Giant Thermoelectric Effect in Rare Earth Sulfoiodides
Using first-principles calculations and the electron–phonon Wannier and Boltzmann transport equation, the electronic and lattice transport properties along with thermoelectric performance of FeOCl-type compounds ScXI (X = S, Se, Te) are investigated. It is found that the transport coefficients that...
Saved in:
Published in: | Journal of physical chemistry. C Vol. 127; no. 42; pp. 20572 - 20581 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
American Chemical Society
26-10-2023
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Using first-principles calculations and the electron–phonon Wannier and Boltzmann transport equation, the electronic and lattice transport properties along with thermoelectric performance of FeOCl-type compounds ScXI (X = S, Se, Te) are investigated. It is found that the transport coefficients that determine the thermoelectric properties are significantly affected by electron–phonon coupling, with optical phonon scattering contributing importantly to the transport properties that produce low lattice thermal conductivity at room temperature. Near the Fermi level, the conductivity and relaxation time of holes are 1 order of magnitude larger than that of electrons, while both of them contribute negligibly to the thermal conductivity. The significantly enhanced power factor of holes along with low lattice thermal conductivity give rise to remarkable thermoelectric performance, with ZT of p-type ScSI reaching 1.02. More importantly, we find that both compressive and tensile strain engineering significantly suppress the lattice thermal conductivity by enhancing the phonon scattering, while retaining the electronic band structures almost unchanged near the Fermi level. As a result, a giant thermoelectric figure of merit is predicted in ScSI with a ZT value as high as 4.56 under isotropic strain ratio (−0.6%), corresponding with a hydrostatic pressure of 1.08 GPa. The present work not only uncovers a new family of high-performance thermoelectric materials but also casts physical insights on optimizing the figure of merits for potential applications. |
---|---|
AbstractList | Using first-principles calculations and the electron–phonon Wannier and Boltzmann transport equation, the electronic and lattice transport properties along with thermoelectric performance of FeOCl-type compounds ScXI (X = S, Se, Te) are investigated. It is found that the transport coefficients that determine the thermoelectric properties are significantly affected by electron–phonon coupling, with optical phonon scattering contributing importantly to the transport properties that produce low lattice thermal conductivity at room temperature. Near the Fermi level, the conductivity and relaxation time of holes are 1 order of magnitude larger than that of electrons, while both of them contribute negligibly to the thermal conductivity. The significantly enhanced power factor of holes along with low lattice thermal conductivity give rise to remarkable thermoelectric performance, with ZT of p-type ScSI reaching 1.02. More importantly, we find