Optimal Scheduling of a District Heat System with a Combined Heat and Power Plant Considering Pipeline Dynamics

This paper presents two new mixed-integer linear programming (MILP) models for more flexible operation of a combined heat and power (CHP) plant connected to a district heating load by a pipeline. The optimization models consider the heat-storage capabilities of the pipeline to better react to volati...

Full description

Saved in:
Bibliographic Details
Published in:Industrial & engineering chemistry research Vol. 59; no. 13; pp. 5969 - 5984
Main Authors: Merkert, Lennart, Castro, Pedro M
Format: Journal Article
Language:English
Published: American Chemical Society 01-04-2020
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper presents two new mixed-integer linear programming (MILP) models for more flexible operation of a combined heat and power (CHP) plant connected to a district heating load by a pipeline. The optimization models consider the heat-storage capabilities of the pipeline to better react to volatile energy prices and heat demands, varying both the flowrate and temperature of the hot water coming out of the CHP plant. They rigorously account for varying time delays, in a simpler (linear) way than previous works. The new scheduling formulations achieve a very good computational performance by relying on either a discrete-time or hybrid discrete/continuous-time representation, where all time slots of the grid are preassigned to a given period with constant price and demand (e.g., an hour of the day). Results for a motivating example inspired by a German system show additional revenues of 345 k€/year for a 10 km pipeline with a diameter of 0.7 m (3850 m3), compared to operating the pipeline at a constant temperature. This value is strongly dependent on the storage capacity, increasing to 1415 k€/year for a volume of 10,000 m3.
AbstractList This paper presents two new mixed-integer linear programming (MILP) models for more flexible operation of a combined heat and power (CHP) plant connected to a district heating load by a pipeline. The optimization models consider the heat-storage capabilities of the pipeline to better react to volatile energy prices and heat demands, varying both the flowrate and temperature of the hot water coming out of the CHP plant. They rigorously account for varying time delays, in a simpler (linear) way than previous works. The new scheduling formulations achieve a very good computational performance by relying on either a discrete-time or hybrid discrete/continuous-time representation, where all time slots of the grid are preassigned to a given period with constant price and demand (e.g., an hour of the day). Results for a motivating example inspired by a German system show additional revenues of 345 k€/year for a 10 km pipeline with a diameter of 0.7 m (3850 m3), compared to operating the pipeline at a constant temperature. This value is strongly dependent on the storage capacity, increasing to 1415 k€/year for a volume of 10,000 m3.
Author Castro, Pedro M
Merkert, Lennart
AuthorAffiliation ABB Power Grids Germany AG
Centro de Matemática Aplicações Fundamentais e Investigação Operacional
AuthorAffiliation_xml – name: Centro de Matemática Aplicações Fundamentais e Investigação Operacional
– name: ABB Power Grids Germany AG
Author_xml – sequence: 1
  givenname: Lennart
