Crystallographic Control of the Hydrothermal Conversion of Calcitic Sea Urchin Spine (Paracentrotus lividus) into Apatite
We analyzed the crystallographic relationships during hydrothermal conversion of a calcitic sea urchin spine into apatite. We identified a pseudomorphic mineral replacement mechanism involving a superficial dissolution of calcite and a subsequent overgrowth of oriented carbonated hydroxylapatite (HA...
Saved in:
Published in: | Crystal growth & design Vol. 10; no. 12; pp. 5227 - 5232 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Washington,DC
American Chemical Society
01-12-2010
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | We analyzed the crystallographic relationships during hydrothermal conversion of a calcitic sea urchin spine into apatite. We identified a pseudomorphic mineral replacement mechanism involving a superficial dissolution of calcite and a subsequent overgrowth of oriented carbonated hydroxylapatite (HA) nanocrystals. Cross-section images of these converted spines show that the dimensions of the HA crystals increase the further they are from the outer surface. This replacement process is favored by an increase in porosity, which enables both fluid and mass to be transported by diffusion, thereby allowing the replacement reaction to progress toward the interior of the spine. These recrystallization reactions take place on the surface of the calcite single crystal, which acts as a substrate for the epitaxial nucleation of HA crystals. The epitaxial relationship observed between the parent calcite crystal and the newly formed apatite crystals can be defined as (0001) apatite//(011̅8) calcite and [10.0] apatite//[4̅4.1] calcite. The apatite crystals are related by the 3-fold axis arising from the trigonal symmetry of the parent calcite crystal. There is therefore a strong structural control which favors the conversion of calcite into apatite. This process coexists with the formation of apatite crystals which are not structurally related to the calcite crystal and which may precipitate within the porosity of the material. The analysis of crystallographic relationships is a fundamental step toward understanding mineral replacement reactions, which can be used for the synthesis of artificial materials with predefined shapes and microstructural characteristics, a technique that may have interesting technological applications. |
---|---|
AbstractList | We analyzed the crystallographic relationships during hydrothermal conversion of a calcitic sea urchin spine into apatite. We identified a pseudomorphic mineral replacement mechanism involving a superficial dissolution of calcite and a subsequent overgrowth of oriented carbonated hydroxylapatite (HA) nanocrystals. Cross-section images of these converted spines show that the dimensions of the HA crystals increase the further they are from the outer surface. This replacement process is favored by an increase in porosity, which enables both fluid and mass to be transported by diffusion, thereby allowing the replacement reaction to progress toward the interior of the spine. These recrystallization reactions take place on the surface of the calcite single