Optimal Scheduling of a District Heat System with a Combined Heat and Power Plant Considering Pipeline Dynamics
This paper presents two new mixed-integer linear programming (MILP) models for more flexible operation of a combined heat and power (CHP) plant connected to a district heating load by a pipeline. The optimization models consider the heat-storage capabilities of the pipeline to better react to volati...
Saved in:
Published in: | Industrial & engineering chemistry research Vol. 59; no. 13; pp. 5969 - 5984 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
American Chemical Society
01-04-2020
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | This paper presents two new mixed-integer linear programming (MILP) models for more flexible operation of a combined heat and power (CHP) plant connected to a district heating load by a pipeline. The optimization models consider the heat-storage capabilities of the pipeline to better react to volatile energy prices and heat demands, varying both the flowrate and temperature of the hot water coming out of the CHP plant. They rigorously account for varying time delays, in a simpler (linear) way than previous works. The new scheduling formulations achieve a very good computational performance by relying on either a discrete-time or hybrid discrete/continuous-time representation, where all time slots of the grid are preassigned to a given period with constant price and demand (e.g., an hour of the day). Results for a motivating example inspired by a German system show additional revenues of 345 k€/year for a 10 km pipeline with a diameter of 0.7 m (3850 m3), compared to operating the pipeline at a constant temperature. This value is strongly dependent on the storage capacity, increasing to 1415 k€/year for a volume of 10,000 m3. |
---|---|
AbstractList | This paper presents two new mixed-integer linear programming (MILP) models for more flexible operation of a combined heat and power (CHP) plant connected to a district heating load by a pipeline. The optimization models consider the heat-storage capabilities of the pipeline to better react to volatile energy prices and heat demands, varying both the flowrate and temperature of the hot water coming out of the CHP plant. They rigorously account for varying time delays, in a simpler (linear) way than previous works. The new scheduling formulations achieve a very good computational performance by relying on either a discrete-time or hybrid discrete/continuous-time representation, where all time slots of the grid are preassigned to a given period with constant price and demand (e.g., an hour of the day). Results for a motivating example inspired by a German system show additional revenues of 345 k€/year for a 10 km pipeline with a diameter of 0.7 m (3850 m3), compared to operating the pipeline at a constant temperature. This value is strongly dependent on the storage capacity, increasing to 1415 k€/year for a volume of 10,000 m3. |
Author | Castro, Pedro M Merkert, Lennart |
AuthorAffiliation | ABB Power Grids Germany AG Centro de Matemática Aplicações Fundamentais e Investigação Operacional |