  surname: Merkert
  fullname: Merkert, Lennart
  organization: ABB Power Grids Germany AG
– sequence: 2
  givenname: Pedro M
  orcidid: 0000-0002-4898-8922
  surname: Castro
  fullname: Castro, Pedro M
  email: pmcastro@fc.ul.pt
  organization: Centro de Matemática Aplicações Fundamentais e Investigação Operacional
BookMark eNp1kMFuwjAMhqOJSQO2-455gJUlLWnS4wTbmIQEEtu5chMzgkqKkiDE2y8VXHexD5_9y_5GZOA6h4Q8czbhLOevoMPEovaTqmFlJfkdGXKRs0ywqRiQIVNKZUIp8UBGIewZY0JMp0PSrY7RHqClG71Dc2qt-6XdlgKd2xC91ZEuECLdXELEAz3buEts1h0a69BcGThD190ZPV234GKiLliDvo9a2yOmTKTzi4OD1eGR3G-hDfh062Py8_H-PVtky9Xn1-xtmUGuWMyw0DLnwJjOSxC8kmBkU0ioKiWgLCXXQslUJepCIzci59KYvDSskSA1FmPCrrnadyF43NZHn_70l5qzuhdWJ2F1L6y-CUsrL9eVnuy7k3fpwP_H_wBt-nHd
CitedBy_id crossref_primary_10_1080_23744731_2021_2018875
crossref_primary_10_1016_j_apenergy_2023_121038
crossref_primary_10_1016_j_cherd_2020_10_022
crossref_primary_10_1016_j_energy_2024_132189
crossref_primary_10_1016_j_energy_2022_123766
crossref_primary_10_1021_acs_iecr_0c01714
Cites_doi 10.1016/j.enconman.2017.08.072
10.1016/0196-8904(95)98895-T
10.1109/PTC.2017.7980850
10.1016/j.egypro.2018.04.056
10.1021/ie900073k
10.1137/0606047
10.1021/acs.iecr.9b04381
10.3390/en12020266
10.1016/j.enconman.2003.08.006
10.1109/CDC.2005.1583351
10.1016/S0360-5442(99)00064-X
10.1016/S0098-1354(03)00049-8
10.1109/TSTE.2015.2500571
10.1007/BF02023176
10.1109/TSTE.2015.2467383
10.1016/j.compchemeng.2018.01.020
10.1021/acs.iecr.7b01685
10.1021/ie404165c
10.1021/acs.iecr.8b06490
10.1016/j.compchemeng.2017.04.023
10.1515/aoter-2017-0029
10.1016/j.energy.2019.116125
10.1007/978-3-319-97773-7_13
10.1021/ie100790t
10.1007/s10898-016-0434-4
10.1016/j.compchemeng.2013.12.001
10.1016/j.energy.2017.03.018
10.1016/S0167-5060(08)70342-X
10.1016/j.apenergy.2017.11.080
10.1021/ie402393s
10.1016/0098-1354(83)85022-4
10.1016/j.enconman.2014.10.002
10.1016/j.apenergy.2017.05.004
10.1016/j.energy.2018.01.049
10.1016/0098-1354(93)E0010-7
10.3390/en10070893
10.1109/TSTE.2018.2829536
10.1021/acs.iecr.5b03335
10.1002/aic.15563
10.1021/ie1010993
10.1016/j.energy.2017.05.115
10.1016/j.compchemeng.2014.05.012
10.1016/B978-1-78242-374-4.00007-0
10.1021/ie050778z
10.1016/j.compchemeng.2004.03.010
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1021/acs.iecr.9b06971
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1520-5045
EndPage 5984
ExternalDocumentID 10_1021_acs_iecr_9b06971
i62231902
GroupedDBID 02
53G
55A
5GY
7~N
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ACJ
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
DU5
EBS
ED
ED~
F5P
GNL
IH9
JG
JG~
LG6
P2P
ROL
TAE
TN5
UI2
VF5
VG9
W1F
WH7
X
-~X
.DC
.K2
4.4
5VS
6TJ
AAYXX
ABQRX
ACGFO
ADHLV
AGXLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
~02
ID FETCH-LOGICAL-a280t-e3c721a00c26a5197ad7b37a9985a6671c58771c7ec3ce1d5217dd26d0b7a7ce3
IEDL.DBID ACS
ISSN 0888-5885
IngestDate Fri Aug 23 00:57:32 EDT 2024
Thu Aug 27 22:10:37 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a280t-e3c721a00c26a5197ad7b37a9985a6671c58771c7ec3ce1d5217dd26d0b7a7ce3
ORCID 0000-0002-4898-8922
PageCount 16
ParticipantIDs crossref_primary_10_1021_acs_iecr_9b06971
acs_journals_10_1021_acs_iecr_9b06971
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 20200401
2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 20200401
  day: 01
PublicationDecade 2020
PublicationTitle Industrial & engineering chemistry research