that both compressive and tensile strain engineering significantly suppress the lattice thermal conductivity by enhancing the phonon scattering, while retaining the electronic band structures almost unchanged near the Fermi level. As a result, a giant thermoelectric figure of merit is predicted in ScSI with a ZT value as high as 4.56 under isotropic strain ratio (−0.6%), corresponding with a hydrostatic pressure of 1.08 GPa. The present work not only uncovers a new family of high-performance thermoelectric materials but also casts physical insights on optimizing the figure of merits for potential applications. |
Author | Li, Min Yao, Mengli Wang, Hui Cheng, Linyuan Yuan, Junpeng |
AuthorAffiliation | School of Physics, Hunan Key Laboratory of Super Microstructure and Ultrafast Process, Hunan Key Laboratory of Nanophotonics and Devices, State Key Laboratory of Powder Metallurgy |
AuthorAffiliation_xml | – name: School of Physics, Hunan Key Laboratory of Super Microstructure and Ultrafast Process, Hunan Key Laboratory of Nanophotonics and Devices, State Key Laboratory of Powder Metallurgy |
Author_xml | – sequence: 1 givenname: Linyuan surname: Cheng fullname: Cheng, Linyuan – sequence: 2 givenname: Junpeng surname: Yuan fullname: Yuan, Junpeng – sequence: 3 givenname: Mengli surname: Yao fullname: Yao, Mengli – sequence: 4 givenname: Min surname: Li fullname: Li, Min – sequence: 5 givenname: Hui orcidid: 0000-0001-9972-2019 surname: Wang fullname: Wang, Hui email: huiwang@csu.edu.cn |
BookMark | eNp1j01LAzEYhINUsK3ePeYHuGu-0xylrK1QELSeQ5JNaMp2U5LtwX_v1hZvnmZg3nmZZwYmfeo9AI8Y1RgR_GxcqfdH52rqEGOE3IApVpRUknE--fNM3oFZKXuEOEWYToFYRdMPcLvz-ZB8592Qo4NNCKODsYcfJnvYmDzs4OepCymmNra-3IPbYLriH646B1-vzXa5rjbvq7fly6YyZIGGyhpiFDVSBkZDS7BRXHIuqAitaMfZ3HO3UF4SaQlW1nLEkLRWkQX1VAhM5wBd_rqcSsk-6GOOB5O_NUb6zK1Hbn3m1lfusfJ0qfwm6ZT7ceD_5z_Wrlxm |
CitedBy_id | crossref_primary_10_1063_5_0194378 crossref_primary_10_1103_PhysRevB_109_235202 |
Cites_doi | 10.1103/PhysRevB.92.115202 10.1103/PhysRevB.92.121403 10.1126/science.aak9997 10.1103/PhysRevB.76.165108 10.1103/RevModPhys.89.015003 10.1016/j.cpc.2006.03.007 10.1126/science.1159725 10.1103/PhysRevB.51.13797 10.1039/D1CP00533B 10.1103/RevModPhys.84.1419 10.1103/PhysRevB.90.134309 10.1016/0927-0256(96)00008-0 10.1016/j.jmat.2015.01.001 10.1039/D1CP04971B 10.1103/PhysRevApplied.18.064067 10.1016/j.cpc.2014.02.015 10.1063/1.4887538 10.1039/C8TA01806E 10.1038/s41598-019-45949-8 10.1103/PhysRevB.97.121201 10.1038/nature11439 10.1038/nature09996 10.1021/acs.jpcc.0c00298 10.1103/PhysRevB.78.134106 10.1021/acsaem.3c00110 10.1038/ncomms5515 10.1103/PhysRevB.56.12847 10.1002/adfm.201703278 10.1063/1.3236635 10.1103/PhysRevLett.77.3865 10.1088/0953-8984/21/39/395502 10.1021/acsaem.2c00785 10.1126/science.abq0682 10.1039/D2TA09210G 10.1021/ja910762q 10.1039/D0TA04945J 10.3390/su12197946 10.1021/acs.chemrev.6b00255 10.1103/PhysRevB.21.4223 10.1016/j.cpc.2010.08.027 10.1039/C7TA09662C 10.1038/s41524-021-00619-0 10.1039/c2ee21536e 10.1039/D2CP03808K 10.1103/PhysRevB.54.11169 10.1103/PhysRevB.80.125205 10.1021/acs.chemmater.2c00318 10.1063/1.2194187 10.1021/acsami.2c00546 