AuthorAffiliation_xml | – name: Centro de Matemática Aplicações Fundamentais e Investigação Operacional – name: ABB Power Grids Germany AG |
Author_xml | – sequence: 1 givenname: Lennart surname: Merkert fullname: Merkert, Lennart organization: ABB Power Grids Germany AG – sequence: 2 givenname: Pedro M orcidid: 0000-0002-4898-8922 surname: Castro fullname: Castro, Pedro M email: pmcastro@fc.ul.pt organization: Centro de Matemática Aplicações Fundamentais e Investigação Operacional |
BookMark | eNp1kMFuwjAMhqOJSQO2-455gJUlLWnS4wTbmIQEEtu5chMzgkqKkiDE2y8VXHexD5_9y_5GZOA6h4Q8czbhLOevoMPEovaTqmFlJfkdGXKRs0ywqRiQIVNKZUIp8UBGIewZY0JMp0PSrY7RHqClG71Dc2qt-6XdlgKd2xC91ZEuECLdXELEAz3buEts1h0a69BcGThD190ZPV234GKiLliDvo9a2yOmTKTzi4OD1eGR3G-hDfh062Py8_H-PVtky9Xn1-xtmUGuWMyw0DLnwJjOSxC8kmBkU0ioKiWgLCXXQslUJepCIzci59KYvDSskSA1FmPCrrnadyF43NZHn_70l5qzuhdWJ2F1L6y-CUsrL9eVnuy7k3fpwP_H_wBt-nHd |
CitedBy_id | crossref_primary_10_1080_23744731_2021_2018875 crossref_primary_10_1016_j_apenergy_2023_121038 crossref_primary_10_1016_j_cherd_2020_10_022 crossref_primary_10_1016_j_energy_2024_132189 crossref_primary_10_1016_j_energy_2022_123766 crossref_primary_10_1021_acs_iecr_0c01714 |
Cites_doi | 10.1016/j.enconman.2017.08.072 10.1016/0196-8904(95)98895-T 10.1109/PTC.2017.7980850 10.1016/j.egypro.2018.04.056 10.1021/ie900073k 10.1137/0606047 10.1021/acs.iecr.9b04381 10.3390/en12020266 10.1016/j.enconman.2003.08.006 10.1109/CDC.2005.1583351 10.1016/S0360-5442(99)00064-X 10.1016/S0098-1354(03)00049-8 10.1109/TSTE.2015.2500571 10.1007/BF02023176 10.1109/TSTE.2015.2467383 10.1016/j.compchemeng.2018.01.020 10.1021/acs.iecr.7b01685 10.1021/ie404165c 10.1021/acs.iecr.8b06490 10.1016/j.compchemeng.2017.04.023 10.1515/aoter-2017-0029 10.1016/j.energy.2019.116125 10.1007/978-3-319-97773-7_13 10.1021/ie100790t 10.1007/s10898-016-0434-4 10.1016/j.compchemeng.2013.12.001 10.1016/j.energy.2017.03.018 10.1016/S0167-5060(08)70342-X 10.1016/j.apenergy.2017.11.080 10.1021/ie402393s 10.1016/0098-1354(83)85022-4 10.1016/j.enconman.2014.10.002 10.1016/j.apenergy.2017.05.004 10.1016/j.energy.2018.01.049 10.1016/0098-1354(93)E0010-7 10.3390/en10070893 10.1109/TSTE.2018.2829536 10.1021/acs.iecr.5b03335 10.1002/aic.15563 10.1021/ie1010993 10.1016/j.energy.2017.05.115 10.1016/j.compchemeng.2014.05.012 10.1016/B978-1-78242-374-4.00007-0 10.1021/ie050778z 10.1016/j.compchemeng.2004.03.010 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1021/acs.iecr.9b06971 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1520-5045 |
EndPage | 5984 |
ExternalDocumentID | 10_1021_acs_iecr_9b06971 i62231902 |
GroupedDBID | 02 53G 55A 5GY 7~N AABXI ABFLS ABMVS ABPTK ABUCX ACJ ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 DU5 EBS ED ED~ F5P GNL IH9 JG JG~ LG6 P2P ROL TAE TN5 UI2 VF5 VG9 W1F WH7 X -~X .DC .K2 4.4 5VS 6TJ AAYXX ABQRX ACGFO ADHLV AGXLV AHGAQ BAANH CITATION CUPRZ GGK ~02 |
ID | FETCH-LOGICAL-a280t-e3c721a00c26a5197ad7b37a9985a6671c58771c7ec3ce1d5217dd26d0b7a7ce3 |
IEDL.DBID | ACS |
ISSN | 0888-5885 |
IngestDate | Fri Aug 23 00:57:32 EDT 2024 Thu Aug 27 22:10:37 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a280t-e3c721a00c26a5197ad7b37a9985a6671c58771c7ec3ce1d5217dd26d0b7a7ce3 |
ORCID | 0000-0002-4898-8922 |
PageCount | 16 |
