Self-Organized Nanogratings for Large-Area Surface Plasmon Polariton Excitation and Surface-Enhanced Raman Spectroscopy Sensing
Surface plasmon polaritons (SPP) are exploited due to their intriguing properties for the fabrication and miniaturization of photonic circuits, for surface-enhanced spectroscopy and imaging beyond the diffraction limit. However, excitation of these plasmonic modes by direct illumination is forbidden...
Saved in:
Published in: | ACS applied nano materials Vol. 3; no. 9; pp. 8784 - 8793 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
American Chemical Society
25-09-2020
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Surface plasmon polaritons (SPP) are exploited due to their intriguing properties for the fabrication and miniaturization of photonic circuits, for surface-enhanced spectroscopy and imaging beyond the diffraction limit. However, excitation of these plasmonic modes by direct illumination is forbidden by energy/momentum conservation rules. One strategy to overcome this limitation relies on diffraction gratings to match the wavevector of the incoming photons with that of propagating SPP excitations. The main limit of the approaches so far reported in the literature is that they rely on highly ordered diffraction gratings fabricated by means of demanding nanolithographic processes. In this work, we demonstrate that an innovative, fully self-organized method based on wrinkling-assisted ion-beam sputtering can be exploited to fabricate large-area (cm2 scale) nanorippled soda lime templates, which conformally support ultrathin Au films deposited by physical deposition. The self-organized patterns act as quasi-one-dimensional (1D) gratings characterized by a remarkably high spatial order, which properly matches the transverse photon coherence length. The gratings can thus enable the excitation of hybrid SPP modes confined at the Au/dielectric interfaces, with a resonant wavelength that can be tuned by modifying the grating period, photon incidence angle, or, potentially, the choice of the thin-film conductive material. Surface-enhanced Raman scattering experiments show promising gains in the range of 103, which are competitive, even before a systematic optimization of the sample fabrication parameters, with state-of-the art lithographic systems, demonstrating the potential of such templates for a broad range of optoelectronic applications aiming at plasmon-enhanced photon harvesting for molecular or biosensing. |
---|---|
