Zinc Promotion of Platinum for Catalytic Light Alkane Dehydrogenation: Insights into Geometric and Electronic Effects

Supported metal nanoparticles are vital as heterogeneous catalysts in the chemical transformation of hydrocarbon resources. The catalytic properties of these materials are governed by the surface electronic structure and valence orbitals at the active metal site and can be selectively tuned with pro...

Full description

Saved in:
Bibliographic Details
Published in:ACS catalysis Vol. 7; no. 6; pp. 4173 - 4181
Main Authors: Cybulskis, Viktor J, Bukowski, Brandon C, Tseng, Han-Ting, Gallagher, James R, Wu, Zhenwei, Wegener, Evan, Kropf, A. Jeremy, Ravel, Bruce, Ribeiro, Fabio H, Greeley, Jeffrey, Miller, Jeffrey T
Format: Journal Article
Language:English
Published: American Chemical Society 02-06-2017
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Supported metal nanoparticles are vital as heterogeneous catalysts in the chemical transformation of hydrocarbon resources. The catalytic properties of these materials are governed by the surface electronic structure and valence orbitals at the active metal site and can be selectively tuned with promoters or by alloying. Through an integrated approach using density functional theory (DFT), kinetics, and in situ X-ray spectroscopies, we demonstrate how Zn addition to Pt/SiO2 forms high symmetry Pt1Zn1 nanoparticle alloys with isolated Pt surface sites that enable near 100% C2H4 selectivity during ethane dehydrogenation (EDH) with a 6-fold higher turnover rate (TOR) per mole of surface Pt at 600 °C compared to monometallic Pt/SiO2. Furthermore, we show how DFT calculations accurately reproduce the resonant inelastic X-ray spectroscopic (RIXS) signatures of Pt 5d valence orbitals in the Pt/SiO2 and PtZn/SiO2 catalysts that correlate with their kinetic performance during EDH. This technique reveals that Zn modifies the energy of the Pt 5d electrons in PtZn, which directly relates to TOR promotion, while ensemble effects from the incorporation of Zn into the catalyst surface lead to enhanced product selectivity.
AbstractList Supported metal nanoparticles are vital as heterogeneous catalysts in the chemical transformation of hydrocarbon resources. The catalytic properties of these materials are governed by the surface electronic structure and valence orbitals at the active metal site and can be selectively tuned with promoters or by alloying. Through an integrated approach using density functional theory (DFT), kinetics, and in situ X-ray spectroscopies, we demonstrate how Zn addition to Pt/SiO2 forms high symmetry Pt1Zn1 nanoparticle alloys with isolated Pt surface sites that enable near 100% C2H4 selectivity during ethane dehydrogenation (EDH) with a 6-fold higher turnover rate (TOR) per mole of surface Pt at 600 °C compared to monometallic Pt/SiO2. Furthermore, we show how DFT calculations accurately reproduce the resonant inelastic X-ray spectroscopic (RIXS) signatures of Pt 5d valence orbitals in the Pt/SiO2 and PtZn/SiO2 catalysts that correlate with their kinetic performance during EDH. This technique reveals that Zn modifies the energy of the Pt 5d electrons in PtZn, which directly relates to TOR promotion, while ensemble effects from the incorporation of Zn into the catalyst surface lead to enhanced product selectivity.
