Shifts of the Recirculation Pathways in Central Fram Strait Drive Atlantic Intermediate Water Variability on Northeast Greenland Shelf

Increased oceanic heat transport plays a key role in the accelerated mass loss of Greenland's marine‐terminating glaciers. The melt rate of major glaciers in Northeast Greenland (NEG) is controlled by ocean variability, in particular warm Atlantic Intermediate Water (AIW), on the continental sh...

Full description

Saved in:
Bibliographic Details
Published in:Journal of geophysical research. Oceans Vol. 128; no. 10
Main Authors: McPherson, R. A., Wekerle, C., Kanzow, T.
Format: Journal Article
Language:English
Published: Washington Blackwell Publishing Ltd 01-10-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Increased oceanic heat transport plays a key role in the accelerated mass loss of Greenland's marine‐terminating glaciers. The melt rate of major glaciers in Northeast Greenland (NEG) is controlled by ocean variability, in particular warm Atlantic Intermediate Water (AIW), on the continental shelf. A high‐resolution configuration of the ocean sea‐ice model FESOM2.1 is assessed at local and regional scales, and used to investigate the drivers of AIW temperature variability on the NEG continental shelf. The seasonal to decadal variability of AIW is characterized, featuring both pronounced interannual fluctuations and a long‐term warming trend. A major source of AIW is Atlantic Water (AW) originating from the West Spitsbergen Current that recirculates in Fram Strait. AW anomalies are advected westwards and partly control the AIW temperatures on the continental shelf. Increased AIW temperatures are also connected to pronounced northern and central branches of recirculating AW in Fram Strait, and enhanced AW temperatures more regionally. The strengthening of the pathways brings more warmer AIW onto the northern part of the NEG continental shelf. There, it circulates anti‐cyclonically and results in shelf‐wide warming. Regional atmospheric forcing is connected to the changes in the AW circulation. The strengthening of the northern AW branches is likely caused by anticyclonic wind anomalies over the Barents Sea that drive an enhanced northward AW transport in Fram Strait. Thus, controlled by a combination of both upstream and regionally forced circulation conditions, the changes in local AIW temperatures may also affect the oceanic heat transport reaching the Central Arctic Ocean. The Greenland Ice Sheet has been melting at faster rates in the last two decades, likely due to rising ocean temperatures. Warm water found below the glaciers in Northeast Greenland controls the submarine melting. Changes in the temperature of the water are connected to ocean currents on the continental shelf of Northeast Greenland and in Fram Strait. The warm water found under the glaciers originates from the West Spitsbergen Current (WSC), over several hundred kilometers away, which carries warm water northwards within the Arctic Ocean. Part of the current turns westwards and transports the warm water toward Greenland. The changes in the strength of the westward flow are connected with particular wind patterns in the Barents Sea, as the wind forcing impacts the northward transport of the warm water in the WSC. This means that more warm water flows across the continental shelf edge at higher latitudes so there is more warm water circulating on the continental shelf itself. The circulation guides this warm water through a deep channel toward the glaciers. Therefore, the variability of the water temperature below the glaciers in Northeast Greenland is controlled by both regional winds and changes in the upstream ocean currents. Warm temperature anomalies in the West Spitsbergen Current partly control Atlantic Water temperatures on the Northeast Greenland continental shelf Pronounced northern recirculation branches transport more Atlantic Water across Fram Strait to the northern shelf where it circulates Anomalous anticyclonic winds over the Barents Sea drive the enhanced recirculation of more northern Atlantic Water pathways
AbstractList Increased oceanic heat transport plays a key role in the accelerated mass loss of Greenland's marine‐terminating glaciers. The melt rate of major glaciers in Northeast Greenland (NEG) is controlled by ocean variability, in particular warm Atlantic Intermediate Water (AIW), on the continental shelf. A high‐resolution configuration of the ocean sea‐ice model FESOM2.1 is assessed at local and regional scales, and used to investigate the drivers of AIW temperature variability on the NEG continental shelf. The seasonal to decadal variability of AIW is characterized, featuring both pronounced interannual fluctuations and a long‐term warming trend. A major source of AIW is Atlantic Water (AW) originating from the West Spitsbergen Current that recirculates in Fram Strait. AW anomalies are advected westwards and partly control the AIW temperatures on the continental shelf. Increased AIW temperatures are also connected to pronounced northern and central branches of recirculating AW in Fram Strait, and enhanced AW temperatures more regionally. The strengthening of the pathways brings more warmer AIW onto the northern part of the NEG continental shelf. There, it circulates anti‐cyclonically and results in shelf‐wide warming. Regional atmospheric forcing is connected to the changes in the AW circulation. The strengthening of the northern AW branches is likely caused by anticyclonic wind anomalies over the Barents Sea that drive an enhanced northward AW transport in Fram Strait. Thus, controlled by a combination of both upstream and regionally forced circulation conditions, the changes in local AIW temperatures may also affect the oceanic heat transport reaching the Central Arctic Ocean.
