3D-Printed Self-Healing Elastomers for Modular Soft Robotics

Advances in materials, designs, and controls are propelling the field of soft robotics at an incredible rate; however, current methods for prototyping soft robots remain cumbersome and struggle to incorporate desirable geometric complexity. Herein, a vat photopolymerizable self-healing elastomer sys...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces Vol. 13; no. 24; pp. 28870 - 28877
Main Authors: Gomez, Eliot F, Wanasinghe, Shiwanka V, Flynn, Alex E, Dodo, Obed J, Sparks, Jessica L, Baldwin, Luke A, Tabor, Christopher E, Durstock, Michael F, Konkolewicz, Dominik, Thrasher, Carl J
Format: Journal Article
Language:English
Published: American Chemical Society 23-06-2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Advances in materials, designs, and controls are propelling the field of soft robotics at an incredible rate; however, current methods for prototyping soft robots remain cumbersome and struggle to incorporate desirable geometric complexity. Herein, a vat photopolymerizable self-healing elastomer system capable of extreme elongations up to 1000% is presented. The material is formed from a combination of thiol/acrylate mixed chain/step-growth polymerizations and uses a combination of physical processes and dynamic-bond exchange via thioethers to achieve full self-healing capacity over multiple damage/healing cycles. These elastomers can be three dimensional (3D) printed with modular designs capable of healing together to form highly complex and large functional soft robots. Additionally, these materials show reprogrammable resting shapes and compatibility with self-healing liquid metal electronics. Using these capabilities, subcomponents with multiple internal channel systems were printed, healed together, and combined with functional liquid metals to form a high-wattage pneumatic switch and a humanoid-scale soft robotic gripper. The combination of 3D printing and self-healing elastomeric materials allows for facile production of support-free parts with extreme complexity, resulting in a paradigm shift for the construction of modular soft robotics.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.1c06419