Giant Thermoelectric Effect in Rare Earth Sulfoiodides

Using first-principles calculations and the electron–phonon Wannier and Boltzmann transport equation, the electronic and lattice transport properties along with thermoelectric performance of FeOCl-type compounds ScXI (X = S, Se, Te) are investigated. It is found that the transport coefficients that...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physical chemistry. C Vol. 127; no. 42; pp. 20572 - 20581
Main Authors: Cheng, Linyuan, Yuan, Junpeng, Yao, Mengli, Li, Min, Wang, Hui
Format: Journal Article
Language:English
Published: American Chemical Society 26-10-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Using first-principles calculations and the electron–phonon Wannier and Boltzmann transport equation, the electronic and lattice transport properties along with thermoelectric performance of FeOCl-type compounds ScXI (X = S, Se, Te) are investigated. It is found that the transport coefficients that determine the thermoelectric properties are significantly affected by electron–phonon coupling, with optical phonon scattering contributing importantly to the transport properties that produce low lattice thermal conductivity at room temperature. Near the Fermi level, the conductivity and relaxation time of holes are 1 order of magnitude larger than that of electrons, while both of them contribute negligibly to the thermal conductivity. The significantly enhanced power factor of holes along with low lattice thermal conductivity give rise to remarkable thermoelectric performance, with ZT of p-type ScSI reaching 1.02. More importantly, we find that both compressive and tensile strain engineering significantly suppress the lattice thermal conductivity by enhancing the phonon scattering, while retaining the electronic band structures almost unchanged near the Fermi level. As a result, a giant thermoelectric figure of merit is predicted in ScSI with a ZT value as high as 4.56 under isotropic strain ratio (−0.6%), corresponding with a hydrostatic pressure of 1.08 GPa. The present work not only uncovers a new family of high-performance thermoelectric materials but also casts physical insights on optimizing the figure of merits for potential applications.
AbstractList Using first-principles calculations and the electron–phonon Wannier and Boltzmann transport equation, the electronic and lattice transport properties along with thermoelectric performance of FeOCl-type compounds ScXI (X = S, Se, Te) are investigated. It is found that the transport coefficients that determine the thermoelectric properties are significantly affected by electron–phonon coupling, with optical phonon scattering contributing importantly to the transport properties that produce low lattice thermal conductivity at room temperature. Near the Fermi level, the conductivity and relaxation time of holes are 1 order of magnitude larger than that of electrons, while both of them contribute negligibly to the thermal conductivity. The significantly enhanced power factor of holes along with low lattice thermal conductivity give rise to remarkable thermoelectric performance, with ZT of p-type ScSI reaching 1.02. More importantly, we find that both compressive and tensile strain engineering significantly suppress the lattice thermal conductivity by enhancing the phonon scattering, while retaining the electronic band structures almost unchanged near the Fermi level. As a result, a giant thermoelectric figure of merit is predicted in ScSI with a ZT value as high as 4.56 under isotropic strain ratio (−0.6%), corresponding with a hydrostatic pressure of 1.08 GPa. The present work not only uncovers a new family of high-performance thermoelectric materials but also casts physical insights on optimizing the figure of merits for potential applications.