Increased oceanic heat transport plays a key role in the accelerated mass loss of Greenland's marine‐terminating glaciers. The melt rate of major glaciers in Northeast Greenland (NEG) is controlled by ocean variability, in particular warm Atlantic Intermediate Water (AIW), on the continental shelf. A high‐resolution configuration of the ocean sea‐ice model FESOM2.1 is assessed at local and regional scales, and used to investigate the drivers of AIW temperature variability on the NEG continental shelf. The seasonal to decadal variability of AIW is characterized, featuring both pronounced interannual fluctuations and a long‐term warming trend. A major source of AIW is Atlantic Water (AW) originating from the West Spitsbergen Current that recirculates in Fram Strait. AW anomalies are advected westwards and partly control the AIW temperatures on the continental shelf. Increased AIW temperatures are also connected to pronounced northern and central branches of recirculating AW in Fram Strait, and enhanced AW temperatures more regionally. The strengthening of the pathways brings more warmer AIW onto the northern part of the NEG continental shelf. There, it circulates anti‐cyclonically and results in shelf‐wide warming. Regional atmospheric forcing is connected to the changes in the AW circulation. The strengthening of the northern AW branches is likely caused by anticyclonic wind anomalies over the Barents Sea that drive an enhanced northward AW transport in Fram Strait. Thus, controlled by a combination of both upstream and regionally forced circulation conditions, the changes in local AIW temperatures may also affect the oceanic heat transport reaching the Central Arctic Ocean. The Greenland Ice Sheet has been melting at faster rates in the last two decades, likely due to rising ocean temperatures. Warm water found below the glaciers in Northeast Greenland controls the submarine melting. Changes in the temperature of the water are connected to ocean currents on the continental shelf of Northeast Greenland and in Fram Strait. The warm water found under the glaciers originates from the West Spitsbergen Current (WSC), over several hundred kilometers away, which carries warm water northwards within the Arctic Ocean. Part of the current turns westwards and transports the warm water toward Greenland. The changes in the strength of the westward flow are connected with particular wind patterns in the Barents Sea, as the wind forcing impacts the northward transport of the warm water in the WSC. This means that more warm water flows across the continental shelf edge at higher latitudes so there is more warm water circulating on the continental shelf itself. The circulation guides this warm water through a deep channel toward the glaciers. Therefore, the variability of the water temperature below the glaciers in Northeast Greenland is controlled by both regional winds and changes in the upstream ocean currents. Warm temperature anomalies in the West Spitsbergen Current partly control Atlantic Water temperatures on the Northeast Greenland continental shelf Pronounced northern recirculation branches transport more Atlantic Water across Fram Strait to the northern shelf where it circulates Anomalous anticyclonic winds over the Barents Sea drive the enhanced recirculation of more northern Atlantic Water pathways
Author McPherson, R. A.
Wekerle, C.