Author Bukowski, Brandon C
Ribeiro, Fabio H
Miller, Jeffrey T
Kropf, A. Jeremy
Cybulskis, Viktor J
Wegener, Evan
Tseng, Han-Ting
Ravel, Bruce
Greeley, Jeffrey
Wu, Zhenwei
Gallagher, James R
AuthorAffiliation Argonne National Laboratory
Materials Measurement Laboratory
National Institute of Standards and Technology
Chemical Sciences and Engineering Division
Davidson School of Chemical Engineering
AuthorAffiliation_xml – name: Argonne National Laboratory
– name: Davidson School of Chemical Engineering
– name: Materials Measurement Laboratory
– name: National Institute of Standards and Technology
– name: Chemical Sciences and Engineering Division
Author_xml – sequence: 1
  givenname: Viktor J
  orcidid: 0000-0003-3678-6562
  surname: Cybulskis
  fullname: Cybulskis, Viktor J
  organization: Davidson School of Chemical Engineering
– sequence: 2
  givenname: Brandon C
  surname: Bukowski
  fullname: Bukowski, Brandon C
  organization: Davidson School of Chemical Engineering
– sequence: 3
  givenname: Han-Ting
  surname: Tseng
  fullname: Tseng, Han-Ting
  organization: Davidson School of Chemical Engineering
– sequence: 4
  givenname: James R
  surname: Gallagher
  fullname: Gallagher, James R
  organization: Argonne National Laboratory
– sequence: 5
  givenname: Zhenwei
  surname: Wu
  fullname: Wu, Zhenwei
  organization: Davidson School of Chemical Engineering
– sequence: 6
  givenname: Evan
  surname: Wegener
  fullname: Wegener, Evan
  organization: Davidson School of Chemical Engineering
– sequence: 7
  givenname: A. Jeremy
  surname: Kropf
  fullname: Kropf, A. Jeremy
  organization: Argonne National Laboratory
– sequence: 8
  givenname: Bruce
  surname: Ravel
  fullname: Ravel, Bruce
  organization: National Institute of Standards and Technology
– sequence: 9
  givenname: Fabio H
  surname: Ribeiro
  fullname: Ribeiro, Fabio H
  organization: Davidson School of Chemical Engineering
– sequence: 10
  givenname: Jeffrey
  orcidid: 0000-0001-8469-1715
  surname: Greeley
  fullname: Greeley, Jeffrey
  email: jgreeley@purdue.edu
  organization: Davidson School of Chemical Engineering
– sequence: 11
  givenname: Jeffrey T
  surname: Miller
  fullname: Miller, Jeffrey T
  email: mill1194@purdue.edu
  organization: Davidson School of Chemical Engineering
BookMark eNp1ULFOwzAUtFCRKKU7oz-AlOc4Th22qpRSqRIdYGGJXhO7TUlsZLtD_x5HLRILb3n3dO9Op7slA2ONIuSewYRByh6x8hUGbCf5FngO_IoMUyZEIjIuBn_wDRl7f4A4mcjlFIbk-NmYim6c7WxorKFW002LoTHHjmrr6Ly3PYWmoutmtw901n6hUfRZ7U-1sztlsJc90ZXxPe9pY4KlS2U7FVxUoanpolVVcNbEc6F1xP6OXGtsvRpf9oh8vCze56_J-m25ms_WCaYSQpLmeS0g37KCse0UpdQYo2uoM8imRQGCQ6WQQaEkT1MpRM2RS4QaQafAcj4icPatnPXeKV1-u6ZDdyoZlH1z5W9z5aW5KHk4SyJTHuzRmRjw__cf_w10YQ
CitedBy_id crossref_primary_10_1007_s11244_020_01257_4
crossref_primary_10_1016_j_cattod_2022_11_018
crossref_primary_10_1021_acsanm_3c03572
crossref_primary_10_1016_S1872_2067_23_64548_6
crossref_primary_10_1007_s10562_022_04263_1
crossref_primary_10_3390_catal14060365
crossref_primary_10_1002_cctc_202100752
crossref_primary_10_1021_acscatal_8b02794
crossref_primary_10_1016_j_apcata_2023_119368
crossref_primary_10_1021_acscatal_1c03970
crossref_primary_10_1021_acscatal_2c04471
crossref_primary_10_1002_cctc_201900514
crossref_primary_10_1016_j_apcata_2024_119800
crossref_primary_10_1016_j_gee_2022_12_006