Author Li, Min
Yao, Mengli
Wang, Hui
Cheng, Linyuan
Yuan, Junpeng
AuthorAffiliation School of Physics, Hunan Key Laboratory of Super Microstructure and Ultrafast Process, Hunan Key Laboratory of Nanophotonics and Devices, State Key Laboratory of Powder Metallurgy
AuthorAffiliation_xml – name: School of Physics, Hunan Key Laboratory of Super Microstructure and Ultrafast Process, Hunan Key Laboratory of Nanophotonics and Devices, State Key Laboratory of Powder Metallurgy
Author_xml – sequence: 1
  givenname: Linyuan
  surname: Cheng
  fullname: Cheng, Linyuan
– sequence: 2
  givenname: Junpeng
  surname: Yuan
  fullname: Yuan, Junpeng
– sequence: 3
  givenname: Mengli
  surname: Yao
  fullname: Yao, Mengli
– sequence: 4
  givenname: Min
  surname: Li
  fullname: Li, Min
– sequence: 5
  givenname: Hui
  orcidid: 0000-0001-9972-2019
  surname: Wang
  fullname: Wang, Hui
  email: huiwang@csu.edu.cn
BookMark eNp1j01LAzEYhINUsK3ePeYHuGu-0xylrK1QELSeQ5JNaMp2U5LtwX_v1hZvnmZg3nmZZwYmfeo9AI8Y1RgR_GxcqfdH52rqEGOE3IApVpRUknE--fNM3oFZKXuEOEWYToFYRdMPcLvz-ZB8592Qo4NNCKODsYcfJnvYmDzs4OepCymmNra-3IPbYLriH646B1-vzXa5rjbvq7fly6YyZIGGyhpiFDVSBkZDS7BRXHIuqAitaMfZ3HO3UF4SaQlW1nLEkLRWkQX1VAhM5wBd_rqcSsk-6GOOB5O_NUb6zK1Hbn3m1lfusfJ0qfwm6ZT7ceD_5z_Wrlxm
CitedBy_id crossref_primary_10_1063_5_0194378
crossref_primary_10_1103_PhysRevB_109_235202
Cites_doi 10.1103/PhysRevB.92.115202
10.1103/PhysRevB.92.121403
10.1126/science.aak9997
10.1103/PhysRevB.76.165108
10.1103/RevModPhys.89.015003
10.1016/j.cpc.2006.03.007
10.1126/science.1159725
10.1103/PhysRevB.51.13797
10.1039/D1CP00533B
10.1103/RevModPhys.84.1419
10.1103/PhysRevB.90.134309
10.1016/0927-0256(96)00008-0
10.1016/j.jmat.2015.01.001
10.1039/D1CP04971B
10.1103/PhysRevApplied.18.064067
10.1016/j.cpc.2014.02.015
10.1063/1.4887538
10.1039/C8TA01806E
10.1038/s41598-019-45949-8
10.1103/PhysRevB.97.121201
10.1038/nature11439
10.1038/nature09996
10.1021/acs.jpcc.0c00298
10.1103/PhysRevB.78.134106
10.1021/acsaem.3c00110
10.1038/ncomms5515
10.1103/PhysRevB.56.12847
10.1002/adfm.201703278
10.1063/1.3236635
10.1103/PhysRevLett.77.3865
10.1088/0953-8984/21/39/395502
10.1021/acsaem.2c00785
10.1126/science.abq0682
10.1039/D2TA09210G
10.1021/ja910762q
10.1039/D0TA04945J
10.3390/su12197946
10.1021/acs.chemrev.6b00255
10.1103/PhysRevB.21.4223
10.1016/j.cpc.2010.08.027
10.1039/C7TA09662C
10.1038/s41524-021-00619-0
10.1039/c2ee21536e
10.1039/D2CP03808K
10.1103/PhysRevB.54.11169
10.1103/PhysRevB.80.125205
10.1021/acs.chemmater.2c00318
10.1063/1.2194187
10.1021/acsami.2c00546
10.1002/jcc.20495
10.1002/adma.201004200
10.1016/j.icheatmasstransfer.2021.105581
10.1038/nature19832
10.1103/PhysRevB.92.235206
10.1016/j.cpc.2007.11.016
10.1103/PhysRevB.94.235306
10.1002/aenm.201701797
10.1103/PhysRevLett.114.115901
10.1021/acssuschemeng.1c07817
10.1016/j.apsusc.2019.06.211
10.1039/c3ta15431a
10.1103/PhysRevB.55.10355
10.1002/adfm.202206974
10.1126/science.1072886
10.1002/adfm.202300154
10.1016/j.jmat.2020.10.007
10.1088/1361-648X/ab6f86
10.1103/PhysRevB.90.085433
10.1038/npjcompumats.2015.15
10.1021/jacs.2c08062
10.1039/C9RA00247B
10.1063/1.3382344