ParticipantIDs | crossref_primary_10_1021_acs_iecr_9b06971 acs_journals_10_1021_acs_iecr_9b06971 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 20200401 2020-04-01 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: 20200401 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Industrial & engineering chemistry research |
PublicationTitleAlternate | Ind. Eng. Chem. Res |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref23/cit23 Thomsen P. D. (ref47/cit47) 2016 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref4/cit4 ref30/cit30 ref1/cit1 Cerbe A. (ref33/cit33) 2002 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref20/cit20 doi: 10.1016/j.enconman.2017.08.072 – ident: ref1/cit1 doi: 10.1016/0196-8904(95)98895-T – ident: ref8/cit8 doi: 10.1109/PTC.2017.7980850 – ident: ref15/cit15 doi: 10.1016/j.egypro.2018.04.056 – ident: ref39/cit39 doi: 10.1021/ie900073k – ident: ref45/cit45 doi: 10.1137/0606047 – ident: ref50/cit50 doi: 10.1021/acs.iecr.9b04381 – ident: ref6/cit6 doi: 10.3390/en12020266 – ident: ref21/cit21 doi: 10.1016/j.enconman.2003.08.006 – ident: ref5/cit5 doi: 10.1109/CDC.2005.1583351 – ident: ref35/cit35 doi: 10.1016/S0360-5442(99)00064-X – ident: ref25/cit25 doi: 10.1016/S0098-1354(03)00049-8 – ident: ref14/cit14 doi: 10.1109/TSTE.2015.2500571 – ident: ref49/cit49 doi: 10.1007/BF02023176 – ident: ref10/cit10 doi: 10.1109/TSTE.2015.2467383 – ident: ref28/cit28 doi: 10.1016/j.compchemeng.2018.01.020 – ident: ref26/cit26 doi: 10.1021/acs.iecr.7b01685 – ident: ref22/cit22 doi: 10.1021/ie404165c – ident: ref32/cit32 doi: 10.1021/acs.iecr.8b06490 – ident: ref36/cit36 doi: 10.1016/j.compchemeng.2017.04.023 – ident: ref2/cit2 doi: 10.1515/aoter-2017-0029 – ident: ref9/cit9 doi: 10.1016/j.energy.2019.116125 – ident: ref42/cit42 doi: 10.1007/978-3-319-97773-7_13 – ident: ref48/cit48 – ident: ref41/cit41 doi: 10.1021/ie100790t – ident: ref30/cit30 doi: 10.1007/s10898-016-0434-4 – ident: ref37/cit37 doi: 10.1016/j.compchemeng.2013.12.001 – ident: ref18/cit18 doi: 10.1016/j.energy.2017.03.018 – ident: ref43/cit43 doi: 10.1016/S0167-5060(08)70342-X – ident: ref11/cit11 doi: 10.1016/j.apenergy.2017.11.080 – ident: ref23/cit23 doi: 10.1021/ie402393s – ident: ref31/cit31 doi: 10.1016/0098-1354(83)85022-4 – ident: ref19/cit19 doi: 10.1016/j.enconman.2014.10.002 – ident: ref13/cit13 doi: 10.1016/j.apenergy.2017.05.004 – ident: ref34/cit34 – ident: ref16/cit16 doi: 10.1016/j.energy.2018.01.049 – ident: ref44/cit44 doi: 10.1016/0098-1354(93)E0010-7 – ident: ref3/cit3 – volume-title: Prozessnahe Einsatzoptimierung mit BoFiT unter Berücksichtigung der Netzrestriktionen: Verbundprojekt Bessere Ausnutzung von Fernwärmeanlagen year: 2002 ident: ref33/cit33 contributor: fullname: Cerbe A. – ident: ref4/cit4 doi: 10.3390/en10070893 – ident: ref12/cit12 doi: 10.1109/TSTE.2018.2829536 – ident: ref24/cit24 doi: 10.1021/acs.iecr.5b03335 – ident: ref46/cit46 doi: 10.1002/aic.15563 – ident: ref38/cit38 doi: 10.1021/ie1010993 – ident: ref17/cit17 doi: 10.1016/j.energy.2017.05.115 – ident: ref29/cit29 doi: 10.1016/j.compchemeng.2014.05.012 – start-page: 145 volume-title: Advanced District Heating and Cooling (DHC) Systems year: 2016 ident: ref47/cit47 doi: 10.1016/B978-1-78242-374-4.00007-0 contributor: fullname: Thomsen P. D. – ident: ref40/cit40 doi: 10.1021/ie050778z – ident: ref7/cit7 – ident: ref27/cit27 doi: 10.1016/j.compchemeng.2004.03.010 |
