Effect of Flexibility and Nanotriboelectrification on the Dynamic Reversibility of Water Intrusion into Nanopores: Pressure-Transmitting Fluid with Frequency-Dependent Dissipation Capability

In this article, the effect of a porous material’s flexibility on the dynamic reversibility of a nonwetting liquid intrusion was explored experimentally. For this purpose, high-pressure water intrusion together with high-pressure in situ small-angle neutron scattering were applied for superhydrophob...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces Vol. 11; no. 43; pp. 40842 - 40849
Main Authors: Lowe, Alexander, Tsyrin, Nikolay, Chorążewski, Mirosław, Zajdel, Paweł, Mierzwa, Michał, Leão, Juscelino B, Bleuel, Markus, Feng, Tong, Luo, Dong, Li, Mian, Li, Dan, Stoudenets, Victor, Pawlus, Sebastian, Faik, Abdessamad, Grosu, Yaroslav
Format: Journal Article
Language:English
Published: American Chemical Society 30-10-2019
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this article, the effect of a porous material’s flexibility on the dynamic reversibility of a nonwetting liquid intrusion was explored experimentally. For this purpose, high-pressure water intrusion together with high-pressure in situ small-angle neutron scattering were applied for superhydrophobic grafted silica and two metal–organic frameworks (MOFs) with different flexibility [ZIF-8 and Cu2(tebpz) (tebpz = 3,3′,5,5′tetraethyl-4,4′-bipyrazolate)]. These results established the relation between the pressurization rate, water intrusion–extrusion hysteresis, and porous materials’ flexibility. It was demonstrated that the dynamic hysteresis of water intrusion into superhydrophobic nanopores can be controlled by the flexibility of a porous material. This opens a new area of applications for flexible MOFs, namely, a smart pressure-transmitting fluid, capable of dissipating undesired vibrations depending on their frequency. Finally, nanotriboelectric experiments were conducted and the results showed that a porous material’s topology is important for electricity generation while not affecting the dynamic hysteresis at any speed.
AbstractList In this article, the effect of a porous material’s flexibility on the dynamic reversibility of a nonwetting liquid intrusion was explored experimentally. For this purpose, high-pressure water intrusion together with high-pressure in situ small-angle neutron scattering were applied for superhydrophobic grafted silica and two metal–organic frameworks (MOFs) with different flexibility [ZIF-8 and Cu2(tebpz) (tebpz = 3,3′,5,5′tetraethyl-4,4′-bipyrazolate)]. These results established the relation between the pressurization rate, water intrusion–extrusion hysteresis, and porous materials’ flexibility. It was demonstrated that the dynamic hysteresis of water intrusion into superhydrophobic nanopores can be controlled by the flexibility of a porous material. This opens a new area of applications for flexible MOFs, namely, a smart pressure-transmitting fluid, capable of dissipating undesired vibrations depending on their frequency. Finally, nanotriboelectric experiments were conducted and the results showed that a porous material’s topology is important for electricity generation while not affecting the dynamic hysteresis at any speed.