10.1016/j.jallcom.2021.160191
10.1002/adma.201605887
10.1073/pnas.1305735110
10.1021/nl4007479
10.1103/PhysRev.80.69
ContentType Journal Article
Copyright 2023 American Chemical Society
Copyright_xml – notice: 2023 American Chemical Society
DBID AAYXX
CITATION
DOI 10.1021/acs.jpcc.3c04422
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1932-7455
EndPage 20581
ExternalDocumentID 10_1021_acs_jpcc_3c04422
i03900786
GroupedDBID .K2
4.4
55A
5GY
5VS
7~N
85S
AABXI
ABFRP
ABMVS
ABPPZ
ABQRX
ABUCX
ACGFS
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DU5
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
RNS
UI2
UKR
VF5
VG9
VQA
W1F
53G
AAYXX
ABJNI
CITATION
CUPRZ
ID FETCH-LOGICAL-a280t-ba2a93a77f43fd21a95755636fd6d1025e5c89e727b219bb50407bb9283e36613
IEDL.DBID ACS
ISSN 1932-7447
IngestDate Fri Aug 23 00:53:13 EDT 2024
Fri Oct 27 04:04:29 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 42
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a280t-ba2a93a77f43fd21a95755636fd6d1025e5c89e727b219bb50407bb9283e36613
ORCID 0000-0001-9972-2019
PageCount 10
ParticipantIDs crossref_primary_10_1021_acs_jpcc_3c04422
acs_journals_10_1021_acs_jpcc_3c04422
PublicationCentury 2000
PublicationDate 2023-10-26
PublicationDateYYYYMMDD 2023-10-26
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-26
  day: 26
PublicationDecade 2020
PublicationTitle Journal of physical chemistry. C
PublicationTitleAlternate J. Phys. Chem. C
PublicationYear 2023
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref77/cit77
ref34/cit34
ref71/cit71
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref74/cit74
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref75/cit75
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref78/cit78
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref72/cit72
ref76/cit76
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref73/cit73
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref18/cit18
  doi: 10.1103/PhysRevB.92.115202
– ident: ref10/cit10
  doi: 10.1103/PhysRevB.92.121403
– ident: ref4/cit4
  doi: 10.1126/science.aak9997
– ident: ref37/cit37
  doi: 10.1103/PhysRevB.76.165108
– ident: ref66/cit66
  doi: 10.1103/RevModPhys.89.015003
– ident: ref59/cit59
  doi: 10.1016/j.cpc.2006.03.007
– ident: ref68/cit68
  doi: 10.1126/science.1159725
– ident: ref22/cit22
  doi: 10.1103/PhysRevB.51.13797
– ident: ref40/cit40
  doi: 10.1039/D1CP00533B
– ident: ref57/cit57
  doi: 10.1103/RevModPhys.84.1419
– ident: ref26/cit26
  doi: 10.1103/PhysRevB.90.134309
– ident: ref42/cit42
  doi: 10.1016/0927-0256(96)00008-0
– ident: ref8/cit8
  doi: 10.1016/j.jmat.2015.01.001
– ident: ref62/cit62
  doi: 10.1039/D1CP04971B
– ident: ref61/cit61
  doi: 10.1103/PhysRevApplied.18.064067
– ident: ref48/cit48
  doi: 10.1016/j.cpc.2014.02.015
– ident: ref51/cit51
  doi: 10.1063/1.4887538
– ident: ref39/cit39
  doi: 10.1039/C8TA01806E
– ident: ref64/cit64
  doi: 10.1038/s41598-019-45949-8
– ident: ref52/cit52
  doi: 10.1103/PhysRevB.97.121201
– ident: ref3/cit3
  doi: 10.1038/nature11439
– ident: ref15/cit15
  doi: 10.1038/nature09996