10.1002/jcc.20495 10.1002/adma.201004200 10.1016/j.icheatmasstransfer.2021.105581 10.1038/nature19832 10.1103/PhysRevB.92.235206 10.1016/j.cpc.2007.11.016 10.1103/PhysRevB.94.235306 10.1002/aenm.201701797 10.1103/PhysRevLett.114.115901 10.1021/acssuschemeng.1c07817 10.1016/j.apsusc.2019.06.211 10.1039/c3ta15431a 10.1103/PhysRevB.55.10355 10.1002/adfm.202206974 10.1126/science.1072886 10.1002/adfm.202300154 10.1016/j.jmat.2020.10.007 10.1088/1361-648X/ab6f86 10.1103/PhysRevB.90.085433 10.1038/npjcompumats.2015.15 10.1021/jacs.2c08062 10.1039/C9RA00247B 10.1063/1.3382344 10.1016/j.jallcom.2021.160191 10.1002/adma.201605887 10.1073/pnas.1305735110 10.1021/nl4007479 10.1103/PhysRev.80.69 |
ContentType | Journal Article |
Copyright | 2023 American Chemical Society |
Copyright_xml | – notice: 2023 American Chemical Society |
DBID | AAYXX CITATION |
DOI | 10.1021/acs.jpcc.3c04422 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1932-7455 |
EndPage | 20581 |
ExternalDocumentID | 10_1021_acs_jpcc_3c04422 i03900786 |
GroupedDBID | .K2 4.4 55A 5GY 5VS 7~N 85S AABXI ABFRP ABMVS ABPPZ ABQRX ABUCX ACGFS ACNCT ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DU5 EBS ED~ F5P GGK GNL IH9 IHE JG~ RNS UI2 UKR VF5 VG9 VQA W1F 53G AAYXX ABJNI CITATION CUPRZ |
ID | FETCH-LOGICAL-a280t-ba2a93a77f43fd21a95755636fd6d1025e5c89e727b219bb50407bb9283e36613 |
IEDL.DBID | ACS |
ISSN | 1932-7447 |
IngestDate | Fri Aug 23 00:53:13 EDT 2024 Fri Oct 27 04:04:29 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 42 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a280t-ba2a93a77f43fd21a95755636fd6d1025e5c89e727b219bb50407bb9283e36613 |
ORCID | 0000-0001-9972-2019 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1021_acs_jpcc_3c04422 acs_journals_10_1021_acs_jpcc_3c04422 |
PublicationCentury | 2000 |
PublicationDate | 2023-10-26 |
PublicationDateYYYYMMDD | 2023-10-26 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-26 day: 26 |
PublicationDecade | 2020 |
PublicationTitle | Journal of physical chemistry. C |
PublicationTitleAlternate | J. Phys. Chem. C |
PublicationYear | 2023 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref77/cit77 ref34/cit34 ref71/cit71 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref74/cit74 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref75/cit75 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref78/cit78 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref72/cit72 ref76/cit76 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref73/cit73 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref70/cit70 ref7/cit7 |
References_xml | – ident: ref18/cit18 doi: 10.1103/PhysRevB.92.115202 – ident: ref10/cit10 doi: 10.1103/PhysRevB.92.121403 – ident: ref4/cit4 doi: 10.1126/science.aak9997 – ident: ref37/cit37 doi: 10.1103/PhysRevB.76.165108 – ident: ref66/cit66 doi: 10.1103/RevModPhys.89.015003 – ident: ref59/cit59 doi: 10.1016/j.cpc.2006.03.007 – ident: ref68/cit68 doi: 10.1126/science.1159725 – ident: ref22/cit22 doi: 10.1103/PhysRevB.51.13797 – ident: ref40/cit40 doi: 10.1039/D1CP00533B – ident: ref57/cit57 doi: 10.1103/RevModPhys.84.1419 – ident: ref26/cit26 doi: 10.1103/PhysRevB.90.134309 – ident: ref42/cit42 doi: 10.1016/0927-0256(96)00008-0 – ident: ref8/cit8 doi: 10.1016/j.jmat.2015.01.001 – ident: ref62/cit62 doi: 10.1039/D1CP04971B – ident: ref61/cit61 doi: 10.1103/PhysRevApplied.18.064067 – ident: ref48/cit48 doi: 10.1016/j.cpc.2014.02.015 – ident: ref51/cit51 doi: 10.1063/1.4887538 – ident: ref39/cit39 doi: 10.1039/C8TA01806E – ident: ref64/cit64 doi: 10.1038/s41598-019-45949-8 – ident: ref52/cit52 doi: 10.1103/PhysRevB.97.121201 – ident: ref3/cit3 doi: 10.1038/nature11439 – ident: ref15/cit15 doi: 10.1038/nature09996 – ident: ref32/cit32 doi: 10.1021/acs.jpcc.0c00298 – ident: ref47/cit47 doi: 10.1103/PhysRevB.78.134106 – ident: ref73/cit73 doi: 10.1021/acsaem.3c00110 – ident: ref78/cit78 doi: 10.1038/ncomms5515 – ident: ref56/cit56 doi: 10.1103/PhysRevB.56.12847 – ident: ref69/cit69 doi: 10.1002/adfm.201703278 – ident: ref24/cit24 doi: 10.1063/1.3236635 – ident: ref44/cit44 doi: 10.1103/PhysRevLett.77.3865 – ident: ref54/cit54 doi: 10.1088/0953-8984/21/39/395502 – ident: ref67/cit67 doi: 10.1021/acsaem.2c00785 – ident: ref5/cit5 doi: 10.1126/science.abq0682 – ident: ref72/cit72 doi: 10.1039/D2TA09210G – ident: ref77/cit77 doi: 10.1021/ja910762q – ident: ref31/cit31 doi: 10.1039/D0TA04945J – ident: ref1/cit1 doi: 10.3390/su12197946 – ident: ref7/cit7 doi: 10.1021/acs.chemrev.6b00255 – ident: ref9/cit9 doi: 10.1103/PhysRevB.21.4223 – ident: ref53/cit53 doi: 10.1016/j.cpc.2010.08.027 – ident: ref28/cit28 doi: 10.1039/C7TA09662C – ident: ref49/cit49 doi: 10.1038/s41524-021-00619-0 – ident: ref16/cit16 doi: 10.1039/c2ee21536e – ident: ref33/cit33 doi: 10.1039/D2CP03808K – ident: ref43/cit43 doi: 10.1103/PhysRevB.54.11169 – ident: ref23/cit23 doi: 10.1103/PhysRevB.80.125205 – ident: ref60/cit60 doi: 10.1021/acs.chemmater.2c00318 – ident: ref25/cit25 doi: 10.1063/1.2194187 – ident: ref12/cit12 doi: 10.1021/acsami.2c00546 – ident: ref45/cit45 doi: 10.1002/jcc.20495 – ident: ref70/cit70 doi: 10.1002/adma.201004200 – ident: ref11/cit11 doi: 10.1016/j.icheatmasstransfer.2021.105581 – ident: ref21/cit21 doi: 10.1038/nature19832 – ident: ref58/cit58 doi: 10.1103/PhysRevB.92.235206 – ident: ref55/cit55 doi: 10.1016/j.cpc.2007.11.016 – ident: ref36/cit36 doi: 10.1103/PhysRevB.94.235306 – ident: ref75/cit75 doi: 10.1002/aenm.201701797 – ident: ref14/cit14 doi: 10.1103/PhysRevLett.114.115901 – ident: ref63/cit63 doi: 10.1021/acssuschemeng.1c07817 – ident: ref35/cit35 doi: 10.1016/j.apsusc.2019.06.211 – ident: ref27/cit27 doi: 10.1039/c3ta15431a – ident: ref41/cit41 doi: 10.1103/PhysRevB.55.10355 – ident: ref50/cit50 doi: 10.1002/adfm.202206974 – ident: ref2/cit2 doi: 10.1126/science.1072886 – ident: ref74/cit74 doi: 10.1002/adfm.202300154 – ident: ref38/cit38 doi: 10.1016/j.jmat.2020.10.007 – ident: ref65/cit65 doi: 10.1088/1361-648X/ab6f86 – ident: ref71/cit71 doi: 10.1103/PhysRevB.90.085433 – ident: ref6/cit6 doi: 10.1038/npjcompumats.2015.15 – ident: ref13/cit13 doi: 10.1021/jacs.2c08062 – ident: ref29/cit29 doi: 10.1039/C9RA00247B – ident: ref46/cit46 doi: 10.1063/1.3382344 – ident: ref76/cit76 doi: 10.1016/j.jmat.2015.01.001 – ident: ref30/cit30 doi: 10.1016/j.jallcom.2021.160191 – ident: ref17/cit17 doi: 10.1002/adma.201605887 – ident: ref19/cit19 doi: 10.1073/pnas.1305735110 – ident: ref20/cit20 doi: 10.1021/nl4007479 – ident: ref34/cit34 doi: 10.1103/PhysRev.80.69 |
SSID | ssj0053013 |
Score | 2.495006 |
Snippet | Using first-principles calculations and the electron–phonon Wannier and Boltzmann transport equation, the electronic and lattice transport properties along... |
SourceID | crossref acs |
SourceType | Aggregation Database Publisher |
StartPage | 20572 |
SubjectTerms | C: Energy Conversion and Storage |
Title | Giant Thermoelectric Effect in Rare Earth Sulfoiodides |
URI | http://dx.doi.org/10.1021/acs.jpcc.3c04422 |
Volume | 127 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDLDwRpSXPMDAYEj9TEZUWjoxUJDYIj9FECRV0_5_zk0qVQgkWCPLutyd7_uUL75D6FLHf3GT1BCdSE0i5BLtdEIoQIMTSUgyE79Djsbq8TW9H6y2yfmu4NPerbb1zfvE2htmE84plNsNqoAoRBrUHy-rroBEZY2CDIyRc9VKkj_tEIHI1itAtIIow53_2LKLtlveiO-aQO-hNV_uo83-clzbAZIPEOgZhrBPP6tmuE1hcdOcGBclftJTjweQKG94PP8IVVG5wvn6EL0MB8_9EWmHIhBN02RGjKY6Y1qpwFlwtKczIFxCMhmcdGCk8MKmmQdaYqAYGSPglCpjMqARngEYsyPUKavSHyMMZCJk0gYbLzH5lBsnospHOaxWSosuuoIXztukrvOFXk17-eIheCFvvdBF10tP5pOmR8ava0_-uOcp2oqD3SNKUHmGOrPp3J-j9drNLxZx_wKG6qZA |
link.rule.ids | 315,782,786,2769,27085,27933,27934,56747,56797 |
linkProvider | American Chemical Society |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4NAEJ5oPdSLb2N97kEPHlBY2AWOprbWWHuwNfFG9kXEKDSl_f_OAo0eNDFeN5vJMDvM94WPnQE4F_ZfXDeSjnC5cCzkOkIL16EIDZq5qRtL-x1yMA5HL9Ftz7bJ8ZZ3YdCJEi2VlYj_1V3Au7Zrb1OlrnzlBgHFqrvGOHJhy4a642XxZZivfi0kI3EMgrBRJn-yYPFIld_w6Buw9Df_4dIWbDQsktzUx74NKybfgXZ3ObxtF_gdHvucYBLMPop61E2mSN2qmGQ5eRIzQ3qYNq9kvHhPi6zQmTblHjz3e5PuwGlGJDiCRu7ckYKK2BdhmAZ-qqknYqRfjPs81Vyjk8wwFcUGSYrE0iQlw3c2lDJGUmF8hGZ_H1p5kZsDIEgt0pirVNkrTSYKpGZW86MB7g5DwTpwgQ-cNCleJpV6Tb2kWsQoJE0UOnC5DGgyrTtm_Lr38I82z6A9mDwOk-H96OEI1u3Id4sflB9Daz5bmBNYLfXitEqFT_Qarq0 |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66gnrxLa7PHPTgodpNm6Q9LvtwRVnEVfBW8sSKtst29_876QP2oCBeQximk8l8XzLNDEKXwv2L60fSEz4TnoNcT2jhewSgQVPf-rF095CjCR-_Rf2BK5NDm7cwoEQBkooyie929VTbusJA59aNf0yVugmUH4YEIu8aZTx2Z65ub9IEYAo-G1TJZCCPYcjr7ORPEhwmqWIJk5bAZbj9T7V20FbNJnG3Wv5dtGKyPbTRa5q47SN2B8s_x-AMs6-8anmTKlyVLMZphp_FzOABuM87niw-bZ7mOtWmOECvw8FLb-TVrRI8QSJ_7klBRBwIzm0YWE06IgYaRlnArGYalKSGqig2QFYkhCgpKexdLmUM5MIEANHBIWpleWaOEAaKYWOmrHJPm0wUSk1d7o-EMJtzQdvoCj44qV29SMosNukk5SBYIamt0EbXjVGTaVU549e5x3-UeYHWn_rD5PF-_HCCNl3ndwcjhJ2i1ny2MGdotdCL89IbvgH36bEw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Giant+Thermoelectric+Effect+in+Rare+Earth+Sulfoiodides&rft.jtitle=Journal+of+physical+chemistry.+C&rft.au=Cheng%2C+Linyuan&rft.au=Yuan%2C+Junpeng&rft.au=Yao%2C+Mengli&rft.au=Li%2C+Min&rft.date=2023-10-26&rft.issn=1932-7447&rft.eissn=1932-7455&rft.volume=127&rft.issue=42&rft.spage=20572&rft.epage=20581&rft_id=info:doi/10.1021%2Facs.jpcc.3c04422&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_jpcc_3c04422 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7447&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7447&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7447&client=summon |