Author Faik, Abdessamad
Grosu, Yaroslav
Li, Dan
Zajdel, Paweł
Leão, Juscelino B
Lowe, Alexander
Tsyrin, Nikolay
Chorążewski, Mirosław
Bleuel, Markus
Feng, Tong
Mierzwa, Michał
Luo, Dong
Pawlus, Sebastian
Li, Mian
Stoudenets, Victor
AuthorAffiliation Department of Chemistry
NIST Center for Neutron Research
Institute of Chemistry
University of Silesia
University of Maryland
Institute of Physics
CIC Energigune
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
Laboratory of Thermomolecular Energetics
Department of Materials Science and Engineering
Silesian Center for Education and Interdisciplinary Research
College of Chemistry and Materials Science
AuthorAffiliation_xml – name: National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
– name: Institute of Chemistry
– name: Department of Chemistry
– name: CIC Energigune
– name: University of Silesia
– name: Laboratory of Thermomolecular Energetics
– name: Institute of Physics
– name: NIST Center for Neutron Research
– name: College of Chemistry and Materials Science
– name: Silesian Center for Education and Interdisciplinary Research
– name: Department of Materials Science and Engineering
– name: University of Maryland
Author_xml – sequence: 1
  givenname: Alexander
  orcidid: 0000-0002-9700-5873
  surname: Lowe
  fullname: Lowe, Alexander
  organization: University of Silesia
– sequence: 2
  givenname: Nikolay
  surname: Tsyrin
  fullname: Tsyrin, Nikolay
  organization: National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
– sequence: 3
  givenname: Mirosław
  orcidid: 0000-0002-8912-9024
  surname: Chorążewski
  fullname: Chorążewski, Mirosław
  organization: University of Silesia
– sequence: 4
  givenname: Paweł
  orcidid: 0000-0003-1220-5866
  surname: Zajdel
  fullname: Zajdel, Paweł
  organization: University of Silesia
– sequence: 5
  givenname: Michał
  surname: Mierzwa
  fullname: Mierzwa, Michał
  organization: University of Silesia
– sequence: 6
  givenname: Juscelino B
  surname: Leão
  fullname: Leão, Juscelino B
  organization: NIST Center for Neutron Research
– sequence: 7
  givenname: Markus
  surname: Bleuel
  fullname: Bleuel, Markus
  organization: University of Maryland
– sequence: 8
  givenname: Tong
  surname: Feng
  fullname: Feng, Tong
  organization: Department of Chemistry
– sequence: 9
  givenname: Dong
  orcidid: 0000-0001-6960-4783
  surname: Luo
  fullname: Luo, Dong
  organization: College of Chemistry and Materials Science
– sequence: 10
  givenname: Mian
  orcidid: 0000-0003-1293-3636
  surname: Li
  fullname: Li, Mian
  organization: Department of Chemistry
– sequence: 11
  givenname: Dan
  orcidid: 0000-0002-4936-4599
  surname: Li
  fullname: Li, Dan
  organization: College of Chemistry and Materials Science
– sequence: 12
  givenname: Victor
  surname: Stoudenets
  fullname: Stoudenets, Victor
  organization: National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
– sequence: 13
  givenname: Sebastian
  surname: Pawlus
  fullname: Pawlus, Sebastian
  organization: University of Silesia
– sequence: 14
  givenname: Abdessamad
  surname: Faik
  fullname: Faik, Abdessamad
  organization: CIC Energigune