– ident: ref32/cit32
  doi: 10.1021/acs.jpcc.0c00298
– ident: ref47/cit47
  doi: 10.1103/PhysRevB.78.134106
– ident: ref73/cit73
  doi: 10.1021/acsaem.3c00110
– ident: ref78/cit78
  doi: 10.1038/ncomms5515
– ident: ref56/cit56
  doi: 10.1103/PhysRevB.56.12847
– ident: ref69/cit69
  doi: 10.1002/adfm.201703278
– ident: ref24/cit24
  doi: 10.1063/1.3236635
– ident: ref44/cit44
  doi: 10.1103/PhysRevLett.77.3865
– ident: ref54/cit54
  doi: 10.1088/0953-8984/21/39/395502
– ident: ref67/cit67
  doi: 10.1021/acsaem.2c00785
– ident: ref5/cit5
  doi: 10.1126/science.abq0682
– ident: ref72/cit72
  doi: 10.1039/D2TA09210G
– ident: ref77/cit77
  doi: 10.1021/ja910762q
– ident: ref31/cit31
  doi: 10.1039/D0TA04945J
– ident: ref1/cit1
  doi: 10.3390/su12197946
– ident: ref7/cit7
  doi: 10.1021/acs.chemrev.6b00255
– ident: ref9/cit9
  doi: 10.1103/PhysRevB.21.4223
– ident: ref53/cit53
  doi: 10.1016/j.cpc.2010.08.027
– ident: ref28/cit28
  doi: 10.1039/C7TA09662C
– ident: ref49/cit49
  doi: 10.1038/s41524-021-00619-0
– ident: ref16/cit16
  doi: 10.1039/c2ee21536e
– ident: ref33/cit33
  doi: 10.1039/D2CP03808K
– ident: ref43/cit43
  doi: 10.1103/PhysRevB.54.11169
– ident: ref23/cit23
  doi: 10.1103/PhysRevB.80.125205
– ident: ref60/cit60
  doi: 10.1021/acs.chemmater.2c00318
– ident: ref25/cit25
  doi: 10.1063/1.2194187
– ident: ref12/cit12
  doi: 10.1021/acsami.2c00546
– ident: ref45/cit45
  doi: 10.1002/jcc.20495
– ident: ref70/cit70
  doi: 10.1002/adma.201004200
– ident: ref11/cit11
  doi: 10.1016/j.icheatmasstransfer.2021.105581
– ident: ref21/cit21
  doi: 10.1038/nature19832
– ident: ref58/cit58
  doi: 10.1103/PhysRevB.92.235206
– ident: ref55/cit55
  doi: 10.1016/j.cpc.2007.11.016
– ident: ref36/cit36
  doi: 10.1103/PhysRevB.94.235306
– ident: ref75/cit75
  doi: 10.1002/aenm.201701797
– ident: ref14/cit14
  doi: 10.1103/PhysRevLett.114.115901
– ident: ref63/cit63
  doi: 10.1021/acssuschemeng.1c07817
– ident: ref35/cit35
  doi: 10.1016/j.apsusc.2019.06.211
– ident: ref27/cit27
  doi: 10.1039/c3ta15431a
– ident: ref41/cit41
  doi: 10.1103/PhysRevB.55.10355
– ident: ref50/cit50
  doi: 10.1002/adfm.202206974
– ident: ref2/cit2
  doi: 10.1126/science.1072886
– ident: ref74/cit74
  doi: 10.1002/adfm.202300154
– ident: ref38/cit38
  doi: 10.1016/j.jmat.2020.10.007
– ident: ref65/cit65
  doi: 10.1088/1361-648X/ab6f86
– ident: ref71/cit71
  doi: 10.1103/PhysRevB.90.085433
– ident: ref6/cit6
  doi: 10.1038/npjcompumats.2015.15
– ident: ref13/cit13
  doi: 10.1021/jacs.2c08062
– ident: ref29/cit29
  doi: 10.1039/C9RA00247B
– ident: ref46/cit46
  doi: 10.1063/1.3382344
– ident: ref76/cit76
  doi: 10.1016/j.jmat.2015.01.001
– ident: ref30/cit30
  doi: 10.1016/j.jallcom.2021.160191
– ident: ref17/cit17
  doi: 10.1002/adma.201605887
– ident: ref19/cit19
  doi: 10.1073/pnas.1305735110
– ident: ref20/cit20
  doi: 10.1021/nl4007479
– ident: ref34/cit34
  doi: 10.1103/PhysRev.80.69
SSID ssj0053013
Score 2.495006
Snippet Using first-principles calculations and the electron–phonon Wannier and Boltzmann transport equation, the electronic and lattice transport properties along...