crystal, which acts as a substrate for the epitaxial nucleation of HA crystals. The epitaxial relationship observed between the parent calcite crystal and the newly formed apatite crystals can be defined as (0001) apatite//(011̅8) calcite and [10.0] apatite//[4̅4.1] calcite. The apatite crystals are related by the 3-fold axis arising from the trigonal symmetry of the parent calcite crystal. There is therefore a strong structural control which favors the conversion of calcite into apatite. This process coexists with the formation of apatite crystals which are not structurally related to the calcite crystal and which may precipitate within the porosity of the material. The analysis of crystallographic relationships is a fundamental step toward understanding mineral replacement reactions, which can be used for the synthesis of artificial materials with predefined shapes and microstructural characteristics, a technique that may have interesting technological applications. |
Author | Rodríguez-Navarro, Alejandro. B Fermani, Simona Ortega-Huertas, Miguel Álvarez-Lloret, Pedro Falini, Giuseppe |
Author_xml | – sequence: 1 givenname: Pedro surname: Álvarez-Lloret fullname: Álvarez-Lloret, Pedro email: pedalv@ugr.es – sequence: 2 givenname: Alejandro. B surname: Rodríguez-Navarro fullname: Rodríguez-Navarro, Alejandro. B – sequence: 3 givenname: Giuseppe surname: Falini fullname: Falini, Giuseppe – sequence: 4 givenname: Simona surname: Fermani fullname: Fermani, Simona – sequence: 5 givenname: Miguel surname: Ortega-Huertas fullname: Ortega-Huertas, Miguel |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23504259$$DView record in Pascal Francis |
BookMark | eNptUF1LwzAUDTLBbfrgP8iL4B6m-ViW9nEUdcJAYe653KbpltElJckG_fe2TOeL3Id74HzAOSM0sM5qhO4peaKE0We1paQ7BldoSAVLplIQMfjFs4TfoFEIe0KInHM-RG3m2xChrt3WQ7MzCmfORu9q7Cocdxov29K7DvgD1D130j4YZ3s6g1qZ2FnWGvDGq52xeN0Yq_HjJ3hQug-Kx4BrczLlMUywsdHhRQPRRH2Lriuog777-WO0eX35ypbT1cfbe7ZYTYElaZzO5kSStFAqJUUxLxJJRSo4BSmJJmnJOeiScaahUCmDijBFClFSLZUsVVKVfIwm51zlXQheV3njzQF8m1OS95vll8067cNZ20BQUFcerDLhYmBckBkT6Z8OVMj37uht1-CfvG9ns3uO |
CitedBy_id | crossref_primary_10_1080_10643389_2016_1202669 crossref_primary_10_1021_acs_cgd_6b00522 crossref_primary_10_3390_md12125979 crossref_primary_10_1016_j_corsci_2018_03_019 crossref_primary_10_1039_C8BM01145A crossref_primary_10_1021_acs_cgd_2c00383 crossref_primary_10_1038_s41467_023_37814_0 crossref_primary_10_1016_j_jtice_2016_05_007 crossref_primary_10_1021_acs_iecr_4c01493 crossref_primary_10_1016_j_earscirev_2015_08_013 crossref_primary_10_1016_j_epsl_2013_10_050 crossref_primary_10_1016_j_matdes_2017_11_035 crossref_primary_10_3389_fchem_2021_728907 crossref_primary_10_1007_s10853_013_7864_x crossref_primary_10_1016_j_jcrysgro_2011_09_013 crossref_primary_10_1080_09205063_2021_1980985 crossref_primary_10_1080_14686996_2020_1748520 crossref_primary_10_4028_www_scientific_net_JBBBE_25_98 crossref_primary_10_1016_j_matchemphys_2014_11_016 |