Kanzow, T.
Author_xml – sequence: 1
  givenname: R. A.
  orcidid: 0000-0002-4449-6701
  surname: McPherson
  fullname: McPherson, R. A.
  organization: Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research Bremerhaven Germany
– sequence: 2
  givenname: C.
  orcidid: 0000-0001-9985-0950
  surname: Wekerle
  fullname: Wekerle, C.
  organization: Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research Bremerhaven Germany
– sequence: 3
  givenname: T.
  orcidid: 0000-0002-5786-3435
  surname: Kanzow
  fullname: Kanzow, T.
  organization: Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research Bremerhaven Germany, University of Bremen Bremen Germany
BookMark eNpNkM1OwzAQhC0EEn-98QCWuFKwnaSxj1WgUIQAUX6O0cZZK65SB2wX1BfguTECIfawO4fZGenbJ9tucEjIEWennAl1JpjIrivGleLFFtkTfKLGSii-_afLYpeMQliyNJLLPFd75HPRWRMDHQyNHdIH1NbrdQ_RDo7eQ-w-YBOodbRCFz30dOZhRRdJ2kjPvX1HOo09uGg1nbuIfoWthYj0JS1Pn8FbaGxv44amwNvBpxYIkV56RJf-WrrosDeHZMdAH3D0ew_I0-zisboa39xdzqvpzRiE5HEsUbeCKV0obEozMWDySWGyieYgUbSswRbypkGpS5mXRdm0KDRI3eSiUUzw7IAc_-S--uFtjSHWy2HtXaqshZQJk2AsS66TH5f2QwgeTf3q7Qr8puas_oZd_4edfQGHvXV7
Cites_doi 10.5194/essd-10-1119-2018
10.1038/nclimate2161
10.1029/2009GL041278
10.1029/JC092iC04p03778
10.1029/2019GL086682
10.1175/1520-0485(1998)028〈0831:TGMSF〉2.0.CO;2
10.1175/1520-0485(1990)020〈0150:IMIOCM〉2.0.CO;2
10.1175/JPO-D-17-0062.1
10.1029/2020JC017080
10.1594/PANGAEA.885358
10.5194/gmd-15-335-2022
10.1029/2022JC019052
10.5281/zenodo.1000801
10.1029/2003JC001823
10.1175/1520-0485(1982)012<1154:OIMBCR>2.0.CO;2
10.1002/2017JC013605
10.1029/2022JC019045
10.5194/essd-8-543-2016
10.1175/JPO-D-17-0237.1
10.5194/gmd-8-1747-2015
10.1029/2008JC005106
10.5194/essd-13-5001-2021
10.1038/s41467-018-05180-x
10.3189/2012AoG60A156
10.1007/978-1-4020-6774-7_4
10.1016/j.ocemod.2018.07.002
10.1002/2016JC012462
10.1126/science.1228102
10.5194/gmd-10-2117-2017
10.1038/s41561-019-0529-x
10.1029/2020RG000725
10.1594/PANGAEA.904565
10.1016/S0924-7963(96)00074-7
10.1126/science.aai8204
10.1002/2016GL068323
10.1175/JPO-D-19-0085.1
10.1038/ngeo316
10.1002/2015GL064944
10.1002/2016JC012228
10.5194/essd-12-2811-2020
10.1594/PANGAEA.871025
10.1029/JC095iC09p16179
10.1029/2002JC001554
10.1175/JPO-D-23-0056.1
10.1029/2018JC014327
10.1029/2005JC003424
10.1029/2020JC016607
10.1175/1520-0485(1999)029〈1787:MTIOIA〉2.0.CO;2
10.1029/2020JC016091
10.1038/s41467-022-29470-7
10.5194/gmd-10-765-2017
10.1029/2018JC014378
10.1029/JC092iC07p06719
10.5194/os-14-1147-2018
10.1029/2020JC017057
10.1126/science.aac7111
10.5194/os-16-1225-2020
10.1029/2019JC015101
10.1126/science.1178176
10.1175/1520-0442(2001)014〈2079:PAGOHW〉2.0.CO;2
10.1038/nature16183
10.1016/j.jmarsys.2004.06.008
10.1038/s41467-022-35413-z
10.5194/gmd-12-4875-2019
10.1016/S0924-7963(96)00083-8
10.1038/s41586-022-05301-z
10.5194/essd-12-1367-2020
10.1126/sciadv.aba7282
10.1175/JPO-D-15-0184.1
10.1029/2018JC014273
10.1093/icesjms/fss056
10.1029/94JC01824
10.1594/PANGAEA.845938
10.1029/2018GL079174
10.1038/s41586-022-05686-x
10.5194/tc-11-2773-2017
10.1002/2015JC011012
10.1002/2017JC012974
10.1016/j.dsr.2014.05.018
10.1017/S0954102089000490
10.1038/nature12854
10.1029/JC092iC07p06729
10.1093/icesjms/fss079
ContentType Journal Article
Copyright 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7TG
7TN
F1W
H96
KL.