SSID | ssj0005544 |
Score | 2.406881 |
Snippet | This paper presents two new mixed-integer linear programming (MILP) models for more flexible operation of a combined heat and power (CHP) plant connected to a... |
SourceID | crossref acs |
SourceType | Aggregation Database Publisher |
StartPage | 5969 |
Title | Optimal Scheduling of a District Heat System with a Combined Heat and Power Plant Considering Pipeline Dynamics |
URI | http://dx.doi.org/10.1021/acs.iecr.9b06971 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagLDDwRpSXPMDAkJI4tZ2MiLbqBJUKEltknx3UgbYi6f_nLklFhECCJUNsnSKf75V7fIxdp6jwnBEykOB80JcGZQ4UBJHv21zGWgpLvcPjqX58TQbD9pic7xl8Ed0ZKHozdKF6qQ1VSu3iW0Kjo0Bu0MP0q5xDVsCtKDTUSZTIJiX5EwUyRFC0DFHLooz2_vMt-2y38Rv5fc3oA7bh54dspzVN8IgtnlD833HTFBnhqML8jS9ybviAhuPOoORjVLy8nlHO6QcsrqE-wNjYu3rNzB2fEG4aJzCjkq_hPInUZLak3nXPBzWIfXHMXkbD54dx0OApBEYkYRn4GDDeM2EIQhlqWDVO21gbjLikUUpHIBONT-0hBh85tOzaOaFcaLXR4OMT1pkv5v6U8VybWDllRQquD1aa3OWpSiWklhKteZfd4FlljTwUWZXqFlFGL-kAs-YAu-x2zYRsWY_X-HXv2R9pnrNtQUFxVV5zwTrlx8pfss3Cra6qK_MJWNO-Dg |
link.rule.ids | 315,782,786,2769,27085,27933,27934,56747,56797 |
linkProvider | American Chemical Society |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR27TsMw0IIyAANvRHl6gIEhkDi1nYyItiqilEotElvkV1AH0oqk_89dkqodQEIsGWzrZN35XrkXIdcxCDyrGPe4sc5rcQU8Z4TxAtfSKQ8lZxprh3sjOXiP2h1skxMsamHgEjlAyssg_rK7QHCPaxOwpO5i7YsYq8Y3uABbGK2hx9Eyq4OX81uBd7CgKOJ1ZPInCKiPTL6ij1YUS3f3H1faIzu1FUkfKrLvkzWXHZDtld6Ch2T6CsLgEw6NgCwW880_6DSliraxVe7EFLQHYphWHcsp_o6FPZAO4Ck7W-2pzNIhTlGjONqooIvhnghqOJlhJbuj7WqkfX5E3rqd8WPPq6creIpFfuG50ID3p3zfMKGwfFVZqUOpwP_iSggZGB5J-EpnQuMCC3peWsuE9bVU0rjwmDSyaeZOCE2lCoUVmsXGtozmKrVpLGJuYo1h17RJbgBXSc0deVIGvlmQ4CIiMKkR2CS3C1oks6rZxq9nT_8I84ps9sYv_aT_NHg-I1sM3eUy8eacNIqvubsg67mdX5av6BsuwMZ7 |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagSAgG3ojy9AADQyBxajseq6ZVEahUKkhskWM7qANpRdL_z12Sig4gIZYMtnWyfL47X-7xEXKtQOFZzbjHjXVeh2uQOSOMF7hOmvFQcpZi7fBwIkdvUdzHNjl8WQsDmyiAUlEF8VGq5zZrOgwE9zg-hdfUnUp9obByfIMLqdDn6vYm35kdvMJwBfnBoqKIN9HJnyigTTLFik1aMS6D3X9ua4_sNK9J2q3Zv0_WXH5Atld6DB6S2TMohQ9YNAH2WMw7f6ezjGoaY8vcqSnpENQxrTuXU_wtC3OgJcBjdrae07mlY0RTowhxVNIlyCeSGk_nWNHuaFxD2xdH5HXQf-kNvQZlwdMs8kvPhQa8QO37hgmNZazayjSUGvwwroWQgeGRhK90JjQusGDvpbVMWD-VWhoXHpNWPsvdCaGZ1KGwImXK2I5Juc5spoTiRqUYfs3a5AbOKmmkpEiqADgLEhzEA0yaA2yT2yU_knnddOPXtad_pHlFNsfxIHl6GD2ekS2GXnOVf3NOWuXnwl2Q9cIuLquL9AXHM8j- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Scheduling+of+a+District+Heat+System+with+a+Combined+Heat+and+Power+Plant+Considering+Pipeline+Dynamics&rft.jtitle=Industrial+%26+engineering+chemistry+research&rft.au=Merkert%2C+Lennart&rft.au=Castro%2C+Pedro+M&rft.date=2020-04-01&rft.pub=American+Chemical+Society&rft.issn=0888-5885&rft.eissn=1520-5045&rft.volume=59&rft.issue=13&rft.spage=5969&rft.epage=5984&rft_id=info:doi/10.1021%2Facs.iecr.9b06971&rft.externalDocID=i62231902 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-5885&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-5885&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-5885&client=summon |