Cites_doi | 10.1126/science.1102289 10.1002/adma.200300381 10.1073/pnas.0803354105 10.1016/0022-0248(81)90051-8 10.1016/j.jssc.2007.03.023 10.1038/217056a0 10.1016/j.jsb.2006.04.009 10.1016/S0928-4931(02)00110-8 10.2138/am-1999-11-1213 10.1002/jbm.a.30566 10.1016/j.jsb.2010.01.003 10.1180/minmag.2008.072.1.77 10.1016/j.jcrysgro.2009.07.010 10.1021/cg900691a 10.1016/0022-0248(93)90183-W 10.1016/j.pmatsci.2007.05.002 10.1107/S0021889806042488 10.1016/j.actbio.2007.03.009 10.1016/S0142-9612(03)00236-9 10.2138/rmg.2009.70.3 10.1016/j.jcrysgro.2010.05.014 10.1002/adem.200980084 10.1002/9780470909898.ch17 10.2113/gsecongeo.54.5.829 10.1016/S0022-0981(98)00020-3 10.1016/0022-0981(88)90022-6 10.2138/am.2009.3046 10.1126/science.250.4981.664 10.1038/247220a0 |
ContentType | Journal Article |
Copyright | Copyright © 2010 American Chemical Society 2015 INIST-CNRS |
Copyright_xml | – notice: Copyright © 2010 American Chemical Society – notice: 2015 INIST-CNRS |
DBID | IQODW AAYXX CITATION |
DOI | 10.1021/cg101012a |
DatabaseName | Pascal-Francis CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Physics |
EISSN | 1528-7505 |
EndPage | 5232 |
ExternalDocumentID | 10_1021_cg101012a 23504259 g27852583 |
GroupedDBID | 4.4 55A 5GY 5VS 7~N AABXI ABMVS ABPTK ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 JG JG~ LG6 P2P RNS ROL TN5 UI2 VF5 VG9 W1F X -~X 6J9 ABFRP ABQRX ADHLV AFFNX AHGAQ GGK IHE IQODW AAYXX ABJNI CITATION CUPRZ |
ID | FETCH-LOGICAL-a289t-460709bcc90bb6b87159531a770e09d33aed232eabc92af02c0b5d1e7c7dc8fd3 |
IEDL.DBID | ACS |
ISSN | 1528-7483 |
IngestDate | Fri Aug 23 03:02:18 EDT 2024 Fri Nov 25 01:08:21 EST 2022 Thu Aug 27 13:43:22 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Epitaxial layers Crystal form Nucleation Symmetry property Cross section Epitaxy Minerals Calcite Dissolution Precipitates Technological application Monocrystals Calcium nitride Calcium carbonate Recrystallization Porosity Diffusion Microstructure Nanostructured materials Cross sections Nanocrystal |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a289t-460709bcc90bb6b87159531a770e09d33aed232eabc92af02c0b5d1e7c7dc8fd3 |
PageCount | 6 |
ParticipantIDs | crossref_primary_10_1021_cg101012a pascalfrancis_primary_23504259 acs_journals_10_1021_cg101012a |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 2010-12-01 |
PublicationDateYYYYMMDD | 2010-12-01 |
PublicationDate_xml | – month: 12 year: 2010 text: 2010-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Washington,DC |
PublicationPlace_xml | – name: Washington,DC |
PublicationTitle | Crystal growth & design |
PublicationTitleAlternate | Cryst. Growth Des |
PublicationYear | 2010 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Rodríguez-Navarro A. B. (ref20/cit20) 2006; 156 Barnes D. J. (ref23/cit23) 1988; 121 Ni M. (ref10/cit10) 2003; 24 Rodriguez-Navarro A. B. (ref24/cit24) 2006; 39 Xia F. (ref4/cit4) 2009; 9 Bucher D. J. (ref22/cit22) 1998; 228 Hartman P. (ref28/cit28) 1973 ref29/cit29 Kocks U. F. (ref9/cit9) 2001 Roy D. M. (ref16/cit16) 1974; 247 Putnis A. (ref33/cit33) 2007; 180 Abbona F. (ref30/cit30) 1993; 131 Al-Kattan A. (ref35/cit35) 2010; 12 Politi Y. (ref8/cit8) 2004; 306 Koutsoukos P. G. (ref26/cit26) 1981 Addadi L. (ref6/cit6) 2003; 15 Jinawath S. (ref17/cit17) 2002; 22 Vecchio K. S. (ref13/cit13) 2007; 3 Putnis A. (ref2/cit2) 2009; 70 Yanagisawa K. (ref32/cit32) 1999; 84 Ames J. R. L. L. (ref5/cit5) 1959; 54 Rocha J. H. G. (ref12/cit12) 2006; 77 Berman A. (ref18/cit18) 1990; 250 Wyckoff R. W. G. (ref27/cit27) 1964; 2 Wang M. (ref34/cit34) 2010; 218 Damien E. (ref15/cit15) 2004; 2 Pinto A. J. (ref31/cit31) 2009; 94 Marchegiani F. (ref14/cit14) 2009; 311 Kasioptas A. (ref3/cit3) 2010; 312 Mahamid J. (ref7/cit7) 2008; 105 Moureaux C. (ref19/cit19) 2010; 170 ref1/cit1 Lonsdale K. (ref25/cit25) 1968; 217 Meyers M. A. (ref21/cit21) 2008; 53 Kasioptas A. (ref11/cit11) 2008; 72 |
