Zinc Promotion of Platinum for Catalytic Light Alkane Dehydrogenation: Insights into Geometric and Electronic Effects
Supported metal nanoparticles are vital as heterogeneous catalysts in the chemical transformation of hydrocarbon resources. The catalytic properties of these materials are governed by the surface electronic structure and valence orbitals at the active metal site and can be selectively tuned with pro...
Saved in:
Published in: | ACS catalysis Vol. 7; no. 6; pp. 4173 - 4181 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
American Chemical Society
02-06-2017
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Supported metal nanoparticles are vital as heterogeneous catalysts in the chemical transformation of hydrocarbon resources. The catalytic properties of these materials are governed by the surface electronic structure and valence orbitals at the active metal site and can be selectively tuned with promoters or by alloying. Through an integrated approach using density functional theory (DFT), kinetics, and in situ X-ray spectroscopies, we demonstrate how Zn addition to Pt/SiO2 forms high symmetry Pt1Zn1 nanoparticle alloys with isolated Pt surface sites that enable near 100% C2H4 selectivity during ethane dehydrogenation (EDH) with a 6-fold higher turnover rate (TOR) per mole of surface Pt at 600 °C compared to monometallic Pt/SiO2. Furthermore, we show how DFT calculations accurately reproduce the resonant inelastic X-ray spectroscopic (RIXS) signatures of Pt 5d valence orbitals in the Pt/SiO2 and PtZn/SiO2 catalysts that correlate with their kinetic performance during EDH. This technique reveals that Zn modifies the energy of the Pt 5d electrons in PtZn, which directly relates to TOR promotion, while ensemble effects from the incorporation of Zn into the catalyst surface lead to enhanced product selectivity. |
---|---|
AbstractList | Supported metal nanoparticles are vital as heterogeneous catalysts in the chemical transformation of hydrocarbon resources. The catalytic properties of these materials are governed by the surface electronic structure and valence orbitals at the active metal site and can be selectively tuned with promoters or by alloying. Through an integrated approach using density functional theory (DFT), kinetics, and in situ X-ray spectroscopies, we demonstrate how Zn addition to Pt/SiO2 forms high symmetry Pt1Zn1 nanoparticle alloys with isolated Pt surface sites that enable near 100% C2H4 selectivity during ethane dehydrogenation (EDH) with a 6-fold higher turnover rate (TOR) per mole of surface Pt at 600 °C compared to monometallic Pt/SiO2. Furthermore, we show how DFT calculations accurately reproduce the resonant inelastic X-ray spectroscopic (RIXS) signatures of Pt 5d valence orbitals in the Pt/SiO2 and PtZn/SiO2 catalysts that correlate with their kinetic performance during EDH. This technique reveals that Zn modifies the energy of the Pt 5d electrons in PtZn, which directly relates to TOR promotion, while ensemble effects from the incorporation of Zn into the catalyst surface lead to enhanced product selectivity. |