AbstractList | Surface plasmon polaritons (SPP) are exploited due to their intriguing properties for the fabrication and miniaturization of photonic circuits, for surface-enhanced spectroscopy and imaging beyond the diffraction limit. However, excitation of these plasmonic modes by direct illumination is forbidden by energy/momentum conservation rules. One strategy to overcome this limitation relies on diffraction gratings to match the wavevector of the incoming photons with that of propagating SPP excitations. The main limit of the approaches so far reported in the literature is that they rely on highly ordered diffraction gratings fabricated by means of demanding nanolithographic processes. In this work, we demonstrate that an innovative, fully self-organized method based on wrinkling-assisted ion-beam sputtering can be exploited to fabricate large-area (cm2 scale) nanorippled soda lime templates, which conformally support ultrathin Au films deposited by physical deposition. The self-organized patterns act as quasi-one-dimensional (1D) gratings characterized by a remarkably high spatial order, which properly matches the transverse photon coherence length. The gratings can thus enable the excitation of hybrid SPP modes confined at the Au/dielectric interfaces, with a resonant wavelength that can be tuned by modifying the grating period, photon incidence angle, or, potentially, the choice of the thin-film conductive material. Surface-enhanced Raman scattering experiments show promising gains in the range of 103, which are competitive, even before a systematic optimization of the sample fabrication parameters, with state-of-the art lithographic systems, demonstrating the potential of such templates for a broad range of optoelectronic applications aiming at plasmon-enhanced photon harvesting for molecular or biosensing. |
Author | Gucciardi, Pietro Giuseppe Barelli, Matteo Buatier de Mongeot, Francesco Giordano, Maria Caterina |
AuthorAffiliation | CNR IPCF Istituto per i Processi Chimico-Fisici Dipartimento di Fisica |
AuthorAffiliation_xml | – name: CNR IPCF Istituto per i Processi Chimico-Fisici – name: Dipartimento di Fisica |
Author_xml | – sequence: 1 givenname: Matteo orcidid: 0000-0002-3960-7921 surname: Barelli fullname: Barelli, Matteo organization: Dipartimento di Fisica – sequence: 2 givenname: Maria Caterina orcidid: 0000-0002-9757-4339 surname: Giordano fullname: Giordano, Maria Caterina organization: Dipartimento di Fisica – sequence: 3 givenname: Pietro Giuseppe orcidid: 0000-0003-1826-9174 surname: Gucciardi fullname: Gucciardi, Pietro Giuseppe organization: CNR IPCF Istituto per i Processi Chimico-Fisici – sequence: 4 givenname: Francesco orcidid: 0000-0002-8144-701X surname: Buatier de Mongeot fullname: Buatier de Mongeot, Francesco email: buatier@fisica.unige.it organization: Dipartimento di Fisica |
BookMark | eNp1UMtKAzEUDVLBWrt1nbUw9WbeWZZSH1C0OLoebjLJOGWalGQK1o2_bqQV3Li6h8t5cS7JyFijCLlmMGMQs1uUHs12BhJYlvMzMo6zIo2AFzD6gy_I1PsNADDO8gRgTL4q1evo2bVouk_V0Cc0tnU4dKb1VFtHV-haFc2dQlrtnUap6LpHv7WGrm2PrhsCWn7IbgiiANE0v8Road7RyOD6gls0tNopOTjrpd0daKWMDyFX5Fxj79X0dCfk7W75uniIVs_3j4v5KsKEpUPEFUfBMi0ECJWX2OiUpUIwViKmGdeJSHKtyqKIZYki4TmyJC9UI6HhUMZpMiGzo68MBbxTut65bovuUDOofxasjwvWpwWD4OYoCP96Y_fOhHr_kb8BQuB3rA |