L.G
DOI 10.1029/2023JC019915
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Oceanography
EISSN 2169-9291
ExternalDocumentID 10_1029_2023JC019915
GeographicLocations Arctic Ocean
Barents Sea
Fram Strait
Greenland
GeographicLocations_xml – name: Fram Strait
– name: Barents Sea
– name: Arctic Ocean
– name: Greenland
GroupedDBID 05W
0R~
1OC
24P
31~
33P
3V.
50Y
52M
702
7XC
8-1
88I
8CJ
8FE
8FH
A00
AAESR
AAHHS
AAMNL
AANLZ
AASGY
AAXRX
AAYXX
AAZKR
ABCUV
ABJNI
ABPVW
ABUWG
ACAHQ
ACCFJ
ACCZN
ACGFS
ACGOD
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFRAH
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ASPBG
ATCPS
AVWKF
AZFZN
AZQEC
AZVAB
BENPR
BFHJK
BHPHI
BKSAR
BMXJE
BPHCQ
BRXPI
CCPQU
CITATION
D1J
D1K
DPXWK
DRFUL
DRSTM
DWQXO
EBS
EJD
FEDTE
G-S
GNUQQ
GODZA
HCIFZ
HGLYW
HVGLF
HZ~
K6-
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M2P
M7R
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
P-X
P2W
PATMY
PCBAR
PQQKQ
PROAC
PYCSY
R.K
RJQFR
RNS
ROL
SUPJJ
WBKPD
WIN
WXSBR
WYJ
~OA
7TG
7TN
F1W
H96
KL.
L.G
ID FETCH-LOGICAL-a281t-8ecd209c59eb7f6faf465f36c1a8e2d0beda4bbe8c784757bde2ca8cb42b90213
ISSN 2169-9275
IngestDate Tue Nov 19 03:02:22 EST 2024
Thu Nov 21 23:45:06 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a281t-8ecd209c59eb7f6faf465f36c1a8e2d0beda4bbe8c784757bde2ca8cb42b90213
ORCID 0000-0001-9985-0950
0000-0002-4449-6701
0000-0002-5786-3435
OpenAccessLink https://doi.org/10.1029/2023jc019915
PQID 2881692003
PQPubID 54728
ParticipantIDs proquest_journals_2881692003
crossref_primary_10_1029_2023JC019915
PublicationCentury 2000
PublicationDate 2023-10-00
20231001
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-00
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Journal of geophysical research. Oceans
PublicationYear 2023
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
e_1_2_10_70_1
e_1_2_10_2_1
e_1_2_10_72_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_78_1
Rudels B. (e_1_2_10_51_1) 1987; 188
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_80_1
e_1_2_10_82_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_71_1
e_1_2_10_73_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_77_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_60_1
e_1_2_10_81_1
e_1_2_10_62_1
e_1_2_10_83_1
e_1_2_10_64_1
e_1_2_10_85_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_66_1
e_1_2_10_26_1
e_1_2_10_47_1
e_1_2_10_68_1
References_xml – ident: e_1_2_10_4_1
  doi: 10.5194/essd-10-1119-2018
– ident: e_1_2_10_35_1