– sequence: 15
  givenname: Yaroslav
  orcidid: 0000-0001-6523-1780
  surname: Grosu
  fullname: Grosu, Yaroslav
  email: ygrosu@cicenergigune.com
  organization: CIC Energigune
BookMark eNp1kc1u1DAUhS3USvSHLWsvEVIGO7EnCTs002krVYBQEcvoxrmmt8rYwXag83I8W11S2CFZtmV955xrnVN25LxDxl5LsZKilO_ARNjTqu2lEpV8wU5kq1TRlLo8-ndX6iU7jfFeiHVVCn3Cfl9YiyZxb_luxAfqaaR04OAG_hGcT4F6j2MmAlkykMg7nle6Q749uJxn-Bf8iSH-VWajb5Aw8GuXwhyfeHLJ_3GbfMD4nn_Oe5wDFrcBXNxTSuS-5_iZBv6L0h3fBfwxozOHYosTugFd4luKkaZlgA1MsMSds2MLY8RXz-cZ-7q7uN1cFTefLq83H24KqESdirZdD6qVa4UaFbQ9VFa2prFDjWpoaiME1MYKGKACgaCh1rXtQeuywapUujpjbxbfKfg8WkzdnqLBcQSHfo5dWQmh20boMqOrBTXBxxjQdlOgPYRDJ0X3VFS3FNU9F5UFbxdBfu_u_Rxc_sn_4Efncp3G
CitedBy_id crossref_primary_10_1039_D0QI00938E
crossref_primary_10_1063_5_0044391
crossref_primary_10_1021_acsami_1c12403
crossref_primary_10_1021_acsnano_1c02175
crossref_primary_10_1021_acsami_2c04314
crossref_primary_10_1021_acs_chemrev_0c00011
crossref_primary_10_1038_s42005_023_01140_0
crossref_primary_10_1021_acsami_3c15447
crossref_primary_10_1021_acs_jpclett_1c01305
crossref_primary_10_1140_epjb_s10051_021_00170_3
crossref_primary_10_1134_S0020441223040073
crossref_primary_10_1021_acsami_1c11224
crossref_primary_10_1103_PhysRevApplied_17_034048
crossref_primary_10_1038_s41563_021_00977_6
crossref_primary_10_1039_D3CP03519K
crossref_primary_10_1016_j_seta_2024_103843
crossref_primary_10_1021_acs_jpcb_1c06791
crossref_primary_10_1016_j_energy_2022_124697
crossref_primary_10_1063_5_0173110
crossref_primary_10_1016_j_jcis_2021_04_132
crossref_primary_10_1021_acs_jpclett_3c03330
crossref_primary_10_1063_5_0167530
crossref_primary_10_1073_pnas_2009310117
crossref_primary_10_1134_S0020441222030198
crossref_primary_10_1080_23746149_2022_2052353
Cites_doi 10.1016/j.jcis.2006.03.054
10.1063/1.2214368
10.1002/cphc.201200529
10.1039/c5nr01340b
10.1039/c5ra02636a
10.1016/s1631-0705(02)01285-9
10.1061/9780784480779.048
10.1039/c8cp00447a
10.23919/TEMS.2017.7911104
10.1016/j.colsurfa.2012.11.066
10.1021/acs.jpcc.8b01959
10.1103/physrevlett.115.036101
10.1257/jep.26.1.119
10.1021/acs.jpcc.7b08999
10.1021/jp505484x
10.1002/chem.201403501
10.1063/1.4754631
10.1016/j.colsurfa.2013.10.022
10.1002/cphc.201600567
10.1021/jz402019d
10.1016/j.energy.2012.01.024
10.1073/pnas.1714796114
10.1021/ja202154j
10.1073/pnas.1207658109
10.1021/jp412354f
10.1039/c3cp00142c
10.1063/1.1643728
10.1039/c5ra19879h
10.1006/jcis.1996.4495
10.1016/j.micromeso.2015.08.040
10.1166/jnn.2013.7405
10.1021/acsnano.8b07818
10.1039/c5dt03486h
10.1039/c4cp02350a
10.2465/minerj.13.455
10.1021/acs.jpcc.9b04860
10.1016/j.jsv.2007.06.012
10.1002/aic.10371
10.1021/acsami.8b16527
10.1021/acs.iecr.5b00953
10.1021/acsami.6b14422
10.1021/ja011011a
10.1243/09544070d01605
10.1039/c4cp03944k
ContentType Journal Article
DBID AAYXX
CITATION
7X8
DOI 10.1021/acsami.9b14031
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 40849
ExternalDocumentID 10_1021_acsami_9b14031
c266683592
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
---
.K2
4.4
5VS
5ZA
6J9
AAHBH
AAYXX
ABJNI
ABQRX
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
7X8
ID FETCH-LOGICAL-a307t-996d49164e5e4a9ba3f19c8fd7e4d87c00a7cf0ada3a0ea5a757fba5528e32453