CitedBy_id | crossref_primary_10_1364_OL_497058 crossref_primary_10_1016_j_photonics_2023_101166 crossref_primary_10_1016_j_apsusc_2024_159821 crossref_primary_10_1016_j_rinp_2023_106410 crossref_primary_10_1016_j_optmat_2021_111678 crossref_primary_10_3389_fphot_2023_1213434 crossref_primary_10_1002_adfm_202210172 crossref_primary_10_1016_j_surfin_2021_101619 crossref_primary_10_1088_1402_4896_ad3153 crossref_primary_10_1051_jeos_2024015 crossref_primary_10_1080_10420150_2024_2359692 crossref_primary_10_1007_s11468_021_01587_3 crossref_primary_10_1021_acsanm_1c04087 crossref_primary_10_1364_OE_453135 crossref_primary_10_3390_app11146575 crossref_primary_10_1088_1402_4896_acf7fe crossref_primary_10_1088_1361_648X_ac75a1 |
Cites_doi | 10.1021/acs.jpcc.5b01793 10.1038/nphoton.2012.262 10.1021/acsami.9b19719 10.1038/nmat4792 10.1021/nn4004764 10.1103/PhysRevB.77.161405 10.1038/nmat2162 10.1038/nmat4169 10.1002/adma.201801840 10.1364/OE.25.025574 10.1103/PhysRevB.54.6227 10.1007/s11468-016-0223-4 10.1364/AOP.1.000484 10.1364/PRJ.5.000162 10.1039/C4RA12168F 10.1016/j.tsf.2011.07.028 10.1021/acs.nanolett.9b05276 10.1021/nn201730k 10.1007/s11468-018-0718-2 10.1038/s41586-018-0136-9 10.1016/S0925-4005(98)00321-9 10.1038/nphoton.2007.223 10.1038/s41598-018-19869-y 10.1038/lsa.2017.112 10.1126/science.1203056 10.1021/acsanm.0c00004 10.1063/1.4729829 10.2478/s11534-011-0096-2 10.1063/1.2432410 10.1038/lsa.2015.67 10.1063/5.0008687 10.1038/lsa.2014.80 10.1021/acs.jpcc.5b03681 10.1038/nature11253 10.1021/nl500948p 10.1103/PhysRevLett.91.247405 10.1103/PhysRevB.32.6238 10.1103/PhysRevB.70.045421 10.1126/science.275.5303.1102 10.1103/PhysRevLett.47.1927 10.1038/nphoton.2013.238 10.1088/1464-4258/10/01/015007 10.3390/s17122719 10.1126/science.aat6967 10.1038/nphoton.2016.45 10.3390/nano10050927 10.1021/jp409844y 10.1088/0957-4484/27/49/495201 10.1002/adma.201200812 10.1016/j.physrep.2004.11.001 10.1016/j.apsusc.2013.10.141 10.1186/s11671-017-1965-4 10.1039/C8CS00864G 10.1039/C8FD00141C 10.1007/s12274-018-1974-3 10.1039/C8NR02174K 10.1021/jp5007236 10.1063/1.5028118 10.1002/adom.201400345 10.1088/0034-4885/76/1/016402 10.1103/PhysRevB.33.5186 10.1515/nanoph-2019-0077 10.1021/acs.nanolett.5b01543 10.1063/1.3261734 10.1021/acs.chemrev.7b00441 10.1021/acsapm.9b00138 10.1007/0-387-37825-1 10.1088/0953-4075/43/5/051002 10.1016/j.bios.2012.01.021 10.1016/j.apsusc.2018.02.163 10.1088/1361-6528/aac9ac 10.1002/adom.201801433 10.1038/s41586-019-1059-9 10.1088/0957-4484/27/11/115202 10.1063/1.1951057 10.1038/nature12151 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1021/acsanm.0c01569 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2574-0970 |
EndPage | 8793 |
ExternalDocumentID | 10_1021_acsanm_0c01569 b725249586 |
GroupedDBID | ABUCX ACGFS ACS AFEFF ALMA_UNASSIGNED_HOLDINGS EBS VF5 VG9 W1F AAYXX ABQRX BAANH CITATION CUPRZ GGK |
ID | FETCH-LOGICAL-a314t-9e9ab15fbb0be68adf414bb118aa459f3b36fe8772c8ab396a1367edc0d908243 |
IEDL.DBID | ACS |
ISSN | 2574-0970 |