  doi: 10.1038/nclimate2161
– ident: e_1_2_10_14_1
  doi: 10.1029/2009GL041278
– ident: e_1_2_10_2_1
  doi: 10.1029/JC092iC04p03778
– ident: e_1_2_10_80_1
  doi: 10.1029/2019GL086682
– ident: e_1_2_10_20_1
  doi: 10.1175/1520-0485(1998)028〈0831:TGMSF〉2.0.CO;2
– ident: e_1_2_10_18_1
  doi: 10.1175/1520-0485(1990)020〈0150:IMIOCM〉2.0.CO;2
– ident: e_1_2_10_25_1
  doi: 10.1175/JPO-D-17-0062.1
– ident: e_1_2_10_75_1
  doi: 10.1029/2020JC017080
– ident: e_1_2_10_32_1
  doi: 10.1594/PANGAEA.885358
– ident: e_1_2_10_59_1
  doi: 10.5194/gmd-15-335-2022
– ident: e_1_2_10_83_1
  doi: 10.1029/2022JC019052
– ident: e_1_2_10_21_1
  doi: 10.5281/zenodo.1000801
– ident: e_1_2_10_57_1
  doi: 10.1029/2003JC001823
– ident: e_1_2_10_49_1
  doi: 10.1175/1520-0485(1982)012<1154:OIMBCR>2.0.CO;2
– ident: e_1_2_10_3_1
  doi: 10.1002/2017JC013605
– ident: e_1_2_10_27_1
  doi: 10.1029/2022JC019045
– ident: e_1_2_10_55_1
  doi: 10.5194/essd-8-543-2016
– ident: e_1_2_10_11_1
  doi: 10.1175/JPO-D-17-0237.1
– ident: e_1_2_10_13_1
  doi: 10.5194/gmd-8-1747-2015
– ident: e_1_2_10_73_1
  doi: 10.1029/2008JC005106
– ident: e_1_2_10_38_1
  doi: 10.5194/essd-13-5001-2021
– ident: e_1_2_10_41_1
  doi: 10.1038/s41467-018-05180-x
– ident: e_1_2_10_68_1
  doi: 10.3189/2012AoG60A156
– ident: e_1_2_10_58_1
  doi: 10.1007/978-1-4020-6774-7_4
– ident: e_1_2_10_72_1
  doi: 10.1016/j.ocemod.2018.07.002
– ident: e_1_2_10_56_1
  doi: 10.1002/2016JC012462
– ident: e_1_2_10_62_1
  doi: 10.1126/science.1228102
– ident: e_1_2_10_16_1
  doi: 10.5194/gmd-10-2117-2017
– ident: e_1_2_10_54_1
  doi: 10.1038/s41561-019-0529-x
– ident: e_1_2_10_63_1
  doi: 10.1029/2020RG000725
– ident: e_1_2_10_76_1
  doi: 10.1594/PANGAEA.904565
– ident: e_1_2_10_8_1
  doi: 10.1016/S0924-7963(96)00074-7
– ident: e_1_2_10_47_1
  doi: 10.1126/science.aai8204
– ident: e_1_2_10_22_1
  doi: 10.1002/2016GL068323
– ident: e_1_2_10_45_1
  doi: 10.1175/JPO-D-19-0085.1
– ident: e_1_2_10_30_1
  doi: 10.1038/ngeo316
– ident: e_1_2_10_84_1
  doi: 10.1002/2015GL064944
– ident: e_1_2_10_23_1
  doi: 10.1002/2016JC012228
– ident: e_1_2_10_39_1
  doi: 10.5194/essd-12-2811-2020
– ident: e_1_2_10_33_1
  doi: 10.1594/PANGAEA.871025
– ident: e_1_2_10_17_1
  doi: 10.1029/JC095iC09p16179
– ident: e_1_2_10_31_1
  doi: 10.1029/2002JC001554
– ident: e_1_2_10_71_1
  doi: 10.1175/JPO-D-23-0056.1
– ident: e_1_2_10_44_1
  doi: 10.1029/2018JC014327
– ident: e_1_2_10_61_1
  doi: 10.1029/2005JC003424
– ident: e_1_2_10_79_1