IEDL.DBID ACS
ISSN 1944-8244
IngestDate Sat Aug 17 01:50:37 EDT 2024
Fri Aug 23 02:36:50 EDT 2024
Thu Aug 27 13:44:01 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 43
Keywords porous material
flexibility
anti-vibration protection
MOF
smart working body
energy storage/dissipation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a307t-996d49164e5e4a9ba3f19c8fd7e4d87c00a7cf0ada3a0ea5a757fba5528e32453
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1220-5866
0000-0003-1293-3636
0000-0002-4936-4599
0000-0001-6960-4783
0000-0002-8912-9024
0000-0002-9700-5873
0000-0001-6523-1780
PQID 2300598052
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2300598052
crossref_primary_10_1021_acsami_9b14031
acs_journals_10_1021_acsami_9b14031
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 20191030
2019-10-30
PublicationDateYYYYMMDD 2019-10-30
PublicationDate_xml – month: 10
  year: 2019
  text: 20191030
  day: 30
PublicationDecade 2010
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2019
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
Boldea I. (ref2/cit2) 2017; 1
ref23/cit23
ref8/cit8
ref31/cit31
ref34/cit34
ref37/cit37
Soulard M. (ref39/cit39) 2004; 154
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref19/cit19
Eroshenko V. A. (ref7/cit7) 1996; 40
ref21/cit21
ref42/cit42
ref46/cit46
Eroshenko V. (ref4/cit4) 1990; 10
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref14/cit14
ref43/cit43
Eroshenko V. (ref5/cit5) 1995; 57
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
Eroshenko V. (ref6/cit6) 1996; 70
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
References_xml – ident: ref11/cit11
  doi: 10.1016/j.jcis.2006.03.054
– ident: ref19/cit19
  doi: 10.1063/1.2214368
– volume: 40
  start-page: 116
  year: 1996
  ident: ref7/cit7
  publication-title: Mendeleev Chem. J.
  contributor:
    fullname: Eroshenko V. A.
– ident: ref44/cit44
  doi: 10.1002/cphc.201200529
– ident: ref31/cit31
  doi: 10.1039/c5nr01340b
– ident: ref25/cit25
  doi: 10.1039/c5ra02636a
– ident: ref10/cit10
  doi: 10.1016/s1631-0705(02)01285-9
– ident: ref32/cit32
  doi: 10.1061/9780784480779.048
– volume: 10
  start-page: 79
  year: 1990
  ident: ref4/cit4
  publication-title: R Acad Sci Ukr SSR Ser. A.
  contributor:
    fullname: Eroshenko V.
– ident: ref27/cit27
  doi: 10.1039/c8cp00447a
– volume: 1
  start-page: 3
  year: 2017
  ident: ref2/cit2
  publication-title: CES-TEMS.
  doi: 10.23919/TEMS.2017.7911104
  contributor:
    fullname: Boldea I.
– ident: ref17/cit17
  doi: 10.1016/j.colsurfa.2012.11.066
– ident: ref37/cit37
  doi: 10.1021/acs.jpcc.8b01959
– ident: ref38/cit38
  doi: 10.1103/physrevlett.115.036101
– ident: ref1/cit1
  doi: 10.1257/jep.26.1.119
– ident: ref28/cit28
  doi: 10.1021/acs.jpcc.7b08999
– ident: ref24/cit24
  doi: 10.1021/jp505484x
– ident: ref41/cit41
  doi: 10.1002/chem.201403501
– ident: ref16/cit16
  doi: 10.1063/1.4754631
– ident: ref33/cit33
  doi: 10.1016/j.colsurfa.2013.10.022
– volume: 70
  start-page: 1482
  year: 1996
  ident: ref6/cit6
  publication-title: Zh. Fiz. Khim.
  contributor:
    fullname: Eroshenko V.