crossref_primary_10_1002_ange_202213366
crossref_primary_10_1016_j_jechem_2020_03_045
crossref_primary_10_1039_D0CP04669H
crossref_primary_10_1039_D0CS01260B
crossref_primary_10_1016_j_matchemphys_2018_01_061
crossref_primary_10_1021_jacs_2c04278
crossref_primary_10_1016_j_mcat_2024_114029
crossref_primary_10_1016_j_apcata_2021_118309
crossref_primary_10_1021_acs_inorgchem_3c01930
crossref_primary_10_1021_acscatal_2c01631
crossref_primary_10_1007_s40843_022_2251_8
crossref_primary_10_1016_j_jcis_2021_03_023
crossref_primary_10_1021_acscatal_4c00864
crossref_primary_10_1021_acs_jpcc_1c04295
crossref_primary_10_1039_D0CY00897D
crossref_primary_10_1016_j_cattod_2020_06_075
crossref_primary_10_1021_jacs_8b08162
crossref_primary_10_1021_acs_chemmater_8b02071
crossref_primary_10_1039_D3CP01659E
crossref_primary_10_1038_s41467_018_07502_5
crossref_primary_10_1021_acscatal_3c06100
crossref_primary_10_1021_accountsmr_0c00012
crossref_primary_10_1016_j_jcat_2019_03_034
crossref_primary_10_1007_s12274_019_2374_z
crossref_primary_10_1016_j_fuel_2022_125858
crossref_primary_10_1021_acs_nanolett_9b00994
crossref_primary_10_1021_acs_iecr_2c04041
crossref_primary_10_1021_acscatal_0c03350
crossref_primary_10_1021_acscatal_3c02029
crossref_primary_10_1021_acscatal_3c00103
crossref_primary_10_1002_chem_202201639
crossref_primary_10_1016_j_fuel_2024_132159
crossref_primary_10_1002_aic_17295
crossref_primary_10_1002_eom2_12095
crossref_primary_10_1016_j_fuel_2023_129421
crossref_primary_10_1039_D0CS01424A
crossref_primary_10_1039_D3CY01554H
crossref_primary_10_1007_s11705_024_2440_2
crossref_primary_10_1016_j_apcata_2024_119783
crossref_primary_10_1039_C9SC05599A
crossref_primary_10_1039_D0CS01262A
crossref_primary_10_1021_acscatal_2c00649
crossref_primary_10_1021_acssuschemeng_3c08044
crossref_primary_10_1021_jacsau_3c00197
crossref_primary_10_1016_j_chempr_2020_10_008
crossref_primary_10_1016_j_jechem_2020_09_034
crossref_primary_10_1021_acscatal_0c00151
crossref_primary_10_1007_s11426_022_1415_x
crossref_primary_10_1016_j_micromeso_2022_112010
crossref_primary_10_1021_acs_iecr_2c02873
crossref_primary_10_1016_j_cattod_2022_03_029
crossref_primary_10_1016_S1872_2067_23_64575_9
crossref_primary_10_1021_acs_jpcc_3c00156
crossref_primary_10_1021_acscatal_2c00642
crossref_primary_10_1016_j_apsusc_2023_159099
crossref_primary_10_1021_acscatal_1c02676
crossref_primary_10_1021_acsnano_0c09744
crossref_primary_10_1002_ange_202319887
crossref_primary_10_1016_j_apcata_2024_119559
crossref_primary_10_1021_acssuschemeng_1c06579
crossref_primary_10_1039_C9CY02134E
crossref_primary_10_1039_D0CS00814A
crossref_primary_10_1002_cctc_201701815
crossref_primary_10_3390_catal14050312
crossref_primary_10_1002_cctc_202301261
crossref_primary_10_1039_D2TA00223J
crossref_primary_10_1002_anie_202003349
crossref_primary_10_1016_j_apcata_2021_118121
crossref_primary_10_1016_j_jcat_2024_115446
crossref_primary_10_1016_j_surfin_2021_101311
crossref_primary_10_1021_acscatal_0c05711
crossref_primary_10_1002_cctc_202301386
crossref_primary_10_12677_HJCET_2023_132008
crossref_primary_10_1002_cctc_202201691
crossref_primary_10_1016_S1872_2067_19_63360_7
crossref_primary_10_1021_acs_iecr_2c02044
crossref_primary_10_1021_acscatal_9b00549
crossref_primary_10_1073_pnas_2024666118
crossref_primary_10_1021_acssuschemeng_1c03074