SourceID crossref
acs
SourceType Aggregation Database
Publisher
StartPage 20572
SubjectTerms C: Energy Conversion and Storage
Title Giant Thermoelectric Effect in Rare Earth Sulfoiodides
URI http://dx.doi.org/10.1021/acs.jpcc.3c04422
Volume 127
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDLDwRpSXPMDAYEj9TEZUWjoxUJDYIj9FECRV0_5_zk0qVQgkWCPLutyd7_uUL75D6FLHf3GT1BCdSE0i5BLtdEIoQIMTSUgyE79Djsbq8TW9H6y2yfmu4NPerbb1zfvE2htmE84plNsNqoAoRBrUHy-rroBEZY2CDIyRc9VKkj_tEIHI1itAtIIow53_2LKLtlveiO-aQO-hNV_uo83-clzbAZIPEOgZhrBPP6tmuE1hcdOcGBclftJTjweQKG94PP8IVVG5wvn6EL0MB8_9EWmHIhBN02RGjKY6Y1qpwFlwtKczIFxCMhmcdGCk8MKmmQdaYqAYGSPglCpjMqARngEYsyPUKavSHyMMZCJk0gYbLzH5lBsnospHOaxWSosuuoIXztukrvOFXk17-eIheCFvvdBF10tP5pOmR8ava0_-uOcp2oqD3SNKUHmGOrPp3J-j9drNLxZx_wKG6qZA
link.rule.ids 315,782,786,2769,27085,27933,27934,56747,56797
linkProvider American Chemical Society
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4NAEJ5oPdSLb2N97kEPHlBY2AWOprbWWHuwNfFG9kXEKDSl_f_OAo0eNDFeN5vJMDvM94WPnQE4F_ZfXDeSjnC5cCzkOkIL16EIDZq5qRtL-x1yMA5HL9Ftz7bJ8ZZ3YdCJEi2VlYj_1V3Au7Zrb1OlrnzlBgHFqrvGOHJhy4a642XxZZivfi0kI3EMgrBRJn-yYPFIld_w6Buw9Df_4dIWbDQsktzUx74NKybfgXZ3ObxtF_gdHvucYBLMPop61E2mSN2qmGQ5eRIzQ3qYNq9kvHhPi6zQmTblHjz3e5PuwGlGJDiCRu7ckYKK2BdhmAZ-qqknYqRfjPs81Vyjk8wwFcUGSYrE0iQlw3c2lDJGUmF8hGZ_H1p5kZsDIEgt0pirVNkrTSYKpGZW86MB7g5DwTpwgQ-cNCleJpV6Tb2kWsQoJE0UOnC5DGgyrTtm_Lr38I82z6A9mDwOk-H96OEI1u3Id4sflB9Daz5bmBNYLfXitEqFT_Qarq0
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66gnrxLa7PHPTgodpNm6Q9LvtwRVnEVfBW8sSKtst29_876QP2oCBeQximk8l8XzLNDEKXwv2L60fSEz4TnoNcT2jhewSgQVPf-rF095CjCR-_Rf2BK5NDm7cwoEQBkooyie929VTbusJA59aNf0yVugmUH4YEIu8aZTx2Z65ub9IEYAo-G1TJZCCPYcjr7ORPEhwmqWIJk5bAZbj9T7V20FbNJnG3Wv5dtGKyPbTRa5q47SN2B8s_x-AMs6-8anmTKlyVLMZphp_FzOABuM87niw-bZ7mOtWmOECvw8FLb-TVrRI8QSJ_7klBRBwIzm0YWE06IgYaRlnArGYalKSGqig2QFYkhCgpKexdLmUM5MIEANHBIWpleWaOEAaKYWOmrHJPm0wUSk1d7o-EMJtzQdvoCj44qV29SMosNukk5SBYIamt0EbXjVGTaVU549e5x3-UeYHWn_rD5PF-_HCCNl3ndwcjhJ2i1ny2MGdotdCL89IbvgH36bEw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Giant+Thermoelectric+Effect+in+Rare+Earth+Sulfoiodides&rft.jtitle=Journal+of+physical+chemistry.+C&rft.au=Cheng%2C+Linyuan&rft.au=Yuan%2C+Junpeng&rft.au=Yao%2C+Mengli&rft.au=Li%2C+Min&rft.date=2023-10-26&rft.issn=1932-7447&rft.eissn=1932-7455&rft.volume=127&rft.issue=42&rft.spage=20572&rft.epage=20581&rft_id=info:doi/10.1021%2Facs.jpcc.3c04422&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_jpcc_3c04422
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7447&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7447&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7447&client=summon