  doi: 10.1029/2020JC016607
– ident: e_1_2_10_29_1
  doi: 10.1175/1520-0485(1999)029〈1787:MTIOIA〉2.0.CO;2
– ident: e_1_2_10_37_1
  doi: 10.1029/2020JC016091
– ident: e_1_2_10_67_1
  doi: 10.1038/s41467-022-29470-7
– ident: e_1_2_10_12_1
  doi: 10.5194/gmd-10-765-2017
– ident: e_1_2_10_69_1
  doi: 10.1029/2018JC014378
– ident: e_1_2_10_48_1
  doi: 10.1029/JC092iC07p06719
– ident: e_1_2_10_50_1
  doi: 10.5194/os-14-1147-2018
– ident: e_1_2_10_28_1
  doi: 10.1029/2020JC017057
– ident: e_1_2_10_42_1
  doi: 10.1126/science.aac7111
– ident: e_1_2_10_81_1
  doi: 10.5194/os-16-1225-2020
– ident: e_1_2_10_43_1
  doi: 10.1029/2019JC015101
– ident: e_1_2_10_74_1
  doi: 10.1126/science.1178176
– ident: e_1_2_10_46_1
– ident: e_1_2_10_64_1
  doi: 10.1175/1520-0442(2001)014〈2079:PAGOHW〉2.0.CO;2
– ident: e_1_2_10_36_1
  doi: 10.1038/nature16183
– ident: e_1_2_10_52_1
  doi: 10.1016/j.jmarsys.2004.06.008
– ident: e_1_2_10_19_1
  doi: 10.1038/s41467-022-35413-z
– ident: e_1_2_10_60_1
  doi: 10.5194/gmd-12-4875-2019
– ident: e_1_2_10_70_1
  doi: 10.1016/S0924-7963(96)00083-8
– ident: e_1_2_10_34_1
  doi: 10.1038/s41586-022-05301-z
– ident: e_1_2_10_40_1
  doi: 10.5194/essd-12-1367-2020
– ident: e_1_2_10_86_1
  doi: 10.1126/sciadv.aba7282
– ident: e_1_2_10_78_1
  doi: 10.1175/JPO-D-15-0184.1
– ident: e_1_2_10_24_1
  doi: 10.1029/2018JC014273
– ident: e_1_2_10_5_1
  doi: 10.1093/icesjms/fss056
– volume: 188
  start-page: 53
  year: 1987
  ident: e_1_2_10_51_1
  article-title: On the mass balance of the Polar Ocean, with special emphasis on the Fram Strait
  publication-title: Norsk Polarinstitutt Skrifter
  contributor:
    fullname: Rudels B.
– ident: e_1_2_10_7_1
  doi: 10.1029/94JC01824
– ident: e_1_2_10_77_1
  doi: 10.1594/PANGAEA.845938
– ident: e_1_2_10_10_1
  doi: 10.1029/2018GL079174
– ident: e_1_2_10_66_1
  doi: 10.1038/s41586-022-05686-x
– ident: e_1_2_10_85_1
  doi: 10.5194/tc-11-2773-2017
– ident: e_1_2_10_9_1
  doi: 10.1002/2015JC011012
– ident: e_1_2_10_82_1
  doi: 10.1002/2017JC012974
– ident: e_1_2_10_15_1
  doi: 10.1016/j.dsr.2014.05.018
– ident: e_1_2_10_26_1
  doi: 10.1017/S0954102089000490
– ident: e_1_2_10_65_1
  doi: 10.1038/nature12854
– ident: e_1_2_10_6_1
  doi: 10.1029/JC092iC07p06729
– ident: e_1_2_10_53_1
  doi: 10.1093/icesjms/fss079
SSID ssj0000818449
Score 2.2995481
Snippet Increased oceanic heat transport plays a key role in the accelerated mass loss of Greenland's marine‐terminating glaciers. The melt rate of major glaciers in...