crossref_primary_10_1002_anie_202319887
crossref_primary_10_1021_acs_iecr_2c00309
crossref_primary_10_1002_ange_202003349
crossref_primary_10_1016_j_apcatb_2024_123798
crossref_primary_10_1002_anie_202200190
crossref_primary_10_1021_prechem_4c00004
crossref_primary_10_1039_D0RE00381F
crossref_primary_10_1039_D2CP04173A
crossref_primary_10_1021_acscatal_0c01667
crossref_primary_10_1016_j_fuel_2022_124833
crossref_primary_10_1021_acsaem_9b01373
crossref_primary_10_1039_D0CC03221B
crossref_primary_10_1021_jacs_7b11981
crossref_primary_10_1021_acsanm_8b01357
crossref_primary_10_1021_jacs_1c10261
crossref_primary_10_3390_catal10080898
crossref_primary_10_1021_acs_iecr_0c00908
crossref_primary_10_1039_D1CY01737C
crossref_primary_10_1016_j_mcat_2023_113397
crossref_primary_10_1021_acs_iecr_3c04549
crossref_primary_10_1021_acs_iecr_4c01543
crossref_primary_10_1021_acs_jpcc_0c04389
crossref_primary_10_1016_j_cej_2020_126656
crossref_primary_10_1016_j_mcat_2023_113554
crossref_primary_10_1016_j_chempr_2023_07_002
crossref_primary_10_1039_D0SC00875C
crossref_primary_10_1021_acscatal_3c04371
crossref_primary_10_1016_j_apsusc_2018_08_260
crossref_primary_10_1016_j_jcat_2019_04_034
crossref_primary_10_1039_D4QI00703D
crossref_primary_10_1021_acscatal_1c01916
crossref_primary_10_1016_j_apcata_2023_119157
crossref_primary_10_1021_jacs_2c05618
crossref_primary_10_1039_D2CY00602B
crossref_primary_10_1016_j_fuproc_2019_106222
crossref_primary_10_1039_D3SC04310J
crossref_primary_10_1007_s10562_022_04114_z
crossref_primary_10_1039_D0CS00795A
crossref_primary_10_1039_D0RA03365K
crossref_primary_10_21926_cr_2302018
crossref_primary_10_1021_acs_chemrev_3c00081
crossref_primary_10_1007_s12274_021_3636_0
crossref_primary_10_1016_j_cattod_2022_06_034
crossref_primary_10_1021_acscatal_2c01420
crossref_primary_10_1039_C8CY02171F
crossref_primary_10_1021_acsami_0c05043
crossref_primary_10_1021_acscatal_2c00059
crossref_primary_10_1021_acsomega_9b03751
crossref_primary_10_1002_cctc_201901869
crossref_primary_10_1039_D4EY00031E
crossref_primary_10_1016_j_apcata_2019_117266
crossref_primary_10_1021_jacsau_1c00212
crossref_primary_10_1016_j_cattod_2018_07_043
crossref_primary_10_1016_j_matt_2020_11_013
crossref_primary_10_1016_S1872_2067_21_63924_4
crossref_primary_10_1016_j_apcatb_2024_123691
crossref_primary_10_1021_acscatal_1c01808
crossref_primary_10_1021_acs_iecr_1c03772
crossref_primary_10_1039_D0CY01528H
crossref_primary_10_1021_acscatal_8b00107
crossref_primary_10_1039_D0CS00983K
crossref_primary_10_1038_s41467_022_33256_2
crossref_primary_10_1016_j_fuproc_2022_107604
crossref_primary_10_1016_j_xcrp_2023_101311
crossref_primary_10_1021_acsami_1c07842
crossref_primary_10_1016_j_joule_2023_03_004
crossref_primary_10_1016_j_mcat_2021_111672
crossref_primary_10_1021_acscatal_7b03228
crossref_primary_10_1016_j_apcatb_2019_117816
crossref_primary_10_1016_j_apsusc_2021_149611
crossref_primary_10_1016_j_jcat_2021_12_014
crossref_primary_10_1021_acscatal_0c01554
crossref_primary_10_3390_pr6090139
crossref_primary_10_1002_anie_202213366
crossref_primary_10_1016_j_jcat_2024_115487
crossref_primary_10_1002_cctc_202201533
crossref_primary_10_1016_j_ces_2023_118748
crossref_primary_10_1021_acs_energyfuels_3c02274
crossref_primary_10_1002_aic_18288
crossref_primary_10_1002_ange_202200190