References_xml | – volume: 306 start-page: 1161 year: 2004 ident: ref8/cit8 publication-title: Science doi: 10.1126/science.1102289 contributor: fullname: Politi Y. – volume: 15 start-page: 959 year: 2003 ident: ref6/cit6 publication-title: Adv. Mater. doi: 10.1002/adma.200300381 contributor: fullname: Addadi L. – volume: 105 start-page: 12748 year: 2008 ident: ref7/cit7 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0803354105 contributor: fullname: Mahamid J. – start-page: 10 year: 1981 ident: ref26/cit26 publication-title: J. Cryst. Growth doi: 10.1016/0022-0248(81)90051-8 contributor: fullname: Koutsoukos P. G. – volume: 180 start-page: 1783 year: 2007 ident: ref33/cit33 publication-title: J. Solid State Chem. doi: 10.1016/j.jssc.2007.03.023 contributor: fullname: Putnis A. – volume: 217 start-page: 56 year: 1968 ident: ref25/cit25 publication-title: Nature doi: 10.1038/217056a0 contributor: fullname: Lonsdale K. – volume-title: Texture and Anisotropy. Preferred Orientations in Polycrystals and their Effect on Materials Properties year: 2001 ident: ref9/cit9 contributor: fullname: Kocks U. F. – volume: 156 start-page: 355 year: 2006 ident: ref20/cit20 publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2006.04.009 contributor: fullname: Rodríguez-Navarro A. B. – volume: 22 start-page: 35 year: 2002 ident: ref17/cit17 publication-title: Mater. Sci. Eng., C doi: 10.1016/S0928-4931(02)00110-8 contributor: fullname: Jinawath S. – volume: 84 start-page: 1861 year: 1999 ident: ref32/cit32 publication-title: Am. Mineral. doi: 10.2138/am-1999-11-1213 contributor: fullname: Yanagisawa K. – volume: 77 start-page: 160 year: 2006 ident: ref12/cit12 publication-title: J. Biomed. Mater. Res., A doi: 10.1002/jbm.a.30566 contributor: fullname: Rocha J. H. G. – volume: 170 start-page: 41 year: 2010 ident: ref19/cit19 publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2010.01.003 contributor: fullname: Moureaux C. – volume: 72 start-page: 77 year: 2008 ident: ref11/cit11 publication-title: Mineral. Mag. doi: 10.1180/minmag.2008.072.1.77 contributor: fullname: Kasioptas A. – volume: 311 start-page: 4219 year: 2009 ident: ref14/cit14 publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2009.07.010 contributor: fullname: Marchegiani F. – volume: 9 start-page: 4902 year: 2009 ident: ref4/cit4 publication-title: Cryst. Growth Des. doi: 10.1021/cg900691a contributor: fullname: Xia F. – volume: 131 start-page: 331 year: 1993 ident: ref30/cit30 publication-title: J. Cryst. Growth doi: 10.1016/0022-0248(93)90183-W contributor: fullname: Abbona F. – volume: 2 start-page: 65 year: 2004 ident: ref15/cit15 publication-title: J. Appl. Biomater. Biomech. contributor: fullname: Damien