IngestDate | Fri Aug 23 01:18:05 EDT 2024 Wed Dec 02 03:11:07 EST 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | self-organized nanopatterning surface plasmon polaritons surface-enhanced Raman scattering self-organized plasmonics large-area biosensors |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a314t-9e9ab15fbb0be68adf414bb118aa459f3b36fe8772c8ab396a1367edc0d908243 |
ORCID | 0000-0002-8144-701X 0000-0003-1826-9174 0000-0002-3960-7921 0000-0002-9757-4339 |
OpenAccessLink | https://pubs.acs.org/doi/pdf/10.1021/acsanm.0c01569 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1021_acsanm_0c01569 acs_journals_10_1021_acsanm_0c01569 |
ProviderPackageCode | ACS VG9 ABUCX AFEFF VF5 W1F |
PublicationCentury | 2000 |
PublicationDate | 20200925 2020-09-25 |
PublicationDateYYYYMMDD | 2020-09-25 |
PublicationDate_xml | – month: 09 year: 2020 text: 20200925 day: 25 |
PublicationDecade | 2020 |
PublicationTitle | ACS applied nano materials |
PublicationTitleAlternate | ACS Appl. Nano Mater |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref77/cit77 ref34/cit34 ref71/cit71 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref74/cit74 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref75/cit75 ref67/cit67 ref24/cit24 ref38/cit38 Maier S. A. (ref5/cit5) 2007 ref50/cit50 ref64/cit64 ref78/cit78 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref79/cit79 ref11/cit11 ref25/cit25 ref29/cit29 ref72/cit72 ref76/cit76 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 Gucciardi P. G. (ref22/cit22) 2016 ref26/cit26 ref55/cit55 ref73/cit73 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref70/cit70 ref7/cit7 |
References_xml | – ident: ref9/cit9 – ident: ref27/cit27 doi: 10.1021/acs.jpcc.5b01793 – ident: ref8/cit8 doi: 10.1038/nphoton.2012.262 – ident: ref62/cit62 doi: 10.1021/acsami.9b19719 – ident: ref7/cit7 doi: 10.1038/nmat4792 – ident: ref74/cit74 doi: 10.1021/nn4004764 – ident: ref71/cit71 doi: 10.1103/PhysRevB.77.161405 – ident: ref4/cit4 doi: 10.1038/nmat2162 – ident: ref21/cit21 doi: 10.1038/nmat4169 – ident: ref48/cit48 doi: 10.1002/adma.201801840 – ident: ref63/cit63 doi: 10.1364/OE.25.025574 – ident: ref72/cit72 doi: 10.1103/PhysRevB.54.6227 – ident: ref35/cit35 doi: 10.1007/s11468-016-0223-4 – ident: ref67/cit67 doi: 10.1364/AOP.1.000484 – ident: ref14/cit14 doi: 10.1364/PRJ.5.000162 – ident: ref52/cit52 doi: 10.1039/C4RA12168F – ident: ref46/cit46 doi: 10.1016/j.tsf.2011.07.028 – ident: ref61/cit61 doi: 10.1021/acs.nanolett.9b05276 – ident: ref75/cit75 doi: 10.1021/nn201730k – ident: ref28/cit28 doi: 10.1007/s11468-018-0718-2 – ident: ref19/cit19 doi: 10.1038/s41586-018-0136-9 – ident: ref34/cit34 doi: 10.1016/S0925-4005(98)00321-9 – ident: ref2/cit2 doi: 10.1038/nphoton.2007.223 – ident: ref15/cit15 doi: 10.1038/s41598-018-19869-y – ident: ref39/cit39 doi: 10.1038/lsa.2017.112 – ident: ref43/cit43 doi: 10.1126/science.1203056 – ident: ref54/cit54 doi: 10.1021/acsanm.0c00004 – ident: ref59/cit59 doi: 