– ident: ref26/cit26
  doi: 10.1002/cphc.201600567
– ident: ref46/cit46
  doi: 10.1021/jz402019d
– ident: ref3/cit3
  doi: 10.1016/j.energy.2012.01.024
– ident: ref35/cit35
  doi: 10.1073/pnas.1714796114
– ident: ref45/cit45
  doi: 10.1021/ja202154j
– ident: ref15/cit15
  doi: 10.1073/pnas.1207658109
– ident: ref23/cit23
  doi: 10.1021/jp412354f
– ident: ref22/cit22
  doi: 10.1039/c3cp00142c
– ident: ref14/cit14
  doi: 10.1063/1.1643728
– ident: ref29/cit29
  doi: 10.1039/c5ra19879h
– ident: ref49/cit49
– ident: ref8/cit8
  doi: 10.1006/jcis.1996.4495
– ident: ref20/cit20
  doi: 10.1016/j.micromeso.2015.08.040
– ident: ref18/cit18
  doi: 10.1166/jnn.2013.7405
– volume: 57
  start-page: 446
  year: 1995
  ident: ref5/cit5
  publication-title: Colliod J
  contributor:
    fullname: Eroshenko V.
– volume: 154
  start-page: 1830
  volume-title: Studies in Surface Science and Catalysis
  year: 2004
  ident: ref39/cit39
  contributor:
    fullname: Soulard M.
– ident: ref34/cit34
  doi: 10.1021/acsnano.8b07818
– ident: ref48/cit48
  doi: 10.1039/c5dt03486h
– ident: ref42/cit42
  doi: 10.1039/c4cp02350a
– ident: ref47/cit47
  doi: 10.2465/minerj.13.455
– ident: ref21/cit21
  doi: 10.1021/acs.jpcc.9b04860
– ident: ref50/cit50
  doi: 10.1016/j.jsv.2007.06.012
– ident: ref12/cit12
  doi: 10.1002/aic.10371
– ident: ref40/cit40
  doi: 10.1021/acsami.8b16527
– ident: ref43/cit43
  doi: 10.1021/acs.iecr.5b00953
– ident: ref36/cit36
  doi: 10.1021/acsami.6b14422
– ident: ref9/cit9
  doi: 10.1021/ja011011a
– ident: ref13/cit13
  doi: 10.1243/09544070d01605
– ident: ref30/cit30
  doi: 10.1039/c4cp03944k
SSID ssj0063205
Score 2.4685261
Snippet In this article, the effect of a porous material’s flexibility on the dynamic reversibility of a nonwetting liquid intrusion was explored experimentally. For...
SourceID proquest
crossref
acs
SourceType Aggregation Database
Publisher
StartPage 40842
Title Effect of Flexibility and Nanotriboelectrification on the Dynamic Reversibility of Water Intrusion into Nanopores: Pressure-Transmitting Fluid with Frequency-Dependent Dissipation Capability
URI http://dx.doi.org/10.1021/acsami.9b14031
https://search.proquest.com/docview/2300598052