E. – volume: 53 start-page: 1 year: 2008 ident: ref21/cit21 publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2007.05.002 contributor: fullname: Meyers M. A. – volume: 39 start-page: 905 year: 2006 ident: ref24/cit24 publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889806042488 contributor: fullname: Rodriguez-Navarro A. B. – ident: ref1/cit1 – volume: 3 start-page: 785 year: 2007 ident: ref13/cit13 publication-title: Acta Biomater. doi: 10.1016/j.actbio.2007.03.009 contributor: fullname: Vecchio K. S. – volume: 2 volume-title: Crystal Structures year: 1964 ident: ref27/cit27 contributor: fullname: Wyckoff R. W. G. – volume: 24 start-page: 4323 year: 2003 ident: ref10/cit10 publication-title: Biomaterials doi: 10.1016/S0142-9612(03)00236-9 contributor: fullname: Ni M. – volume: 70 start-page: 87 year: 2009 ident: ref2/cit2 publication-title: Rev. Mineral. Geochem. doi: 10.2138/rmg.2009.70.3 contributor: fullname: Putnis A. – ident: ref29/cit29 – volume: 312 start-page: 2431 year: 2010 ident: ref3/cit3 publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2010.05.014 contributor: fullname: Kasioptas A. – volume: 12 start-page: B224 year: 2010 ident: ref35/cit35 publication-title: Adv. Eng. Mater. doi: 10.1002/adem.200980084 contributor: fullname: Al-Kattan A. – volume: 218 start-page: 175 year: 2010 ident: ref34/cit34 publication-title: Ceram. Trans. doi: 10.1002/9780470909898.ch17 contributor: fullname: Wang M. – volume: 54 start-page: 829 year: 1959 ident: ref5/cit5 publication-title: Econ. Geol. doi: 10.2113/gsecongeo.54.5.829 contributor: fullname: Ames J. R. L. L. – volume: 228 start-page: 117 year: 1998 ident: ref22/cit22 publication-title: J. Exp. Mar. Biol. Ecol. doi: 10.1016/S0022-0981(98)00020-3 contributor: fullname: Bucher D. J. – volume: 121 start-page: 37 year: 1988 ident: ref23/cit23 publication-title: J. Exp. Mar. Biol. Ecol. doi: 10.1016/0022-0981(88)90022-6 contributor: fullname: Barnes D. J. – volume-title: Crystal growth: an introduction year: 1973 ident: ref28/cit28 contributor: fullname: Hartman P. – volume: 94 start-page: 313 year: 2009 ident: ref31/cit31 publication-title: Am. Mineral. doi: 10.2138/am.2009.3046 contributor: fullname: Pinto A. J. – volume: 250 start-page: 664 year: 1990 ident: ref18/cit18 publication-title: Science doi: 10.1126/science.250.4981.664 contributor: fullname: Berman A. – volume: 247 start-page: 220 year: 1974 ident: ref16/cit16 publication-title: Nature doi: 10.1038/247220a0 contributor: fullname: Roy D. M. |
SSID | ssj0007633 |
Score | 2.1520288 |
Snippet | We analyzed the crystallographic relationships during hydrothermal conversion of a calcitic sea urchin spine into apatite. We identified a pseudomorphic... |
SourceID | crossref pascalfrancis acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 5227 |
SubjectTerms | Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science; rheology Crystalline state (including molecular motions in solids) Diffusion in solids Equations of state, phase equilibria, and phase transitions Exact sciences and technology General studies of phase transitions Materials science Nanoscale materials and structures: fabrication and characterization Nucleation Other topics in nanoscale materials and structures Physics Structure of solids and liquids; crystallography Theory of crystal structure, crystal symmetry; calculations and modeling Transport properties of condensed matter (nonelectronic) |
Title | Crystallographic Control of the Hydrothermal Conversion of Calcitic Sea Urchin Spine (Paracentrotus lividus) into Apatite |
URI | http://dx.doi.org/10.1021/cg101012a |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60HlTER1Wsj7KoBz0Eks1zjxJbehIhFryFfQUKNSlNeui_dyZpQwuKnrPZhJ2dnW8e-w0hj64IA2OkZzERYJpRRlYkeWYhcwuTnpTKYLxjlIRvn9HrAGlyHn7J4DMHnEQHedAYgKA9FgJCQPwTJ-1xCwpSV9H7rCbGdNf0QZuvoulR5ZbpOZqJElYha9pXbNiU4cm__uaUHK8gI31pZHxGdkzeJfvxulNblxxukAqek2U8XwLkm67IqCeKxk05Oi0yCnCPjpZ6Xt-7-oJZY6w6r0Nm-DgWU4XlcDQxgo4xx5DTZAZz06d3JHbGUHBRLUo6rW9xlc90klcFfcGy7MpckPFw8BGPrFWDBUuAn1VZXgAKz6VS3JYykOA7-Rx0UoShbWyuXVcYDYjLCKk4E5nNlC197ZhQhVpFmXYvSScvcnNFqOCIhDyphfA9HfnCkYB9bM4AD8rM4T3SBwmkKwUp0zr3zZy0Xc8euV8LJ501RBs_Depvia0dyVwfTx9-_ddnbsgBawtSbkmnmi_MHdkt9aJfb6tv42XGKA |
link.rule.ids | 315,782,786,2769,27085,27933,27934,56747,56797 |
linkProvider | American Chemical Society |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60HqqIj6pYH3URD3oIJJvnHktsiViLkBa8hX0FCjUpTXrov3c2bWMFQTxnM1l2Mjvf7sx8g9CDzXxPKe4YhHk6zMgDI-A0NTRzC-EO50Lp-44o9ocfwXOvpsnRtTAwiQIkFVUQ_5tdwIKzoqXp0AhgoT3XAxCsYVAY17su2EmVTO-Sih_T3rAIbb-qPZAofnigwxkrYDHSVReLLdfSP_7PpE7Q0RpA4u5K46doR2Ut1Aw3fdta6GCLYvAMLcP5EgDgdE1NPRE4XCWn4zzFAP5wtJTzqgrrE6SGOge9ukDTj0M2FTo5DseK4bGOOGQ4noFs_PiuaZ71xXBeLgo8rWq6iic8ycocd3WSdqnO0bjfG4WRsW63YDA4dZWG44H5Uy4ENTn3OJykXAoWynzfVCaVts2UBPylGBeUsNQkwuSutJQvfCmCVNoXqJHlmbpEmFGNixwuGXMdGbjM4oCETEoAHfLUom3UgeVM1uZSJFUknFhJvZ5tdL_RUTJb0W78NqjzQ3v1SGK7ei-iV3995g41o9HbIBm8DF-v0T6pU1VuUKOcL9Qt2i3kolP9aV-3Ls6V |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8NAEF48wAPxqIr1qIv4oA-RZHPuY0lbKkop1IJvYa-AUNPSpA_9986kaWlBEJ-zmSwzmd1vjv2WkEdXhIEx0rOYCLDMKCMrkjy1kLmFSU9KZTDf0R2Evc-o1UaanJflWRiYRA6S8rKIj1490WnFMOBAvOggJRoDPLTrByHHYKsZD1YrL_hK2VDvs5Ij010yCa2_iruQyjd2oaOJyEEh6eImi7XtpXPy34mdkuMKSNLmwvJnZMtkNbIfL-9vq5HDNarBczKPp3MAgqOKovpL0XjRpE7HKQUQSLtzPS1PY32D1Bh70ctEGj6OxUhhkxwdGEGHWHnI6GACsulTH-meMUE8LmY5HZVnu_Jn-pUVY9rEZu3CXJBhp_0Rd63q2gVLQPRVWF4AywCXSnFbykBCROVz8FQRhraxuXZdYTTgMCOk4kykNlO29LVjQhVqFaXavSQ72TgzV4QKjvjIk1oI39ORLxwJiMjmDFCiTB1eJw1QaVK5TZ6UFXHmJCt91snD0k7JZEG_8dugxoYFVyOZ6-OaxK__-sw92eu3Osn7a-_thhywVcfKLdkppjNzR7ZzPWuUP9sPmTzRGA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crystallographic+Control+of+the+Hydrothermal+Conversion+of+Calcitic+Sea+Urchin+Spine+%28Paracentrotus+lividus%29+into+Apatite&rft.jtitle=Crystal+growth+%26+design&rft.au=ALVAREZ-LIORET%2C+Pedro&rft.au=RODRIGUEZ-NAVARRO%2C+Alejandro+B&rft.au=FALINI%2C+Giuseppe&rft.au=FERMANI%2C+Simona&rft.date=2010-12-01&rft.pub=American+Chemical+Society&rft.issn=1528-7483&rft.eissn=1528-7505&rft.volume=10&rft.issue=12&rft.spage=5227&rft.epage=5232&rft_id=info:doi/10.1021%2Fcg101012a&rft.externalDBID=n%2Fa&rft.externalDocID=23504259 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1528-7483&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1528-7483&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1528-7483&client=summon |