crossref_primary_10_1016_j_jhazmat_2022_129772
crossref_primary_10_1021_acscatal_4c01740
crossref_primary_10_1021_jacsau_2c00576
crossref_primary_10_1039_D3CP00330B
Cites_doi 10.1016/j.cattod.2012.09.034
10.1021/cr5002436
10.1039/c0cp00341g
10.1016/j.jcat.2006.04.004
10.1021/acscatal.6b01509
10.1039/C4CY00414K
10.1023/A:1016630622312
10.1016/S0920-5861(96)00028-4
10.1002/aic.14368
10.1016/0039-6028(89)90370-1
10.1007/BF00899370
10.1002/anie.201404460
10.1016/S0360-0564(02)45013-4
10.1080/01614940701804745
10.1103/PhysRevLett.76.2141
10.1238/Physica.Topical.115a00998
10.1016/0039-6028(94)90427-8
10.1007/s11244-013-0159-2
10.1039/C6CY00491A
10.1103/PhysRevB.49.14251
10.1103/PhysRev.17.571
10.1103/PhysRevB.41.8139
10.1103/PhysRevLett.69.3397
10.1021/jp9902452
10.1016/j.cattod.2017.03.054c
10.1103/RevModPhys.73.203
10.1103/PhysRevLett.81.2819
10.1038/376238a0
10.1016/j.jcat.2014.07.016
10.1103/PhysRevB.50.17953
10.1103/PhysRevLett.77.3865
10.1016/0039-6028(96)80007-0
10.1021/la991112a
10.1016/0927-0256(96)00008-0
10.1021/ie030357m
10.1107/S0909049597019298
10.1007/s11244-011-9662-5
10.1039/c000403k
10.1103/PhysRevB.59.2649
10.1021/ja907760p
10.1021/jp509376q
10.1021/acscatal.6b01128
10.1016/j.jpcs.2005.09.012
10.1039/c0cs00054j
10.1103/PhysRevB.54.11169
10.1016/j.jcat.2010.01.016
10.1063/1.3367958
10.1016/j.molcata.2006.10.025
10.1021/acs.accounts.5b00309
10.1021/ie800361a
10.1103/PhysRevB.47.558
10.1103/PhysRevB.59.1758
10.1080/08957959608201408
10.1007/BF00897822
10.1002/aic.15010
10.3891/acta.chem.scand.24-3471
10.1107/S0909049505012719
10.1039/C5CP00222B
10.1515/9781400853335.155
ContentType Journal Article
Copyright Copyright © 2017 American Chemical Society
Copyright_xml – notice: Copyright © 2017 American Chemical Society
DBID AAYXX
CITATION
DOI 10.1021/acscatal.6b03603
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2155-5435
EndPage 4181
ExternalDocumentID 10_1021_acscatal_6b03603
b641468715
GroupedDBID 53G
55A
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
ED~
EJD
GNL
IH9
JG
JG~
RNS
ROL
UI2
VF5
VG9
W1F
.K2
AAHBH
AAYXX
ABJNI
ABQRX
ACGFO
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
ID FETCH-LOGICAL-a280t-266d506b1911b7a88fa000f0d4047990530cea109e8322855d3a38a0da0f20163
IEDL.DBID ACS
ISSN 2155-5435
IngestDate Fri Aug 23 01:48:57 EDT 2024
Thu Aug 27 13:42:35 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords density functional calculations
dehydrogenation
nanoparticles
heterogeneous catalysis
electronic structure
RIXS spectroscopy
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a280t-266d506b1911b7a88fa000f0d4047990530cea109e8322855d3a38a0da0f20163
ORCID 0000-0003-3678-6562
0000-0001-8469-1715
PageCount 9
ParticipantIDs crossref_primary_10_1021_acscatal_6b03603
acs_journals_10_1021_acscatal_6b03603
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2017-06-02
PublicationDateYYYYMMDD 2017-06-02
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-02
  day: 02
PublicationDecade 2010
PublicationTitle ACS catalysis
PublicationTitleAlternate ACS Catal
PublicationYear 2017
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
Boudart M. (ref14/cit14) 1984
ref12/cit12
ref15/cit15
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref51/cit51
  doi: 10.1016/j.cattod.2012.09.034
– ident: ref2/cit2
  doi: 10.1021/cr5002436