10.1063/1.4729829 – ident: ref56/cit56 doi: 10.2478/s11534-011-0096-2 – ident: ref55/cit55 doi: 10.1063/1.2432410 – ident: ref12/cit12 doi: 10.1038/lsa.2015.67 – ident: ref16/cit16 doi: 10.1063/5.0008687 – ident: ref32/cit32 doi: 10.1038/lsa.2014.80 – ident: ref49/cit49 doi: 10.1021/acs.jpcc.5b03681 – ident: ref18/cit18 doi: 10.1038/nature11253 – ident: ref79/cit79 doi: 10.1021/nl500948p – ident: ref38/cit38 doi: 10.1103/PhysRevLett.91.247405 – ident: ref69/cit69 doi: 10.1103/PhysRevB.32.6238 – ident: ref73/cit73 doi: 10.1103/PhysRevB.70.045421 – ident: ref76/cit76 doi: 10.1126/science.275.5303.1102 – ident: ref68/cit68 doi: 10.1103/PhysRevLett.47.1927 – ident: ref42/cit42 doi: 10.1038/nphoton.2013.238 – ident: ref70/cit70 doi: 10.1088/1464-4258/10/01/015007 – ident: ref26/cit26 doi: 10.3390/s17122719 – volume-title: Handbook of Enhanced Spectroscopy year: 2016 ident: ref22/cit22 contributor: fullname: Gucciardi P. G. – ident: ref41/cit41 doi: 10.1126/science.aat6967 – ident: ref20/cit20 doi: 10.1038/nphoton.2016.45 – ident: ref47/cit47 doi: 10.3390/nano10050927 – ident: ref50/cit50 doi: 10.1021/jp409844y – ident: ref57/cit57 doi: 10.1088/0957-4484/27/49/495201 – ident: ref65/cit65 doi: 10.1002/adma.201200812 – ident: ref6/cit6 doi: 10.1016/j.physrep.2004.11.001 – ident: ref37/cit37 doi: 10.1016/j.apsusc.2013.10.141 – ident: ref44/cit44 doi: 10.1186/s11671-017-1965-4 – ident: ref17/cit17 doi: 10.1039/C8CS00864G – ident: ref40/cit40 doi: 10.1039/C8FD00141C – ident: ref60/cit60 doi: 10.1007/s12274-018-1974-3 – ident: ref31/cit31 doi: 10.1039/C8NR02174K – ident: ref51/cit51 doi: 10.1021/jp5007236 – ident: ref30/cit30 doi: 10.1063/1.5028118 – ident: ref64/cit64 doi: 10.1002/adom.201400345 – ident: ref11/cit11 doi: 10.1088/0034-4885/76/1/016402 – ident: ref66/cit66 doi: 10.1103/PhysRevB.33.5186 – ident: ref78/cit78 doi: 10.1515/nanoph-2019-0077 – ident: ref25/cit25 doi: 10.1021/acs.nanolett.5b01543 – ident: ref36/cit36 doi: 10.1063/1.3261734 – ident: ref13/cit13 doi: 10.1021/acs.chemrev.7b00441 – ident: ref77/cit77 doi: 10.1021/acsapm.9b00138 – volume-title: Plasmonics: Fundamentals and Applications year: 2007 ident: ref5/cit5 doi: 10.1007/0-387-37825-1 contributor: fullname: Maier S. A. – ident: ref10/cit10 doi: 10.1088/0953-4075/43/5/051002 – ident: ref45/cit45 doi: 10.1016/j.bios.2012.01.021 – ident: ref53/cit53 doi: 10.1016/j.apsusc.2018.02.163 – ident: ref58/cit58 doi: 10.1088/1361-6528/aac9ac – ident: ref33/cit33 doi: 10.1002/adom.201801433 – ident: ref1/cit1 doi: 10.1021/nl500948p – ident: ref23/cit23 doi: 10.1038/s41586-019-1059-9 – ident: ref29/cit29 doi: 10.1088/0957-4484/27/11/115202 – ident: ref3/cit3 doi: 10.1063/1.1951057 – ident: ref24/cit24 doi: 10.1038/nature12151 |
SSID | ssj0001916300 |
Score | 2.2866583 |
Snippet | Surface plasmon polaritons (SPP) are exploited due to their intriguing properties for the fabrication and miniaturization of photonic circuits, for... |