PublicationTitleAlternate Ind. Eng. Chem. Res
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref23/cit23
Thomsen P. D. (ref47/cit47) 2016
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref4/cit4
ref30/cit30
ref1/cit1
Cerbe A. (ref33/cit33) 2002
ref44/cit44
ref7/cit7
References_xml – ident: ref20/cit20
  doi: 10.1016/j.enconman.2017.08.072
– ident: ref1/cit1
  doi: 10.1016/0196-8904(95)98895-T
– ident: ref8/cit8
  doi: 10.1109/PTC.2017.7980850
– ident: ref15/cit15
  doi: 10.1016/j.egypro.2018.04.056
– ident: ref39/cit39
  doi: 10.1021/ie900073k
– ident: ref45/cit45
  doi: 10.1137/0606047
– ident: ref50/cit50
  doi: 10.1021/acs.iecr.9b04381
– ident: ref6/cit6
  doi: 10.3390/en12020266
– ident: ref21/cit21
  doi: 10.1016/j.enconman.2003.08.006
– ident: ref5/cit5
  doi: 10.1109/CDC.2005.1583351
– ident: ref35/cit35
  doi: 10.1016/S0360-5442(99)00064-X
– ident: ref25/cit25
  doi: 10.1016/S0098-1354(03)00049-8
– ident: ref14/cit14
  doi: 10.1109/TSTE.2015.2500571
– ident: ref49/cit49
  doi: 10.1007/BF02023176
– ident: ref10/cit10
  doi: 10.1109/TSTE.2015.2467383
– ident: ref28/cit28
  doi: 10.1016/j.compchemeng.2018.01.020
– ident: ref26/cit26
  doi: 10.1021/acs.iecr.7b01685
– ident: ref22/cit22
  doi: 10.1021/ie404165c
– ident: ref32/cit32
  doi: 10.1021/acs.iecr.8b06490
– ident: ref36/cit36
  doi: 10.1016/j.compchemeng.2017.04.023
– ident: ref2/cit2
  doi: 10.1515/aoter-2017-0029
– ident: ref9/cit9
  doi: 10.1016/j.energy.2019.116125
– ident: ref42/cit42
  doi: 10.1007/978-3-319-97773-7_13
– ident: ref48/cit48
– ident: ref41/cit41
  doi: 10.1021/ie100790t
– ident: ref30/cit30
  doi: 10.1007/s10898-016-0434-4
– ident: ref37/cit37
  doi: 10.1016/j.compchemeng.2013.12.001
– ident: ref18/cit18
  doi: 10.1016/j.energy.2017.03.018
– ident: ref43/cit43
  doi: 10.1016/S0167-5060(08)70342-X
– ident: ref11/cit11
  doi: 10.1016/j.apenergy.2017.11.080
– ident: ref23/cit23
  doi: 10.1021/ie402393s
– ident: ref31/cit31
  doi: 10.1016/0098-1354(83)85022-4
– ident: ref19/cit19
  doi: 10.1016/j.enconman.2014.10.002
– ident: ref13/cit13
  doi: 10.1016/j.apenergy.2017.05.004
– ident: ref34/cit34
– ident: ref16/cit16
  doi: 10.1016/j.energy.2018.01.049
– ident: ref44/cit44
  doi: 10.1016/0098-1354(93)E0010-7
– ident: ref3/cit3
– volume-title: Prozessnahe Einsatzoptimierung mit BoFiT unter Berücksichtigung der Netzrestriktionen: Verbundprojekt Bessere Ausnutzung von Fernwärmeanlagen
  year: 2002
  ident: ref33/cit33
  contributor:
    fullname: Cerbe A.
– ident: ref4/cit4
  doi: 10.3390/en10070893
– ident: ref12/cit12
  doi: 10.1109/TSTE.2018.2829536
– ident: ref24/cit24
  doi: 10.1021/acs.iecr.5b03335
– ident: ref46/cit46
  doi: 10.1002/aic.15563
– ident: ref38/cit38
  doi: 10.1021/ie1010993
– ident: ref17/cit17
  doi: 10.1016/j.energy.2017.05.115
– ident: ref29/cit29
  doi: 10.1016/j.compchemeng.2014.05.012
– start-page: 145
  volume-title: Advanced District Heating and Cooling (DHC) Systems
  year: 2016
  ident: ref47/cit47
  doi: 10.1016/B978-1-78242-374-4.00007-0
  contributor:
    fullname: Thomsen P. D.
– ident: ref40/cit40
  doi: 10.1021/ie050778z
– ident: ref7/cit7
– ident: ref27/cit27
  doi: 10.1016/j.compchemeng.2004.03.010
SSID ssj0005544
Score 2.406881
Snippet This paper presents two new mixed-integer linear programming (MILP) models for more flexible operation of a combined heat and power (CHP) plant connected to a...