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA4-LnrwLb6JKOgl2G0Tk3qTfbBePPhAbyVtprAHW9nuHvxz_jZnki4osrDQYx6lXzPzTTL5hrHLAn2UglyKtDClkHkihZUux1DFwG0pkTMXtA85fNaP76bXJ5mc6zkn-HHnxhYNlcJJc1KWwzhnNdZIE4gEdZ9nNvc2iX2yIkbkUhj0WDN5xn_9yQkVzV8n9NcGe8cy2Fz8lbbYRkse-X1Ae5stQbXD1n9JCu6y7yBHzOuSD0jr0ue-fnFbOY6GtKb6VnUofUM5Qh4Wjg_SQN4Lxen5E_hUjbYnDvSGfHTMHyq6n0HtR9Wk9qMhd4fmjocrhmMQ3vF9jHwqNU4_HTlO-7x8MA4J21-i19bcnfAeIt6mc_Mueuww3R57HfRfukPR1mgQFq3DRGC45CRSTAkKpE1zm5Qdgt1pkM7oIoqsLsrIOpvYCKyyWukyt0rFBpDLqWSfrVR1BQeMO5IpBmO1M1YmEOVG6VwXMtWlklBGh-wCP3zWrrEm88fncScLaGQtGofsagZt9hkEO-a2PJ8hn-GaooMSW0E9bbKYNPxTKvZwtNCcx2wNeVTqXVp0wlYQDjhly42bnvnf9Aekr-jk
link.rule.ids 315,782,786,2769,27085,27933,27934,56747,56797
linkProvider American Chemical Society
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELbocqAcKH0gllIwaqWeLLKJvXZ6Q_vQrthyAKr2FjnxRNpDk2qze9g_x29jxk5EUVWplXKK4ocy9nyf7fE3jH0qEKMU5FKkhSmFzBMprHQ5LlUMDEuJnLmgfcjZnb75YcYTksm57O7CYCcarKnxh_hP6gKDS3xHGXHSnATmcLmzq4bIhIkLje461ztMYh-ziAtzKQwCV6fS-Ed5wqKieY5Fz12xx5fpq__u2SE7aKkkvwq2f812oHrD9n8TGHzLHoI4Ma9LPiXlSx8Ju-W2chzdak3ZruqQCIcihryROD5ICvk4pKrnt-ADN9qSWNF3ZKcrPq_otgZ9v6zWta8NmTw0X3i4cLgC4WHw59IHVmPzm6XjtOvLp6sQvr0V4zYD75qP0f5tcDcfIX6H5t6xb9PJ_Wgm2owNwqKvWAtcPDmJhFOCAmnT3CblgAaB0yCd0UUUWV2UkXU2sRFYZbXSZW6Vig0gs1PJEetVdQXHjDsSLQZjtTNWJhDlRulcFzLVpZJQRn32EX981s64JvOH6fEgC9bIWmv02efOwtmvIN_x1y8vugGQ4QyjYxNbQb1pspgU_VNK_XDyT22es73Z_ddFtpjfXL9nL5FhpR7solPWQ9PAB_aicZszP3IfAers8VE
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZNAiU95NE2NM-qNNCTqHctreTewnrNhpYQmpb0ZmRrBHuoHda7h_y5_rbMSDY0lEII-GSsB57RzDfS6BvGzmv0UQoqKbLaeCGrVAorXYWhioGJl4iZa9qHnN_oq18mnxFNTjrchcFJdNhTFw7xaVXfOd8zDIw-43uqipNVRDKHIc-WmuiMIq6L6c1gfifpOOQtYnAuhUHnNTA1_tOe_FHdPfZHj81x8DHF7rNmt8d2ekjJL6IO7LMX0Lxmr_4iGnzD_kSSYt56XhADZsiIvee2cRzNa0tVr9pYEIcyh4KwOD4IDnkeS9bz7xASOPqW2NEtotQlv2zo1gZ9v2hWbegNET10X3i8eLgEEdzh70VIsMbh1wvHafeXF8uYxn0v8r4S74rnqAd9kjefoh-Pw71lP4vZj-lc9JUbhEWbsRIYRDmJwFOCAmmzyqZ-RMrgNEhndJ0kVtc-sc6mNgGrrFbaV1apsQFEeCo9YJtN28A7xh2RF4Ox2hkrU0gqo3Sla5lpryT45JB9xB9f9iuvK8Oh-nhURmmUvTQO2adByuVdpPH475cfBiUocaXR8YltoF135ZiY_TMqAXH0pDHfs5fXeVF-u7z6esy2EWhlweclJ2wTJQOnbKNz67OgvA-dk_PU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Flexibility+and+Nanotriboelectrification+on+the+Dynamic+Reversibility+of+Water+Intrusion+into+Nanopores%3A+Pressure-Transmitting+Fluid+with+Frequency-Dependent+Dissipation+Capability&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Lowe%2C+Alexander&rft.au=Tsyrin%2C+Nikolay&rft.au=Chor%C4%85%C5%BCewski%2C+Miros%C5%82aw&rft.au=Zajdel%2C+Pawe%C5%82&rft.date=2019-10-30&rft.eissn=1944-8252&rft.volume=11&rft.issue=43&rft.spage=40842&rft.epage=40849&rft_id=info:doi/10.1021%2Facsami.9b14031&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon