Shifts of the Recirculation Pathways in Central Fram Strait Drive Atlantic Intermediate Water Variability on Northeast Greenland Shelf
Increased oceanic heat transport plays a key role in the accelerated mass loss of Greenland's marine‐terminating glaciers. The melt rate of major glaciers in Northeast Greenland (NEG) is controlled by ocean variability, in particular warm Atlantic Intermediate Water (AIW), on the continental sh...
Saved in:
Published in: | Journal of geophysical research. Oceans Vol. 128; no. 10 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Washington
Blackwell Publishing Ltd
01-10-2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Increased oceanic heat transport plays a key role in the accelerated mass loss of Greenland's marine‐terminating glaciers. The melt rate of major glaciers in Northeast Greenland (NEG) is controlled by ocean variability, in particular warm Atlantic Intermediate Water (AIW), on the continental shelf. A high‐resolution configuration of the ocean sea‐ice model FESOM2.1 is assessed at local and regional scales, and used to investigate the drivers of AIW temperature variability on the NEG continental shelf. The seasonal to decadal variability of AIW is characterized, featuring both pronounced interannual fluctuations and a long‐term warming trend. A major source of AIW is Atlantic Water (AW) originating from the West Spitsbergen Current that recirculates in Fram Strait. AW anomalies are advected westwards and partly control the AIW temperatures on the continental shelf. Increased AIW temperatures are also connected to pronounced northern and central branches of recirculating AW in Fram Strait, and enhanced AW temperatures more regionally. The strengthening of the pathways brings more warmer AIW onto the northern part of the NEG continental shelf. There, it circulates anti‐cyclonically and results in shelf‐wide warming. Regional atmospheric forcing is connected to the changes in the AW circulation. The strengthening of the northern AW branches is likely caused by anticyclonic wind anomalies over the Barents Sea that drive an enhanced northward AW transport in Fram Strait. Thus, controlled by a combination of both upstream and regionally forced circulation conditions, the changes in local AIW temperatures may also affect the oceanic heat transport reaching the Central Arctic Ocean.
The Greenland Ice Sheet has been melting at faster rates in the last two decades, likely due to rising ocean temperatures. Warm water found below the glaciers in Northeast Greenland controls the submarine melting. Changes in the temperature of the water are connected to ocean currents on the continental shelf of Northeast Greenland and in Fram Strait. The warm water found under the glaciers originates from the West Spitsbergen Current (WSC), over several hundred kilometers away, which carries warm water northwards within the Arctic Ocean. Part of the current turns westwards and transports the warm water toward Greenland. The changes in the strength of the westward flow are connected with particular wind patterns in the Barents Sea, as the wind forcing impacts the northward transport of the warm water in the WSC. This means that more warm water flows across the continental shelf edge at higher latitudes so there is more warm water circulating on the continental shelf itself. The circulation guides this warm water through a deep channel toward the glaciers. Therefore, the variability of the water temperature below the glaciers in Northeast Greenland is controlled by both regional winds and changes in the upstream ocean currents.
Warm temperature anomalies in the West Spitsbergen Current partly control Atlantic Water temperatures on the Northeast Greenland continental shelf
Pronounced northern recirculation branches transport more Atlantic Water across Fram Strait to the northern shelf where it circulates
Anomalous anticyclonic winds over the Barents Sea drive the enhanced recirculation of more northern Atlantic Water pathways |
---|---|
AbstractList | Increased oceanic heat transport plays a key role in the accelerated mass loss of Greenland's marine‐terminating glaciers. The melt rate of major glaciers in Northeast Greenland (NEG) is controlled by ocean variability, in particular warm Atlantic Intermediate Water (AIW), on the continental shelf. A high‐resolution configuration of the ocean sea‐ice model FESOM2.1 is assessed at local and regional scales, and used to investigate the drivers of AIW temperature variability on the NEG continental shelf. The seasonal to decadal variability of AIW is characterized, featuring both pronounced interannual fluctuations and a long‐term warming trend. A major source of AIW is Atlantic Water (AW) originating from the West Spitsbergen Current that recirculates in Fram Strait. AW anomalies are advected westwards and partly control the AIW temperatures on the continental shelf. Increased AIW temperatures are also connected to pronounced northern and central branches of recirculating AW in Fram Strait, and enhanced AW temperatures more regionally. The strengthening of the pathways brings more warmer AIW onto the northern part of the NEG continental shelf. There, it circulates anti‐cyclonically and results in shelf‐wide warming. Regional atmospheric forcing is connected to the changes in the AW circulation. The strengthening of the northern AW branches is likely caused by anticyclonic wind anomalies over the Barents Sea that drive an enhanced northward AW transport in Fram Strait. Thus, controlled by a combination of both upstream and regionally forced circulation conditions, the changes in local AIW temperatures may also affect the oceanic heat transport reaching the Central Arctic Ocean. Increased oceanic heat transport plays a key role in the accelerated mass loss of Greenland's marine‐terminating glaciers. The melt rate of major glaciers in Northeast Greenland (NEG) is controlled by ocean variability, in particular warm Atlantic Intermediate Water (AIW), on the continental shelf. A high‐resolution configuration of the ocean sea‐ice model FESOM2.1 is assessed at local and regional scales, and used to investigate the drivers of AIW temperature variability on the NEG continental shelf. The seasonal to decadal variability of AIW is characterized, featuring both pronounced interannual fluctuations and a long‐term warming trend. A major source of AIW is Atlantic Water (AW) originating from the West Spitsbergen Current that recirculates in Fram Strait. AW anomalies are advected westwards and partly control the AIW temperatures on the continental shelf. Increased AIW temperatures are also connected to pronounced northern and central branches of recirculating AW in Fram Strait, and enhanced AW temperatures more regionally. The strengthening of the pathways brings more warmer AIW onto the northern part of the NEG continental shelf. There, it circulates anti‐cyclonically and results in shelf‐wide warming. Regional atmospheric forcing is connected to the changes in the AW circulation. The strengthening of the northern AW branches is likely caused by anticyclonic wind anomalies over the Barents Sea that drive an enhanced northward AW transport in Fram Strait. Thus, controlled by a combination of both upstream and regionally forced circulation conditions, the changes in local AIW temperatures may also affect the oceanic heat transport reaching the Central Arctic Ocean. The Greenland Ice Sheet has been melting at faster rates in the last two decades, likely due to rising ocean temperatures. Warm water found below the glaciers in Northeast Greenland controls the submarine melting. Changes in the temperature of the water are connected to ocean currents on the continental shelf of Northeast Greenland and in Fram Strait. The warm water found under the glaciers originates from the West Spitsbergen Current (WSC), over several hundred kilometers away, which carries warm water northwards within the Arctic Ocean. Part of the current turns westwards and transports the warm water toward Greenland. The changes in the strength of the westward flow are connected with particular wind patterns in the Barents Sea, as the wind forcing impacts the northward transport of the warm water in the WSC. This means that more warm water flows across the continental shelf edge at higher latitudes so there is more warm water circulating on the continental shelf itself. The circulation guides this warm water through a deep channel toward the glaciers. Therefore, the variability of the water temperature below the glaciers in Northeast Greenland is controlled by both regional winds and changes in the upstream ocean currents. Warm temperature anomalies in the West Spitsbergen Current partly control Atlantic Water temperatures on the Northeast Greenland continental shelf Pronounced northern recirculation branches transport more Atlantic Water across Fram Strait to the northern shelf where it circulates Anomalous anticyclonic winds over the Barents Sea drive the enhanced recirculation of more northern Atlantic Water pathways |
Author | McPherson, R. A. Wekerle, C. Kanzow, T. |
Author_xml | – sequence: 1 givenname: R. A. orcidid: 0000-0002-4449-6701 surname: McPherson fullname: McPherson, R. A. organization: Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research Bremerhaven Germany – sequence: 2 givenname: C. orcidid: 0000-0001-9985-0950 surname: Wekerle fullname: Wekerle, C. organization: Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research Bremerhaven Germany – sequence: 3 givenname: T. orcidid: 0000-0002-5786-3435 surname: Kanzow fullname: Kanzow, T. organization: Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research Bremerhaven Germany, University of Bremen Bremen Germany |
BookMark | eNpNkM1OwzAQhC0EEn-98QCWuFKwnaSxj1WgUIQAUX6O0cZZK65SB2wX1BfguTECIfawO4fZGenbJ9tucEjIEWennAl1JpjIrivGleLFFtkTfKLGSii-_afLYpeMQliyNJLLPFd75HPRWRMDHQyNHdIH1NbrdQ_RDo7eQ-w-YBOodbRCFz30dOZhRRdJ2kjPvX1HOo09uGg1nbuIfoWthYj0JS1Pn8FbaGxv44amwNvBpxYIkV56RJf-WrrosDeHZMdAH3D0ew_I0-zisboa39xdzqvpzRiE5HEsUbeCKV0obEozMWDySWGyieYgUbSswRbypkGpS5mXRdm0KDRI3eSiUUzw7IAc_-S--uFtjSHWy2HtXaqshZQJk2AsS66TH5f2QwgeTf3q7Qr8puas_oZd_4edfQGHvXV7 |
Cites_doi | 10.5194/essd-10-1119-2018 10.1038/nclimate2161 10.1029/2009GL041278 10.1029/JC092iC04p03778 10.1029/2019GL086682 10.1175/1520-0485(1998)028〈0831:TGMSF〉2.0.CO;2 10.1175/1520-0485(1990)020〈0150:IMIOCM〉2.0.CO;2 10.1175/JPO-D-17-0062.1 10.1029/2020JC017080 10.1594/PANGAEA.885358 10.5194/gmd-15-335-2022 10.1029/2022JC019052 10.5281/zenodo.1000801 10.1029/2003JC001823 10.1175/1520-0485(1982)012<1154:OIMBCR>2.0.CO;2 10.1002/2017JC013605 10.1029/2022JC019045 10.5194/essd-8-543-2016 10.1175/JPO-D-17-0237.1 10.5194/gmd-8-1747-2015 10.1029/2008JC005106 10.5194/essd-13-5001-2021 10.1038/s41467-018-05180-x 10.3189/2012AoG60A156 10.1007/978-1-4020-6774-7_4 10.1016/j.ocemod.2018.07.002 10.1002/2016JC012462 10.1126/science.1228102 10.5194/gmd-10-2117-2017 10.1038/s41561-019-0529-x 10.1029/2020RG000725 10.1594/PANGAEA.904565 10.1016/S0924-7963(96)00074-7 10.1126/science.aai8204 10.1002/2016GL068323 10.1175/JPO-D-19-0085.1 10.1038/ngeo316 10.1002/2015GL064944 10.1002/2016JC012228 10.5194/essd-12-2811-2020 10.1594/PANGAEA.871025 10.1029/JC095iC09p16179 10.1029/2002JC001554 10.1175/JPO-D-23-0056.1 10.1029/2018JC014327 10.1029/2005JC003424 10.1029/2020JC016607 10.1175/1520-0485(1999)029〈1787:MTIOIA〉2.0.CO;2 10.1029/2020JC016091 10.1038/s41467-022-29470-7 10.5194/gmd-10-765-2017 10.1029/2018JC014378 10.1029/JC092iC07p06719 10.5194/os-14-1147-2018 10.1029/2020JC017057 10.1126/science.aac7111 10.5194/os-16-1225-2020 10.1029/2019JC015101 10.1126/science.1178176 10.1175/1520-0442(2001)014〈2079:PAGOHW〉2.0.CO;2 10.1038/nature16183 10.1016/j.jmarsys.2004.06.008 10.1038/s41467-022-35413-z 10.5194/gmd-12-4875-2019 10.1016/S0924-7963(96)00083-8 10.1038/s41586-022-05301-z 10.5194/essd-12-1367-2020 10.1126/sciadv.aba7282 10.1175/JPO-D-15-0184.1 10.1029/2018JC014273 10.1093/icesjms/fss056 10.1029/94JC01824 10.1594/PANGAEA.845938 10.1029/2018GL079174 10.1038/s41586-022-05686-x 10.5194/tc-11-2773-2017 10.1002/2015JC011012 10.1002/2017JC012974 10.1016/j.dsr.2014.05.018 10.1017/S0954102089000490 10.1038/nature12854 10.1029/JC092iC07p06729 10.1093/icesjms/fss079 |
ContentType | Journal Article |
Copyright | 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7TG 7TN F1W H96 KL. L.G |
DOI | 10.1029/2023JC019915 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Meteorological & Geoastrophysical Abstracts - Academic ASFA: Aquatic Sciences and Fisheries Abstracts |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Oceanography |
EISSN | 2169-9291 |
ExternalDocumentID | 10_1029_2023JC019915 |
GeographicLocations | Arctic Ocean Barents Sea Fram Strait Greenland |
GeographicLocations_xml | – name: Fram Strait – name: Barents Sea – name: Arctic Ocean – name: Greenland |
GroupedDBID | 05W 0R~ 1OC 24P 31~ 33P 3V. 50Y 52M 702 7XC 8-1 88I 8CJ 8FE 8FH A00 AAESR AAHHS AAMNL AANLZ AASGY AAXRX AAYXX AAZKR ABCUV ABJNI ABPVW ABUWG ACAHQ ACCFJ ACCZN ACGFS ACGOD ACPOU ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEQDE AEUYR AFBPY AFFPM AFGKR AFKRA AFPWT AFRAH AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ASPBG ATCPS AVWKF AZFZN AZQEC AZVAB BENPR BFHJK BHPHI BKSAR BMXJE BPHCQ BRXPI CCPQU CITATION D1J D1K DPXWK DRFUL DRSTM DWQXO EBS EJD FEDTE G-S GNUQQ GODZA HCIFZ HGLYW HVGLF HZ~ K6- LATKE LEEKS LITHE LK5 LOXES LUTES LYRES M2P M7R MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- P-X P2W PATMY PCBAR PQQKQ PROAC PYCSY R.K RJQFR RNS ROL SUPJJ WBKPD WIN WXSBR WYJ ~OA 7TG 7TN F1W H96 KL. L.G |
ID | FETCH-LOGICAL-a281t-8ecd209c59eb7f6faf465f36c1a8e2d0beda4bbe8c784757bde2ca8cb42b90213 |
ISSN | 2169-9275 |
IngestDate | Tue Nov 19 03:02:22 EST 2024 Thu Nov 21 23:45:06 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a281t-8ecd209c59eb7f6faf465f36c1a8e2d0beda4bbe8c784757bde2ca8cb42b90213 |
ORCID | 0000-0001-9985-0950 0000-0002-4449-6701 0000-0002-5786-3435 |
OpenAccessLink | https://doi.org/10.1029/2023jc019915 |
PQID | 2881692003 |
PQPubID | 54728 |
ParticipantIDs | proquest_journals_2881692003 crossref_primary_10_1029_2023JC019915 |
PublicationCentury | 2000 |
PublicationDate | 2023-10-00 20231001 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-00 |
PublicationDecade | 2020 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Journal of geophysical research. Oceans |
PublicationYear | 2023 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 e_1_2_10_70_1 e_1_2_10_2_1 e_1_2_10_72_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_57_1 e_1_2_10_78_1 Rudels B. (e_1_2_10_51_1) 1987; 188 e_1_2_10_58_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_80_1 e_1_2_10_82_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_71_1 e_1_2_10_73_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_77_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_60_1 e_1_2_10_81_1 e_1_2_10_62_1 e_1_2_10_83_1 e_1_2_10_64_1 e_1_2_10_85_1 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_66_1 e_1_2_10_26_1 e_1_2_10_47_1 e_1_2_10_68_1 |
References_xml | – ident: e_1_2_10_4_1 doi: 10.5194/essd-10-1119-2018 – ident: e_1_2_10_35_1 doi: 10.1038/nclimate2161 – ident: e_1_2_10_14_1 doi: 10.1029/2009GL041278 – ident: e_1_2_10_2_1 doi: 10.1029/JC092iC04p03778 – ident: e_1_2_10_80_1 doi: 10.1029/2019GL086682 – ident: e_1_2_10_20_1 doi: 10.1175/1520-0485(1998)028〈0831:TGMSF〉2.0.CO;2 – ident: e_1_2_10_18_1 doi: 10.1175/1520-0485(1990)020〈0150:IMIOCM〉2.0.CO;2 – ident: e_1_2_10_25_1 doi: 10.1175/JPO-D-17-0062.1 – ident: e_1_2_10_75_1 doi: 10.1029/2020JC017080 – ident: e_1_2_10_32_1 doi: 10.1594/PANGAEA.885358 – ident: e_1_2_10_59_1 doi: 10.5194/gmd-15-335-2022 – ident: e_1_2_10_83_1 doi: 10.1029/2022JC019052 – ident: e_1_2_10_21_1 doi: 10.5281/zenodo.1000801 – ident: e_1_2_10_57_1 doi: 10.1029/2003JC001823 – ident: e_1_2_10_49_1 doi: 10.1175/1520-0485(1982)012<1154:OIMBCR>2.0.CO;2 – ident: e_1_2_10_3_1 doi: 10.1002/2017JC013605 – ident: e_1_2_10_27_1 doi: 10.1029/2022JC019045 – ident: e_1_2_10_55_1 doi: 10.5194/essd-8-543-2016 – ident: e_1_2_10_11_1 doi: 10.1175/JPO-D-17-0237.1 – ident: e_1_2_10_13_1 doi: 10.5194/gmd-8-1747-2015 – ident: e_1_2_10_73_1 doi: 10.1029/2008JC005106 – ident: e_1_2_10_38_1 doi: 10.5194/essd-13-5001-2021 – ident: e_1_2_10_41_1 doi: 10.1038/s41467-018-05180-x – ident: e_1_2_10_68_1 doi: 10.3189/2012AoG60A156 – ident: e_1_2_10_58_1 doi: 10.1007/978-1-4020-6774-7_4 – ident: e_1_2_10_72_1 doi: 10.1016/j.ocemod.2018.07.002 – ident: e_1_2_10_56_1 doi: 10.1002/2016JC012462 – ident: e_1_2_10_62_1 doi: 10.1126/science.1228102 – ident: e_1_2_10_16_1 doi: 10.5194/gmd-10-2117-2017 – ident: e_1_2_10_54_1 doi: 10.1038/s41561-019-0529-x – ident: e_1_2_10_63_1 doi: 10.1029/2020RG000725 – ident: e_1_2_10_76_1 doi: 10.1594/PANGAEA.904565 – ident: e_1_2_10_8_1 doi: 10.1016/S0924-7963(96)00074-7 – ident: e_1_2_10_47_1 doi: 10.1126/science.aai8204 – ident: e_1_2_10_22_1 doi: 10.1002/2016GL068323 – ident: e_1_2_10_45_1 doi: 10.1175/JPO-D-19-0085.1 – ident: e_1_2_10_30_1 doi: 10.1038/ngeo316 – ident: e_1_2_10_84_1 doi: 10.1002/2015GL064944 – ident: e_1_2_10_23_1 doi: 10.1002/2016JC012228 – ident: e_1_2_10_39_1 doi: 10.5194/essd-12-2811-2020 – ident: e_1_2_10_33_1 doi: 10.1594/PANGAEA.871025 – ident: e_1_2_10_17_1 doi: 10.1029/JC095iC09p16179 – ident: e_1_2_10_31_1 doi: 10.1029/2002JC001554 – ident: e_1_2_10_71_1 doi: 10.1175/JPO-D-23-0056.1 – ident: e_1_2_10_44_1 doi: 10.1029/2018JC014327 – ident: e_1_2_10_61_1 doi: 10.1029/2005JC003424 – ident: e_1_2_10_79_1 doi: 10.1029/2020JC016607 – ident: e_1_2_10_29_1 doi: 10.1175/1520-0485(1999)029〈1787:MTIOIA〉2.0.CO;2 – ident: e_1_2_10_37_1 doi: 10.1029/2020JC016091 – ident: e_1_2_10_67_1 doi: 10.1038/s41467-022-29470-7 – ident: e_1_2_10_12_1 doi: 10.5194/gmd-10-765-2017 – ident: e_1_2_10_69_1 doi: 10.1029/2018JC014378 – ident: e_1_2_10_48_1 doi: 10.1029/JC092iC07p06719 – ident: e_1_2_10_50_1 doi: 10.5194/os-14-1147-2018 – ident: e_1_2_10_28_1 doi: 10.1029/2020JC017057 – ident: e_1_2_10_42_1 doi: 10.1126/science.aac7111 – ident: e_1_2_10_81_1 doi: 10.5194/os-16-1225-2020 – ident: e_1_2_10_43_1 doi: 10.1029/2019JC015101 – ident: e_1_2_10_74_1 doi: 10.1126/science.1178176 – ident: e_1_2_10_46_1 – ident: e_1_2_10_64_1 doi: 10.1175/1520-0442(2001)014〈2079:PAGOHW〉2.0.CO;2 – ident: e_1_2_10_36_1 doi: 10.1038/nature16183 – ident: e_1_2_10_52_1 doi: 10.1016/j.jmarsys.2004.06.008 – ident: e_1_2_10_19_1 doi: 10.1038/s41467-022-35413-z – ident: e_1_2_10_60_1 doi: 10.5194/gmd-12-4875-2019 – ident: e_1_2_10_70_1 doi: 10.1016/S0924-7963(96)00083-8 – ident: e_1_2_10_34_1 doi: 10.1038/s41586-022-05301-z – ident: e_1_2_10_40_1 doi: 10.5194/essd-12-1367-2020 – ident: e_1_2_10_86_1 doi: 10.1126/sciadv.aba7282 – ident: e_1_2_10_78_1 doi: 10.1175/JPO-D-15-0184.1 – ident: e_1_2_10_24_1 doi: 10.1029/2018JC014273 – ident: e_1_2_10_5_1 doi: 10.1093/icesjms/fss056 – volume: 188 start-page: 53 year: 1987 ident: e_1_2_10_51_1 article-title: On the mass balance of the Polar Ocean, with special emphasis on the Fram Strait publication-title: Norsk Polarinstitutt Skrifter contributor: fullname: Rudels B. – ident: e_1_2_10_7_1 doi: 10.1029/94JC01824 – ident: e_1_2_10_77_1 doi: 10.1594/PANGAEA.845938 – ident: e_1_2_10_10_1 doi: 10.1029/2018GL079174 – ident: e_1_2_10_66_1 doi: 10.1038/s41586-022-05686-x – ident: e_1_2_10_85_1 doi: 10.5194/tc-11-2773-2017 – ident: e_1_2_10_9_1 doi: 10.1002/2015JC011012 – ident: e_1_2_10_82_1 doi: 10.1002/2017JC012974 – ident: e_1_2_10_15_1 doi: 10.1016/j.dsr.2014.05.018 – ident: e_1_2_10_26_1 doi: 10.1017/S0954102089000490 – ident: e_1_2_10_65_1 doi: 10.1038/nature12854 – ident: e_1_2_10_6_1 doi: 10.1029/JC092iC07p06729 – ident: e_1_2_10_53_1 doi: 10.1093/icesjms/fss079 |
SSID | ssj0000818449 |
Score | 2.2995481 |
Snippet | Increased oceanic heat transport plays a key role in the accelerated mass loss of Greenland's marine‐terminating glaciers. The melt rate of major glaciers in... |
SourceID | proquest crossref |
SourceType | Aggregation Database |
SubjectTerms | Anomalies Atmospheric circulation Atmospheric forcing Continental shelves Geophysics Glaciation Glacier melting Glaciers Greenland ice sheet Heat transport Ice sheets Intermediate water Intermediate water masses Melting Ocean currents Ocean temperature Oceans Seasonal variability Shelf dynamics Shelf edge Straits Strengthening Temperature Temperature variability Upstream Variability Warm water Water circulation Water flow Water temperature West Spitsbergen Current Wind Winds |
Title | Shifts of the Recirculation Pathways in Central Fram Strait Drive Atlantic Intermediate Water Variability on Northeast Greenland Shelf |
URI | https://www.proquest.com/docview/2881692003 |
Volume | 128 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6l5YKQKp6ipaA9wClysdd2sj5GTapCoURKoNysfYxri-BUqSvUP8DvZnbXr0gFwYGLFW2kjTXfl91vZ2ZnCHnNogx8KbjHldBepHTgiZD7XoZ7oQ60FErZJraL8flXPp1Fs8GgabPVjf1XpHEMsTY3Z_8B7XZSHMDPiDk-EXV8_hXui7zIXH6GkZSoCouNqlt0mXr8-Q9xa1Nga7euUa7fTWxaFNVwujF5RJNqheYulPMW2qslFQwvhCmn-AWP1q6y960JM9ioj-n-M7T5OyubB5rDKvuN5r2E9VVDjLrMUH40_KRAlK22_6jmuT0GWPQ7X-sFfIPNCrY8u2eobF1watl3X7AuEe5ON6Vzu3UJTbgMsmCUeAlz_VWOoD_m-ny16zjjfcL6d24QPjP1Vc2LvD_2TdpX3G2ETfD_dLJI59OT9MO787Mdco_hEmZW0DCct947Uwgwsmer9vXqWxX4A2_702_rne3t3mqY5UOyVwNBJ441j8gAysfkgTV_Xbn8CfnpCETXGUVo6RaBaEMgWpS0JhA1BKKOQNQSiDYEon0CUUsg2iMQxQlbAtGWQNQS6Cn5fDJbHp96dbMOTzAeVB4HpZmfqDgBOc5GmciiUZyFIxUIDkz7ErSIpASuxiiI4rHUwJTgSkZMJig0w2dkt1yX8JxQjbJT4cmdcxOWB5nEEBvfSQhiJHCb2CdvGpOmV64mS2pzKViS9k2_Tw4be6f1P_Q6ZZwjYiYl8-DPX78g9zu-HpLdanMDL8nOtb55ZbnwC0N4jL0 |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shifts+of+the+Recirculation+Pathways+in+Central+Fram+Strait+Drive+Atlantic+Intermediate+Water+Variability+on+Northeast+Greenland+Shelf&rft.jtitle=Journal+of+geophysical+research.+Oceans&rft.au=McPherson%2C+R+A&rft.au=Wekerle%2C+C&rft.au=Kanzow%2C+T&rft.date=2023-10-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=2169-9275&rft.eissn=2169-9291&rft.volume=128&rft.issue=10&rft_id=info:doi/10.1029%2F2023JC019915&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-9275&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-9275&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-9275&client=summon |