SourceID crossref
acs
SourceType Aggregation Database
Publisher
StartPage 5969
Title Optimal Scheduling of a District Heat System with a Combined Heat and Power Plant Considering Pipeline Dynamics
URI http://dx.doi.org/10.1021/acs.iecr.9b06971
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagLDDwRpSXPMDAkJI4tZ2MiLbqBJUKEltknx3UgbYi6f_nLklFhECCJUNsnSKf75V7fIxdp6jwnBEykOB80JcGZQ4UBJHv21zGWgpLvcPjqX58TQbD9pic7xl8Ed0ZKHozdKF6qQ1VSu3iW0Kjo0Bu0MP0q5xDVsCtKDTUSZTIJiX5EwUyRFC0DFHLooz2_vMt-2y38Rv5fc3oA7bh54dspzVN8IgtnlD833HTFBnhqML8jS9ybviAhuPOoORjVLy8nlHO6QcsrqE-wNjYu3rNzB2fEG4aJzCjkq_hPInUZLak3nXPBzWIfXHMXkbD54dx0OApBEYkYRn4GDDeM2EIQhlqWDVO21gbjLikUUpHIBONT-0hBh85tOzaOaFcaLXR4OMT1pkv5v6U8VybWDllRQquD1aa3OWpSiWklhKteZfd4FlljTwUWZXqFlFGL-kAs-YAu-x2zYRsWY_X-HXv2R9pnrNtQUFxVV5zwTrlx8pfss3Cra6qK_MJWNO-Dg
link.rule.ids 315,782,786,2769,27085,27933,27934,56747,56797
linkProvider American Chemical Society
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR27TsMw0IIyAANvRHl6gIEhkDi1nYyItiqilEotElvkV1AH0oqk_89dkqodQEIsGWzrZN35XrkXIdcxCDyrGPe4sc5rcQU8Z4TxAtfSKQ8lZxprh3sjOXiP2h1skxMsamHgEjlAyssg_rK7QHCPaxOwpO5i7YsYq8Y3uABbGK2hx9Eyq4OX81uBd7CgKOJ1ZPInCKiPTL6ij1YUS3f3H1faIzu1FUkfKrLvkzWXHZDtld6Ch2T6CsLgEw6NgCwW880_6DSliraxVe7EFLQHYphWHcsp_o6FPZAO4Ck7W-2pzNIhTlGjONqooIvhnghqOJlhJbuj7WqkfX5E3rqd8WPPq6creIpFfuG50ID3p3zfMKGwfFVZqUOpwP_iSggZGB5J-EpnQuMCC3peWsuE9bVU0rjwmDSyaeZOCE2lCoUVmsXGtozmKrVpLGJuYo1h17RJbgBXSc0deVIGvlmQ4CIiMKkR2CS3C1oks6rZxq9nT_8I84ps9sYv_aT_NHg-I1sM3eUy8eacNIqvubsg67mdX5av6BsuwMZ7
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagSAgG3ojy9AADQyBxajseq6ZVEahUKkhskWM7qANpRdL_z12Sig4gIZYMtnWyfL47X-7xEXKtQOFZzbjHjXVeh2uQOSOMF7hOmvFQcpZi7fBwIkdvUdzHNjl8WQsDmyiAUlEF8VGq5zZrOgwE9zg-hdfUnUp9obByfIMLqdDn6vYm35kdvMJwBfnBoqKIN9HJnyigTTLFik1aMS6D3X9ua4_sNK9J2q3Zv0_WXH5Atld6DB6S2TMohQ9YNAH2WMw7f6ezjGoaY8vcqSnpENQxrTuXU_wtC3OgJcBjdrae07mlY0RTowhxVNIlyCeSGk_nWNHuaFxD2xdH5HXQf-kNvQZlwdMs8kvPhQa8QO37hgmNZazayjSUGvwwroWQgeGRhK90JjQusGDvpbVMWD-VWhoXHpNWPsvdCaGZ1KGwImXK2I5Juc5spoTiRqUYfs3a5AbOKmmkpEiqADgLEhzEA0yaA2yT2yU_knnddOPXtad_pHlFNsfxIHl6GD2ekS2GXnOVf3NOWuXnwl2Q9cIuLquL9AXHM8j-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Scheduling+of+a+District+Heat+System+with+a+Combined+Heat+and+Power+Plant+Considering+Pipeline+Dynamics&rft.jtitle=Industrial+%26+engineering+chemistry+research&rft.au=Merkert%2C+Lennart&rft.au=Castro%2C+Pedro+M&rft.date=2020-04-01&rft.pub=American+Chemical+Society&rft.issn=0888-5885&rft.eissn=1520-5045&rft.volume=59&rft.issue=13&rft.spage=5969&rft.epage=5984&rft_id=info:doi/10.1021%2Facs.iecr.9b06971&rft.externalDocID=i62231902
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-5885&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-5885&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-5885&client=summon