– ident: ref15/cit15
  doi: 10.1039/c0cp00341g
– ident: ref33/cit33
  doi: 10.1016/j.jcat.2006.04.004
– ident: ref30/cit30
  doi: 10.1021/acscatal.6b01509
– ident: ref34/cit34
  doi: 10.1039/C4CY00414K
– ident: ref13/cit13
  doi: 10.1023/A:1016630622312
– ident: ref5/cit5
  doi: 10.1016/S0920-5861(96)00028-4
– ident: ref1/cit1
  doi: 10.1002/aic.14368
– ident: ref18/cit18
  doi: 10.1016/0039-6028(89)90370-1
– ident: ref48/cit48
  doi: 10.1007/BF00899370
– ident: ref4/cit4
  doi: 10.1002/anie.201404460
– ident: ref6/cit6
  doi: 10.1016/S0360-0564(02)45013-4
– ident: ref3/cit3
  doi: 10.1080/01614940701804745
– ident: ref39/cit39
  doi: 10.1103/PhysRevLett.76.2141
– ident: ref52/cit52
  doi: 10.1238/Physica.Topical.115a00998
– ident: ref40/cit40
  doi: 10.1016/0039-6028(94)90427-8
– ident: ref41/cit41
  doi: 10.1007/s11244-013-0159-2
– ident: ref21/cit21
  doi: 10.1039/C6CY00491A
– ident: ref54/cit54
  doi: 10.1103/PhysRevB.49.14251
– ident: ref47/cit47
  doi: 10.1103/PhysRev.17.571
– ident: ref43/cit43
  doi: 10.1103/PhysRevB.41.8139
– ident: ref42/cit42
  doi: 10.1103/PhysRevLett.69.3397
– ident: ref12/cit12
  doi: 10.1021/jp9902452
– ident: ref22/cit22
  doi: 10.1016/j.cattod.2017.03.054c
– ident: ref35/cit35
  doi: 10.1103/RevModPhys.73.203
– ident: ref37/cit37
  doi: 10.1103/PhysRevLett.81.2819
– ident: ref38/cit38
  doi: 10.1038/376238a0
– ident: ref19/cit19
  doi: 10.1016/j.jcat.2014.07.016
– ident: ref58/cit58
  doi: 10.1103/PhysRevB.50.17953
– ident: ref57/cit57
  doi: 10.1103/PhysRevLett.77.3865
– ident: ref7/cit7
  doi: 10.1016/0039-6028(96)80007-0
– ident: ref11/cit11
  doi: 10.1021/la991112a
– ident: ref55/cit55
  doi: 10.1016/0927-0256(96)00008-0
– ident: ref9/cit9
  doi: 10.1021/ie030357m
– ident: ref44/cit44
  doi: 10.1107/S0909049597019298
– ident: ref32/cit32
  doi: 10.1007/s11244-011-9662-5
– ident: ref25/cit25
  doi: 10.1039/c000403k
– ident: ref36/cit36
  doi: 10.1103/PhysRevB.59.2649
– ident: ref24/cit24
  doi: 10.1021/ja907760p
– ident: ref28/cit28
  doi: 10.1021/jp509376q
– ident: ref31/cit31
  doi: 10.1021/acscatal.6b01128
– ident: ref29/cit29
  doi: 10.1016/j.jpcs.2005.09.012
– ident: ref23/cit23
  doi: 10.1039/c0cs00054j
– ident: ref56/cit56
  doi: 10.1103/PhysRevB.54.11169
– ident: ref17/cit17
  doi: 10.1016/j.jcat.2010.01.016
– ident: ref27/cit27
  doi: 10.1063/1.3367958
– ident: ref10/cit10
  doi: 10.1016/j.molcata.2006.10.025
– ident: ref26/cit26
  doi: 10.1021/acs.accounts.5b00309
– ident: ref16/cit16
  doi: 10.1021/ie800361a
– ident: ref53/cit53
  doi: 10.1103/PhysRevB.47.558
– ident: ref59/cit59
  doi: 10.1103/PhysRevB.59.1758
– ident: ref46/cit46
  doi: 10.1080/08957959608201408
– ident: ref49/cit49
  doi: 10.1007/BF00897822
– ident: ref8/cit8
  doi: 10.1002/aic.15010
– ident: ref50/cit50
  doi: 10.3891/acta.chem.scand.24-3471
– ident: ref45/cit45
  doi: 10.1107/S0909049505012719
– ident: ref20/cit20
  doi: 10.1039/C5CP00222B
– start-page: 155
  volume-title: Kinetics of Heterogeneous Catalytic Reactions
  year: 1984
  ident: ref14/cit14
  doi: 10.1515/9781400853335.155
  contributor:
    fullname: Boudart M.
SSID ssj0000456870
Score 2.6092587
Snippet Supported metal nanoparticles are vital as heterogeneous catalysts in the chemical transformation of hydrocarbon resources. The catalytic properties of these...