SourceID | crossref acs |
SourceType | Aggregation Database Publisher |
StartPage | 8784 |
Title | Self-Organized Nanogratings for Large-Area Surface Plasmon Polariton Excitation and Surface-Enhanced Raman Spectroscopy Sensing |
URI | http://dx.doi.org/10.1021/acsanm.0c01569 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA62Xrz4QMU3AQW9RDeb7OtYaosHkeIqeFsmj9WDTUu3BT35181st1iQQi97GsIymeT7JvMi5Erx1MOqAKYE10xyw1kWpvip4aMMYlM_XeTJ01t638M2OTcrIvghvwNdgRveBhqLfrMW2QwTTxOQBHXzv9cUz3JEXW_iTVCyIEuCRYfGf0sgDulqCYeWAKW_s_6v7JLthjTSznyX98iGdfvkJ7efJWtqKa2h_p7EVCtMY66op6L0EZO8WcezQprPJiVoSweeK3u7owN0aP1ZdrT3pZsu3RScWQiynvuoUwPoMwzBUZxSP8W-l6PxN80x5929H5DXfu-l-8CacQoMBJdTltkMFI9KpQJl4xRMKblUynsYADLKSqFEXNrU022dghJZDNjOzRodGJyLLsUhabuRs0eEegiLTJpIm-hUglAQWs61lNZLhRzUMbn0uiqa41AVdaQ75MVcgUWjwGNyvdiCYjzvrbFC8mSt9U7JVojeMMaMojPSnk5m9py0KjO7qK3lF5HNuzU |
link.rule.ids | 315,782,786,2769,27085,27933,27934,56747,56797 |
linkProvider | American Chemical Society |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA62HvTiAxXrM6DgKXazyW53j6W2VKyluBW8LXmtHmxaui3oyb_uZLulBRH0soclDGEyyXyTzHyD0LWkEbhVJohkVBFONSWxH7lP4T4yL9TF1UXS6L9Ed21Hk1Nf1sLAJHKQlBeP-Ct2AVqHf8KObj3lan_jCtoMQkDCDgu1ktWlCoAdVpSdgCVy4sUNb0nU-EOEc0cqX3NHa36ls_vvGe2hnRJC4uZizffRhrEH6Csx7xkpKyuNxnBqusQrl9ScYwCmuOdSvkkTMCJO5tNMKIMHgJzBCvHAhbewsy1uf6iSsxsLq5cDSdu-FYkC-EmMhMWuZ_3MsWCOJ584cRnw9vUQPXfaw1aXlM0ViGCUz0hsYiFpkEnpSRNGQmeccikh3hCCB3HGJAszEwH4VpGQLA6FI3czWnnadUnn7AhV7diaY4TBoQU6anDTUBEXTArfUKo4NzDKp0LW0BXoKi03R54W794-TRcKTEsF1tDNciXSyYJp45eRJ3-Sd4m2usPHXtq77z-com3fxcnuNSk4Q9XZdG7OUSXX84vCgL4BC3bDog |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5WQbz4QMX6DCh4im422dex2BZFkeIqeFvyWj3YtLgt6Mm_7sx2i4II4mUPyzCEyUxmJpn5hpATzVNwq0IxLbhhklvOsjDFT-0-yiC29dVFntw-pt0ewuSIeS8MLKICTlX9iI9WPbZlgzDAz-G_8sOzwGD_b9YiS1GcZJhxdS7yr4sVCHhE3XoC2ihZkCXBHKzxBwt0Sab65pK--Zb-2r9WtU5Wm1CSdmZ7v0EWnN8kH7l7KVnTYekshdMTC7CwuLmiEKDSGyz9Zh2IFWk-fS2VcXQAETRoIx1gmgsW7mnvzTTY3VR5OydkPf9cFwzQOzVUnuLs-gmiYY7G7zTHSnj_tEUe-r37i0vWDFlgSnA5YZnLlOZRqXWgXZwqW0outYa8QykZZaXQIi5dCkG4SZUWWawQ5M1ZE1icli7FNln0I-92CAXHFtk0kS4xqVRCq9BxbqR0QBVypdvkGGRVNEZSFfX7d8iLmQCLRoBtcjrfjWI8Q9z4hXL3T_yOyPKg2y9urm6v98hKiOkyPipF-2Rx8jp1B6RV2elhrUOfh7fGJQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-Organized+Nanogratings+for+Large-Area+Surface+Plasmon+Polariton+Excitation+and+Surface-Enhanced+Raman+Spectroscopy+Sensing&rft.jtitle=ACS+applied+nano+materials&rft.au=Barelli%2C+Matteo&rft.au=Giordano%2C+Maria+Caterina&rft.au=Gucciardi%2C+Pietro+Giuseppe&rft.au=Buatier+de+Mongeot%2C+Francesco&rft.date=2020-09-25&rft.issn=2574-0970&rft.eissn=2574-0970&rft.volume=3&rft.issue=9&rft.spage=8784&rft.epage=8793&rft_id=info:doi/10.1021%2Facsanm.0c01569&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsanm_0c01569 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2574-0970&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2574-0970&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2574-0970&client=summon |