Author | Bukowski, Brandon C Ribeiro, Fabio H Miller, Jeffrey T Kropf, A. Jeremy Cybulskis, Viktor J Wegener, Evan Tseng, Han-Ting Ravel, Bruce Greeley, Jeffrey Wu, Zhenwei Gallagher, James R |
AuthorAffiliation | Argonne National Laboratory Materials Measurement Laboratory National Institute of Standards and Technology Chemical Sciences and Engineering Division Davidson School of Chemical Engineering |
AuthorAffiliation_xml | – name: Argonne National Laboratory – name: Davidson School of Chemical Engineering – name: Materials Measurement Laboratory – name: National Institute of Standards and Technology – name: Chemical Sciences and Engineering Division |
Author_xml | – sequence: 1 givenname: Viktor J orcidid: 0000-0003-3678-6562 surname: Cybulskis fullname: Cybulskis, Viktor J organization: Davidson School of Chemical Engineering – sequence: 2 givenname: Brandon C surname: Bukowski fullname: Bukowski, Brandon C organization: Davidson School of Chemical Engineering – sequence: 3 givenname: Han-Ting surname: Tseng fullname: Tseng, Han-Ting organization: Davidson School of Chemical Engineering – sequence: 4 givenname: James R surname: Gallagher fullname: Gallagher, James R organization: Argonne National Laboratory – sequence: 5 givenname: Zhenwei surname: Wu fullname: Wu, Zhenwei organization: Davidson School of Chemical Engineering – sequence: 6 givenname: Evan surname: Wegener fullname: Wegener, Evan organization: Davidson School of Chemical Engineering – sequence: 7 givenname: A. Jeremy surname: Kropf fullname: Kropf, A. Jeremy organization: Argonne National Laboratory – sequence: 8 givenname: Bruce surname: Ravel fullname: Ravel, Bruce organization: National Institute of Standards and Technology – sequence: 9 givenname: Fabio H surname: Ribeiro fullname: Ribeiro, Fabio H organization: Davidson School of Chemical Engineering – sequence: 10 givenname: Jeffrey orcidid: 0000-0001-8469-1715 surname: Greeley fullname: Greeley, Jeffrey email: jgreeley@purdue.edu organization: Davidson School of Chemical Engineering – sequence: 11 givenname: Jeffrey T surname: Miller fullname: Miller, Jeffrey T email: mill1194@purdue.edu organization: Davidson School of Chemical Engineering |
BookMark | eNp1ULFOwzAUtFCRKKU7oz-AlOc4Th22qpRSqRIdYGGJXhO7TUlsZLtD_x5HLRILb3n3dO9Op7slA2ONIuSewYRByh6x8hUGbCf5FngO_IoMUyZEIjIuBn_wDRl7f4A4mcjlFIbk-NmYim6c7WxorKFW002LoTHHjmrr6Ly3PYWmoutmtw901n6hUfRZ7U-1sztlsJc90ZXxPe9pY4KlS2U7FVxUoanpolVVcNbEc6F1xP6OXGtsvRpf9oh8vCze56_J-m25ms_WCaYSQpLmeS0g37KCse0UpdQYo2uoM8imRQGCQ6WQQaEkT1MpRM2RS4QaQafAcj4icPatnPXeKV1-u6ZDdyoZlH1z5W9z5aW5KHk4SyJTHuzRmRjw__cf_w10YQ |
CitedBy_id | crossref_primary_10_1007_s11244_020_01257_4 crossref_primary_10_1016_j_cattod_2022_11_018 crossref_primary_10_1021_acsanm_3c03572 crossref_primary_10_1016_S1872_2067_23_64548_6 crossref_primary_10_1007_s10562_022_04263_1 crossref_primary_10_3390_catal14060365 crossref_primary_10_1002_cctc_202100752 crossref_primary_10_1021_acscatal_8b02794 crossref_primary_10_1016_j_apcata_2023_119368 crossref_primary_10_1021_acscatal_1c03970 crossref_primary_10_1021_acscatal_2c04471 crossref_primary_10_1002_cctc_201900514 crossref_primary_10_1016_j_apcata_2024_119800 crossref_primary_10_1016_j_gee_2022_12_006 crossref_primary_10_1002_ange_202213366 crossref_primary_10_1016_j_jechem_2020_03_045 