cit17 publication-title: Cryst. Growth Des. doi: 10.1021/cg060834e contributor: fullname: Bouchard A. – volume: 17 start-page: 1889 year: 2004 ident: ref1/cit1 publication-title: Chem. Commun. doi: 10.1039/b402150a contributor: fullname: Almarsson Ö. – volume: 4 start-page: 881 year: 2004 ident: ref13/cit13 publication-title: Cryst. Growth Des. doi: 10.1021/cg034172u contributor: fullname: Mazzotti M. – volume: 95 start-page: 215 year: 1994 ident: ref26/cit26 publication-title: Fluid Phase Equilib. doi: 10.1016/0378-3812(94)80070-7 contributor: fullname: Johannsen M. – volume: 9 start-page: 1621 year: 2009 ident: ref11/cit11 publication-title: Cryst. Growth Des. doi: 10.1021/cg800764n contributor: fullname: Friščić T. |
SSID | ssj0007633 |
Score | 2.3791513 |
Snippet | Carbon dioxide has been extensively used as a green solvent medium for the crystallization of active pharmaceutical ingredients (APIs) by replacing harmful... |
SourceID | swepub crossref acs |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | 3175 |
SubjectTerms | Health Science Hälsovetenskap |
Title | Insight into the Mechanisms of Cocrystallization of Pharmaceuticals in Supercritical Solvents |
URI | http://dx.doi.org/10.1021/acs.cgd.5b00200 https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-14547 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT4MwFG90HtSDH1Pj_EoPM9EDCqXQclw2l3nQmKDGiyFtaXUJwjLg4H9vC2zZYpbotSm0ea_l_R7vvd8DoKtBMnX9ONYaIK6FqZIWFxxZnHCsEPeVU5WPjULy-EYHd4Ym53pFBB85t0xo4X_EN56xJ7b2zjcQ0TjBoKB-OP_o6mtS5dJ7qKLHdOcsPr9eYMyQyJfM0BJJaGVYhrv_2NIe2GnQI-zV6t4HazJtg83-rGlbG2wv8AsegPf7NDfONxynRQY11IMP0lT6jvOvHGYK9jMx_dbwMEmaakwz-PS5-Jc718_CsJzIqWiaIsAwS0ySZH4IXoZ3z_2R1fRTsJjr4MJSUklKmEAyYJwzLjCLKeamuNZmsYclIYFwuTKRWWULDdWYDBAPHI_ygDLhHoFWmqXyGEDD2yWJh4SDhDZvnArhc2bTOJDYpdzvgK4WUtTchzyqQt3IicygllzUSK4DrmZaiCY1u8bqqZe1luYTDTH2YPzai7RqoqQotRfjYXLyt5VPwZaGPl6deHsGWsW0lOdgPY_Li-pg_QDZm8q7 |
link.rule.ids | 230,315,782,786,887,2769,27085,27933,27934,56747,56797 |
linkProvider | American Chemical Society |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gHAYHHgPEeOYwJC6Fvpsepz20iW1C6kBcUJWkKUwq7bRsB_49TtuNIYQE1yhNIzupP9f2Z4QaAJKJ5UYRaMCzNJvEQmOcmRrzmB2bzI2NvHysF3ijZ9LuKJocfVkLA5uQsJLMg_hf7ALGnRrjr9Gto8yKDk76luMCFFZgqBWsvr1wW_KUesfMWTKtFZnPjwWUNeLymzX6xhWa25fu3v93to92SyyJm4XyD9CGSGuo2lq2cKuhnTW2wUP00k-lcsXxJJ1nGIAfHgpV9zuR7xJnMW5lfPYBYDFJytpMNfjwtv7PW8KzOFhMxYyXLRJwkCUqZVIeocduZ9zqaWV3BY1ahj3XYhEL4lFuCp8yRhm3aURspkptdRo5tvA8n1ssVnHaWOcA3KjwTeYbDmE-odw6RpU0S8UJworFS3iOyQ2Tg7FjhHOXUZ1EvrAtwtw6aoCQwvJ2yDAPfJtGqAZBcmEpuTq6WSojnBZcG79PvS6UtZqoaLLbk6dmCOoJk_kCfBrH9k7_9uYrVO2Nh4Nw0B_dn6FtAEVOkZJ7jirz2UJcoE0ZLS7zs_YJCDzTKA |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA86wY8HP6bi_MzDBF-q_Uib9HHsgw11DKbii5QkTXRQ27FsD_73Jm03NkQQX480DXe53l3v7ncA1LWTTLwgjrUEsGchIoXFOHMthhmSLgukk7ePdYe4_0pabQOTg-a9MPoQSu-k8iS-0epxLEuEAefO0Pl7fOsb02LrQH3DD3BoQq5Gc7j4_mqNycvqfTdHyvQWgD4_NjAWiasVi7SCF5rbmM7e_063D3ZLnxI2iktwANZEWgVbzfkotyrYWUIdPARvvVSZkByO0mkGtQMIH4Xp_x2pTwUzCZsZn3xppzFJyh5NQxx8LP_7VvpZOJyNxYSXoxLgMEtM6aQ6As-d9lOza5VTFizqOWhqSSEFwZS7IqSMUcYRjQlipuXWprGPBMYh95g0-Vppc-3AURG6LHR8wkJCuXcMKmmWihMADZqXwL7LHZdro8cI5wGjNolDgTzCghqoayZFpZaoKE-Au05kiJpzUcm5GriZCyQaF5gbvy-9LgS2WGjgslujl0akRRQl05mObXyET__25iuwOWh1oode__4MbGvfyC8qc89BZTqZiQuwruLZZX7dvgH45tWr |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insight+into+the+Mechanisms+of+Cocrystallization+of+Pharmaceuticals+in+Supercritical+Solvents&rft.jtitle=Crystal+growth+%26+design&rft.au=Padrela%2C+Luis&rft.au=Rodrigues%2C+Miguel+A.&rft.au=Tiago%2C+Jo%C3%A3o&rft.au=Velaga%2C+Sitaram+P.&rft.date=2015-07-01&rft.issn=1528-7483&rft.eissn=1528-7505&rft.volume=15&rft.issue=7&rft.spage=3175&rft.epage=3181&rft_id=info:doi/10.1021%2Facs.cgd.5b00200&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_cgd_5b00200 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1528-7483&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1528-7483&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1528-7483&client=summon |