SourceID proquest
crossref
SourceType Aggregation Database
SubjectTerms Anomalies
Atmospheric circulation
Atmospheric forcing
Continental shelves
Geophysics
Glaciation
Glacier melting
Glaciers
Greenland ice sheet
Heat transport
Ice sheets
Intermediate water
Intermediate water masses
Melting
Ocean currents
Ocean temperature
Oceans
Seasonal variability
Shelf dynamics
Shelf edge
Straits
Strengthening
Temperature
Temperature variability
Upstream
Variability
Warm water
Water circulation
Water flow
Water temperature
West Spitsbergen Current
Wind
Winds
Title Shifts of the Recirculation Pathways in Central Fram Strait Drive Atlantic Intermediate Water Variability on Northeast Greenland Shelf
URI https://www.proquest.com/docview/2881692003
Volume 128
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6l5YKQKp6ipaA9wClysdd2sj5GTapCoURKoNysfYxri-BUqSvUP8DvZnbXr0gFwYGLFW2kjTXfl91vZ2ZnCHnNogx8KbjHldBepHTgiZD7XoZ7oQ60FErZJraL8flXPp1Fs8GgabPVjf1XpHEMsTY3Z_8B7XZSHMDPiDk-EXV8_hXui7zIXH6GkZSoCouNqlt0mXr8-Q9xa1Nga7euUa7fTWxaFNVwujF5RJNqheYulPMW2qslFQwvhCmn-AWP1q6y960JM9ioj-n-M7T5OyubB5rDKvuN5r2E9VVDjLrMUH40_KRAlK22_6jmuT0GWPQ7X-sFfIPNCrY8u2eobF1watl3X7AuEe5ON6Vzu3UJTbgMsmCUeAlz_VWOoD_m-ny16zjjfcL6d24QPjP1Vc2LvD_2TdpX3G2ETfD_dLJI59OT9MO787Mdco_hEmZW0DCct947Uwgwsmer9vXqWxX4A2_702_rne3t3mqY5UOyVwNBJ441j8gAysfkgTV_Xbn8CfnpCETXGUVo6RaBaEMgWpS0JhA1BKKOQNQSiDYEon0CUUsg2iMQxQlbAtGWQNQS6Cn5fDJbHp96dbMOTzAeVB4HpZmfqDgBOc5GmciiUZyFIxUIDkz7ErSIpASuxiiI4rHUwJTgSkZMJig0w2dkt1yX8JxQjbJT4cmdcxOWB5nEEBvfSQhiJHCb2CdvGpOmV64mS2pzKViS9k2_Tw4be6f1P_Q6ZZwjYiYl8-DPX78g9zu-HpLdanMDL8nOtb55ZbnwC0N4jL0
link.rule.ids 315,782,786,27933,27934
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shifts+of+the+Recirculation+Pathways+in+Central+Fram+Strait+Drive+Atlantic+Intermediate+Water+Variability+on+Northeast+Greenland+Shelf&rft.jtitle=Journal+of+geophysical+research.+Oceans&rft.au=McPherson%2C+R+A&rft.au=Wekerle%2C+C&rft.au=Kanzow%2C+T&rft.date=2023-10-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=2169-9275&rft.eissn=2169-9291&rft.volume=128&rft.issue=10&rft_id=info:doi/10.1029%2F2023JC019915&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-9275&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-9275&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-9275&client=summon