crossref_primary_10_1039_D0CP04669H crossref_primary_10_1039_D0CS01260B crossref_primary_10_1016_j_matchemphys_2018_01_061 crossref_primary_10_1021_jacs_2c04278 crossref_primary_10_1016_j_mcat_2024_114029 crossref_primary_10_1016_j_apcata_2021_118309 crossref_primary_10_1021_acs_inorgchem_3c01930 crossref_primary_10_1021_acscatal_2c01631 crossref_primary_10_1007_s40843_022_2251_8 crossref_primary_10_1016_j_jcis_2021_03_023 crossref_primary_10_1021_acscatal_4c00864 crossref_primary_10_1021_acs_jpcc_1c04295 crossref_primary_10_1039_D0CY00897D crossref_primary_10_1016_j_cattod_2020_06_075 crossref_primary_10_1021_jacs_8b08162 crossref_primary_10_1021_acs_chemmater_8b02071 crossref_primary_10_1039_D3CP01659E crossref_primary_10_1038_s41467_018_07502_5 crossref_primary_10_1021_acscatal_3c06100 crossref_primary_10_1021_accountsmr_0c00012 crossref_primary_10_1016_j_jcat_2019_03_034 crossref_primary_10_1007_s12274_019_2374_z crossref_primary_10_1016_j_fuel_2022_125858 crossref_primary_10_1021_acs_nanolett_9b00994 crossref_primary_10_1021_acs_iecr_2c04041 crossref_primary_10_1021_acscatal_0c03350 crossref_primary_10_1021_acscatal_3c02029 crossref_primary_10_1021_acscatal_3c00103 crossref_primary_10_1002_chem_202201639 crossref_primary_10_1016_j_fuel_2024_132159 crossref_primary_10_1002_aic_17295 crossref_primary_10_1002_eom2_12095 crossref_primary_10_1016_j_fuel_2023_129421 crossref_primary_10_1039_D0CS01424A crossref_primary_10_1039_D3CY01554H crossref_primary_10_1007_s11705_024_2440_2 crossref_primary_10_1016_j_apcata_2024_119783 crossref_primary_10_1039_C9SC05599A crossref_primary_10_1039_D0CS01262A crossref_primary_10_1021_acscatal_2c00649 crossref_primary_10_1021_acssuschemeng_3c08044 crossref_primary_10_1021_jacsau_3c00197 crossref_primary_10_1016_j_chempr_2020_10_008 crossref_primary_10_1016_j_jechem_2020_09_034 crossref_primary_10_1021_acscatal_0c00151 crossref_primary_10_1007_s11426_022_1415_x crossref_primary_10_1016_j_micromeso_2022_112010 crossref_primary_10_1021_acs_iecr_2c02873 crossref_primary_10_1016_j_cattod_2022_03_029 crossref_primary_10_1016_S1872_2067_23_64575_9 crossref_primary_10_1021_acs_jpcc_3c00156 crossref_primary_10_1021_acscatal_2c00642 crossref_primary_10_1016_j_apsusc_2023_159099 crossref_primary_10_1021_acscatal_1c02676 crossref_primary_10_1021_acsnano_0c09744 crossref_primary_10_1002_ange_202319887 crossref_primary_10_1016_j_apcata_2024_119559 crossref_primary_10_1021_acssuschemeng_1c06579 crossref_primary_10_1039_C9CY02134E crossref_primary_10_1039_D0CS00814A crossref_primary_10_1002_cctc_201701815 crossref_primary_10_3390_catal14050312 crossref_primary_10_1002_cctc_202301261 crossref_primary_10_1039_D2TA00223J crossref_primary_10_1002_anie_202003349 crossref_primary_10_1016_j_apcata_2021_118121 crossref_primary_10_1016_j_jcat_2024_115446 crossref_primary_10_1016_j_surfin_2021_101311 crossref_primary_10_1021_acscatal_0c05711 crossref_primary_10_1002_cctc_202301386 crossref_primary_10_12677_HJCET_2023_132008 crossref_primary_10_1002_cctc_202201691 crossref_primary_10_1016_S1872_2067_19_63360_7 crossref_primary_10_1021_acs_iecr_2c02044 crossref_primary_10_1021_acscatal_9b00549 crossref_primary_10_1073_pnas_2024666118 crossref_primary_10_1021_acssuschemeng_1c03074 crossref_primary_10_1002_anie_202319887 crossref_primary_10_1021_acs_iecr_2c00309 crossref_primary_10_1002_ange_202003349 crossref_primary_10_1016_j_apcatb_2024_123798 crossref_primary_10_1002_anie_202200190 crossref_primary_10_1021_prechem_4c00004 crossref_primary_10_1039_D0RE00381F crossref_primary_10_1039_D2CP04173A crossref_primary_10_1021_acscatal_0c01667 crossref_primary_10_1016_j_fuel_2022_124833 crossref_primary_10_1021_acsaem_9b01373 crossref_primary_10_1039_D0CC03221B crossref_primary_10_1021_jacs_7b11981 crossref_primary_10_1021_acsanm_8b01357 crossref_primary_10_1021_jacs_1c10261 crossref_primary_10_3390_catal10080898 crossref_primary_10_1021_acs_iecr_0c00908 crossref_primary_10_1039_D1CY01737C crossref_primary_10_1016_j_mcat_2023_113397 crossref_primary_10_1021_acs_iecr_3c04549 crossref_primary_10_1021_acs_iecr_4c01543 crossref_primary_10_1021_acs_jpcc_0c04389 crossref_primary_10_1016_j_cej_2020_126656 crossref_primary_10_1016_j_mcat_2023_113554 crossref_primary_10_1016_j_chempr_2023_07_002 crossref_primary_10_1039_D0SC00875C crossref_primary_10_1021_acscatal_3c04371 crossref_primary_10_1016_j_apsusc_2018_08_260 crossref_primary_10_1016_j_jcat_2019_04_034 crossref_primary_10_1039_D4QI00703D crossref_primary_10_1021_acscatal_1c01916 crossref_primary_10_1016_j_apcata_2023_119157 crossref_primary_10_1021_jacs_2c05618 crossref_primary_10_1039_D2CY00602B crossref_primary_10_1016_j_fuproc_2019_106222 crossref_primary_10_1039_D3SC04310J crossref_primary_10_1007_s10562_022_04114_z crossref_primary_10_1039_D0CS00795A crossref_primary_10_1039_D0RA03365K crossref_primary_10_21926_cr_2302018 crossref_primary_10_1021_acs_chemrev_3c00081 crossref_primary_10_1007_s12274_021_3636_0 crossref_primary_10_1016_j_cattod_2022_06_034 crossref_primary_10_1021_acscatal_2c01420 crossref_primary_10_1039_C8CY02171F crossref_primary_10_1021_acsami_0c05043 crossref_primary_10_1021_acscatal_2c00059 crossref_primary_10_1021_acsomega_9b03751 crossref_primary_10_1002_cctc_201901869 crossref_primary_10_1039_D4EY00031E crossref_primary_10_1016_j_apcata_2019_117266 crossref_primary_10_1021_jacsau_1c00212 crossref_primary_10_1016_j_cattod_2018_07_043 crossref_primary_10_1016_j_matt_2020_11_013 crossref_primary_10_1016_S1872_2067_21_63924_4 crossref_primary_10_1016_j_apcatb_2024_123691 crossref_primary_10_1021_acscatal_1c01808 crossref_primary_10_1021_acs_iecr_1c03772 crossref_primary_10_1039_D0CY01528H crossref_primary_10_1021_acscatal_8b00107 crossref_primary_10_1039_D0CS00983K crossref_primary_10_1038_s41467_022_33256_2 crossref_primary_10_1016_j_fuproc_2022_107604 crossref_primary_10_1016_j_xcrp_2023_101311 crossref_primary_10_1021_acsami_1c07842 crossref_primary_10_1016_j_joule_2023_03_004 crossref_primary_10_1016_j_mcat_2021_111672 crossref_primary_10_1021_acscatal_7b03228 crossref_primary_10_1016_j_apcatb_2019_117816 crossref_primary_10_1016_j_apsusc_2021_149611 crossref_primary_10_1016_j_jcat_2021_12_014 crossref_primary_10_1021_acscatal_0c01554 crossref_primary_10_3390_pr6090139 crossref_primary_10_1002_anie_202213366 crossref_primary_10_1016_j_jcat_2024_115487 crossref_primary_10_1002_cctc_202201533 crossref_primary_10_1016_j_ces_2023_118748 crossref_primary_10_1021_acs_energyfuels_3c02274 crossref_primary_10_1002_aic_18288 crossref_primary_10_1002_ange_202200190 crossref_primary_10_1016_j_jhazmat_2022_129772 crossref_primary_10_1021_acscatal_4c01740 crossref_primary_10_1021_jacsau_2c00576 crossref_primary_10_1039_D3CP00330B |
Cites_doi | 10.1016/j.cattod.2012.09.034 10.1021/cr5002436 10.1039/c0cp00341g 10.1016/j.jcat.2006.04.004 10.1021/acscatal.6b01509 10.1039/C4CY00414K 10.1023/A:1016630622312 10.1016/S0920-5861(96)00028-4 10.1002/aic.14368 10.1016/0039-6028(89)90370-1 10.1007/BF00899370 10.1002/anie.201404460 10.1016/S0360-0564(02)45013-4 10.1080/01614940701804745 10.1103/PhysRevLett.76.2141 10.1238/Physica.Topical.115a00998 10.1016/0039-6028(94)90427-8 10.1007/s11244-013-0159-2 10.1039/C6CY00491A 10.1103/PhysRevB.49.14251 10.1103/PhysRev.17.571 10.1103/PhysRevB.41.8139 10.1103/PhysRevLett.69.3397 10.1021/jp9902452 10.1016/j.cattod.2017.03.054c 10.1103/RevModPhys.73.203 10.1103/PhysRevLett.81.2819 10.1038/376238a0 10.1016/j.jcat.2014.07.016 10.1103/PhysRevB.50.17953 10.1103/PhysRevLett.77.3865 10.1016/0039-6028(96)80007-0 10.1021/la991112a 10.1016/0927-0256(96)00008-0 10.1021/ie030357m 10.1107/S0909049597019298 10.1007/s11244-011-9662-5 10.1039/c000403k 10.1103/PhysRevB.59.2649 10.1021/ja907760p 10.1021/jp509376q 10.1021/acscatal.6b01128 10.1016/j.jpcs.2005.09.012 10.1039/c0cs00054j 10.1103/PhysRevB.54.11169 10.1016/j.jcat.2010.01.016 10.1063/1.3367958 10.1016/j.molcata.2006.10.025 10.1021/acs.accounts.5b00309 10.1021/ie800361a 10.1103/PhysRevB.47.558 10.1103/PhysRevB.59.1758 10.1080/08957959608201408 10.1007/BF00897822 10.1002/aic.15010 10.3891/acta.chem.scand.24-3471 10.1107/S0909049505012719 10.1039/C5CP00222B 10.1515/9781400853335.155 |
ContentType | Journal Article |
Copyright | Copyright © 2017 American Chemical Society |
Copyright_xml | – notice: Copyright © 2017 American Chemical Society |
DBID | AAYXX CITATION |
DOI | 10.1021/acscatal.6b03603 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2155-5435 |
EndPage | 4181 |
ExternalDocumentID | 10_1021_acscatal_6b03603 b641468715 |
GroupedDBID | 53G 55A 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED ED~ EJD GNL IH9 JG JG~ RNS ROL UI2 VF5 VG9 W1F .K2 AAHBH AAYXX ABJNI ABQRX ACGFO ADHLV AHGAQ BAANH CITATION CUPRZ GGK |
ID | FETCH-LOGICAL-a280t-266d506b1911b7a88fa000f0d4047990530cea109e8322855d3a38a0da0f20163 |
IEDL.DBID | ACS |
ISSN | 2155-5435 |
IngestDate | Fri Aug 23 01:48:57 EDT 2024 Thu Aug 27 13:42:35 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | density functional calculations dehydrogenation nanoparticles heterogeneous catalysis electronic structure RIXS spectroscopy |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a280t-266d506b1911b7a88fa000f0d4047990530cea109e8322855d3a38a0da0f20163 |
ORCID | 0000-0003-3678-6562 0000-0001-8469-1715 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1021_acscatal_6b03603 acs_journals_10_1021_acscatal_6b03603 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 2017-06-02 |
PublicationDateYYYYMMDD | 2017-06-02 |
PublicationDate_xml | – month: 06 year: 2017 text: 2017-06-02 day: 02 |
PublicationDecade | 2010 |
PublicationTitle | ACS catalysis |
PublicationTitleAlternate | ACS Catal |
PublicationYear | 2017 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 Boudart M. (ref14/cit14) 1984 ref12/cit12 ref15/cit15 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref51/cit51 doi: 10.1016/j.cattod.2012.09.034 – ident: ref2/cit2 doi: 10.1021/cr5002436 – ident: ref15/cit15 doi: 10.1039/c0cp00341g – ident: ref33/cit33 doi: 10.1016/j.jcat.2006.04.004 – ident: ref30/cit30 doi: 10.1021/acscatal.6b01509 – ident: ref34/cit34 doi: 10.1039/C4CY00414K – ident: ref13/cit13 doi: 10.1023/A:1016630622312 – ident: ref5/cit5 doi: 10.1016/S0920-5861(96)00028-4 – ident: ref1/cit1 doi: 10.1002/aic.14368 – ident: ref18/cit18 doi: 10.1016/0039-6028(89)90370-1 – ident: ref48/cit48 doi: 10.1007/BF00899370 – ident: ref4/cit4 doi: 10.1002/anie.201404460 – ident: ref6/cit6 doi: 10.1016/S0360-0564(02)45013-4 – ident: ref3/cit3 doi: 10.1080/01614940701804745 – ident: ref39/cit39 doi: 10.1103/PhysRevLett.76.2141 – ident: ref52/cit52 doi: 10.1238/Physica.Topical.115a00998 – ident: ref40/cit40 doi: 10.1016/0039-6028(94)90427-8 – ident: ref41/cit41 doi: 10.1007/s11244-013-0159-2 – ident: ref21/cit21 doi: 10.1039/C6CY00491A – ident: ref54/cit54 doi: 10.1103/PhysRevB.49.14251 – ident: ref47/cit47 doi: 10.1103/PhysRev.17.571 – ident: ref43/cit43 doi: 10.1103/PhysRevB.41.8139 – ident: ref42/cit42 doi: 10.1103/PhysRevLett.69.3397 – ident: ref12/cit12 doi: 10.1021/jp9902452 – ident: ref22/cit22 doi: 10.1016/j.cattod.2017.03.054c – ident: ref35/cit35 doi: 10.1103/RevModPhys.73.203 – ident: ref37/cit37 doi: 10.1103/PhysRevLett.81.2819 – ident: ref38/cit38 doi: 10.1038/376238a0 – ident: ref19/cit19 doi: 10.1016/j.jcat.2014.07.016 – ident: ref58/cit58 doi: 10.1103/PhysRevB.50.17953 – ident: ref57/cit57 doi: 10.1103/PhysRevLett.77.3865 – ident: ref7/cit7 doi: 10.1016/0039-6028(96)80007-0 – ident: ref11/cit11 doi: 10.1021/la991112a – ident: ref55/cit55 doi: 10.1016/0927-0256(96)00008-0 – ident: ref9/cit9 doi: 10.1021/ie030357m – ident: ref44/cit44 doi: 10.1107/S0909049597019298 – ident: ref32/cit32 doi: 10.1007/s11244-011-9662-5 – ident: ref25/cit25 doi: 10.1039/c000403k – ident: ref36/cit36 doi: 10.1103/PhysRevB.59.2649 – ident: ref24/cit24 doi: 10.1021/ja907760p – ident: ref28/cit28 doi: 10.1021/jp509376q – ident: ref31/cit31 doi: 10.1021/acscatal.6b01128 – ident: ref29/cit29 doi: 10.1016/j.jpcs.2005.09.012 – ident: ref23/cit23 doi: 10.1039/c0cs00054j – ident: ref56/cit56 doi: 10.1103/PhysRevB.54.11169 – ident: ref17/cit17 doi: 10.1016/j.jcat.2010.01.016 – ident: ref27/cit27 doi: 10.1063/1.3367958 – ident: ref10/cit10 doi: 10.1016/j.molcata.2006.10.025 – ident: ref26/cit26 doi: 10.1021/acs.accounts.5b00309 – ident: ref16/cit16 doi: 10.1021/ie800361a – ident: ref53/cit53 doi: 10.1103/PhysRevB.47.558 – ident: ref59/cit59 doi: 10.1103/PhysRevB.59.1758 – ident: ref46/cit46 doi: 10.1080/08957959608201408 – ident: ref49/cit49 doi: 10.1007/BF00897822 – ident: ref8/cit8 doi: 10.1002/aic.15010 – ident: ref50/cit50 doi: 10.3891/acta.chem.scand.24-3471 – ident: ref45/cit45 doi: 10.1107/S0909049505012719 – ident: ref20/cit20 doi: 10.1039/C5CP00222B – start-page: 155 volume-title: Kinetics of Heterogeneous Catalytic Reactions year: 1984 ident: ref14/cit14 doi: 10.1515/9781400853335.155 contributor: fullname: Boudart M. |
SSID | ssj0000456870 |
Score | 2.6092587 |
Snippet | Supported metal nanoparticles are vital as heterogeneous catalysts in the chemical transformation of hydrocarbon resources. The catalytic properties of these... |
SourceID | crossref acs |
SourceType | Aggregation Database Publisher |
StartPage | 4173 |
Title | Zinc Promotion of Platinum for Catalytic Light Alkane Dehydrogenation: Insights into Geometric and Electronic Effects |
URI | http://dx.doi.org/10.1021/acscatal.6b03603 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60HvTiW6wv9qAHD6ubTdJsvJW0WkGkUAXxEvYVLNqNNM2h_97ZNC1FFPSc7BDmkfl2ZvcbhM4ld6TehpJMx4oEMZdEgiMRqoTjM89UxNzl5N4genzhne4yTc73Dj7zroUqqkrGVUvC39YRe66xCICCg0HJYFFPcdCEV7PhIImFJAQYUHclfxLicpEqlnLRUlK53frP52yjzRo64vbM1jtoxdhdtJ7MJ7btofJ1aBXuzw7Y5RbnGe67o262HGHApjhxEqewGj-4LTluf7wLa3DHvE31OAdPqqx0g-9t4Z4XeGgnOb4z-ciN3VJYWI27i7E5eEZ8XOyj59vuU9Ij9VgFIhinEwIpWYe0JWGn5slIcJ4JUF9GdeDo5mOISqqM8GhsXLTzMNS-8LmgWtAM4ELLP0ANm1tziLDyuMxgrQmkH2iPx1QFjIYQ1zILdcSa6AL0ldZhUaRVx5t56VyJaa3EJrqcGyL9nLFs_Pru0R9lHqMN5lKwq5iwE9SYjEtzilYLXZ5VnvMFgSS_Ig |
link.rule.ids | 315,782,786,2769,27085,27933,27934,56747,56797 |
linkProvider | American Chemical Society |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4oHvDi24jPPejBQ3VbWth6IzyEiIQETIyXZl-NRNkaCgf-vTOloAdNjNe2O9nMo_Pt7O43hFxKjqTehjmxDpXjh1w6EhzJYUogn3msqh5eTm4Pqr1n3mgiTY67vAsDk0hBUppt4n-xC7i38CwraNxUJPx0kd9zI6gAFkY0VB-syiqIUHjWIg5yWeAEgAbyzcmfhGBKUum3lPQtt7S2_zGrHbKVA0laW1h-l6wZu0eK9WX_tn0yexlZRfuL43aJpUlM-3jwzc7GFJAqraPEOYymXVyg09r7m7CGNszrXE8S8KvMZne0Y1N8n9KRnSb03iRjbMKlqLCaNldNdOiCBjk9IE-t5rDedvImC47wOJs6kKB1wCoS1m2urArOYwFajJn2kXw-hBhlygiXhQZjnweBLosyF0wLFgN4qJQPScEm1hwRqlwuYxhrfFn2tctDpnyPBRDlMg501SuRK9BXlAdJGmX7354bLZUY5UoskeulPaKPBefGr98e_1HmBSm2h4_dqNvpPZyQTQ-TM9ZSvFNSmE5m5oysp3p2njnTJ4ZJx48 |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA4-QL34Ft_moAcPq9ntppv1VvrQYimFKoiXJU8UNVvc9uC_d2a7FQ8K4nWzGcJkJvNKviHkVAkE9bYscCbVQZwKFSgQpIBpiXjmTicRPk6-GSb9B9FqI0wOn72FgUUUQKkoi_io1SPjKoSB8BK-l0mNi7qCgxcxPhd5PUkx5mo0h1-pFfRSRNkmDuwZDzh4BFWB8iciaJZ08c0sfbMvnbV_rmydrFYOJW1MJWCDzFm_SZabsz5uW2Ty-Ow1HUyv3eWe5o4O8AKcn7xR8FhpEyl-wGzaw0CdNl5fpLe0ZZ8-zHsO8lXu3RXt-gLHC_rsxzm9tvkbNuPSVHpD21_NdOgUDrnYJved9l3zJqiaLQQyEmwcgKE2nNUVxG-hSqQQTgInHTMxgtCnoKtMWxmy1OIZIDg3NVkTkhnJHDgR9doOWfC5t7uE6lAoB3NtrGqxCUXKdBwxDtquHDdJtEfOgF9ZpSxFVtbBozCbMTGrmLhHzmd7ko2m2Bu__rv_R5onZGnQ6mS9bv_2gKxEaKMxpRIdkoXx-8QekfnCTI5LefoEMA7KEg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Zinc+Promotion+of+Platinum+for+Catalytic+Light+Alkane+Dehydrogenation%3A+Insights+into+Geometric+and+Electronic+Effects&rft.jtitle=ACS+catalysis&rft.au=Cybulskis%2C+Viktor+J&rft.au=Bukowski%2C+Brandon+C&rft.au=Tseng%2C+Han-Ting&rft.au=Gallagher%2C+James+R&rft.date=2017-06-02&rft.pub=American+Chemical+Society&rft.issn=2155-5435&rft.eissn=2155-5435&rft.volume=7&rft.issue=6&rft.spage=4173&rft.epage=4181&rft_id=info:doi/10.1021%2Facscatal.6b03603&rft.externalDocID=b641468715 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2155-5435&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2155-5435&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2155-5435&client=summon |