SourceID crossref
acs
SourceType Aggregation Database
Publisher
StartPage 4173
Title Zinc Promotion of Platinum for Catalytic Light Alkane Dehydrogenation: Insights into Geometric and Electronic Effects
URI http://dx.doi.org/10.1021/acscatal.6b03603
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60HvTiW6wv9qAHD6ubTdJsvJW0WkGkUAXxEvYVLNqNNM2h_97ZNC1FFPSc7BDmkfl2ZvcbhM4ld6TehpJMx4oEMZdEgiMRqoTjM89UxNzl5N4genzhne4yTc73Dj7zroUqqkrGVUvC39YRe66xCICCg0HJYFFPcdCEV7PhIImFJAQYUHclfxLicpEqlnLRUlK53frP52yjzRo64vbM1jtoxdhdtJ7MJ7btofJ1aBXuzw7Y5RbnGe67o262HGHApjhxEqewGj-4LTluf7wLa3DHvE31OAdPqqx0g-9t4Z4XeGgnOb4z-ciN3VJYWI27i7E5eEZ8XOyj59vuU9Ij9VgFIhinEwIpWYe0JWGn5slIcJ4JUF9GdeDo5mOISqqM8GhsXLTzMNS-8LmgWtAM4ELLP0ANm1tziLDyuMxgrQmkH2iPx1QFjIYQ1zILdcSa6AL0ldZhUaRVx5t56VyJaa3EJrqcGyL9nLFs_Pru0R9lHqMN5lKwq5iwE9SYjEtzilYLXZ5VnvMFgSS_Ig
link.rule.ids 315,782,786,2769,27085,27933,27934,56747,56797
linkProvider American Chemical Society
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4oHvDi24jPPejBQ3VbWth6IzyEiIQETIyXZl-NRNkaCgf-vTOloAdNjNe2O9nMo_Pt7O43hFxKjqTehjmxDpXjh1w6EhzJYUogn3msqh5eTm4Pqr1n3mgiTY67vAsDk0hBUppt4n-xC7i38CwraNxUJPx0kd9zI6gAFkY0VB-syiqIUHjWIg5yWeAEgAbyzcmfhGBKUum3lPQtt7S2_zGrHbKVA0laW1h-l6wZu0eK9WX_tn0yexlZRfuL43aJpUlM-3jwzc7GFJAqraPEOYymXVyg09r7m7CGNszrXE8S8KvMZne0Y1N8n9KRnSb03iRjbMKlqLCaNldNdOiCBjk9IE-t5rDedvImC47wOJs6kKB1wCoS1m2urArOYwFajJn2kXw-hBhlygiXhQZjnweBLosyF0wLFgN4qJQPScEm1hwRqlwuYxhrfFn2tctDpnyPBRDlMg501SuRK9BXlAdJGmX7354bLZUY5UoskeulPaKPBefGr98e_1HmBSm2h4_dqNvpPZyQTQ-TM9ZSvFNSmE5m5oysp3p2njnTJ4ZJx48
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA4-QL34Ft_moAcPq9ntppv1VvrQYimFKoiXJU8UNVvc9uC_d2a7FQ8K4nWzGcJkJvNKviHkVAkE9bYscCbVQZwKFSgQpIBpiXjmTicRPk6-GSb9B9FqI0wOn72FgUUUQKkoi_io1SPjKoSB8BK-l0mNi7qCgxcxPhd5PUkx5mo0h1-pFfRSRNkmDuwZDzh4BFWB8iciaJZ08c0sfbMvnbV_rmydrFYOJW1MJWCDzFm_SZabsz5uW2Ty-Ow1HUyv3eWe5o4O8AKcn7xR8FhpEyl-wGzaw0CdNl5fpLe0ZZ8-zHsO8lXu3RXt-gLHC_rsxzm9tvkbNuPSVHpD21_NdOgUDrnYJved9l3zJqiaLQQyEmwcgKE2nNUVxG-hSqQQTgInHTMxgtCnoKtMWxmy1OIZIDg3NVkTkhnJHDgR9doOWfC5t7uE6lAoB3NtrGqxCUXKdBwxDtquHDdJtEfOgF9ZpSxFVtbBozCbMTGrmLhHzmd7ko2m2Bu__rv_R5onZGnQ6mS9bv_2gKxEaKMxpRIdkoXx-8QekfnCTI5LefoEMA7KEg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Zinc+Promotion+of+Platinum+for+Catalytic+Light+Alkane+Dehydrogenation%3A+Insights+into+Geometric+and+Electronic+Effects&rft.jtitle=ACS+catalysis&rft.au=Cybulskis%2C+Viktor+J&rft.au=Bukowski%2C+Brandon+C&rft.au=Tseng%2C+Han-Ting&rft.au=Gallagher%2C+James+R&rft.date=2017-06-02&rft.pub=American+Chemical+Society&rft.issn=2155-5435&rft.eissn=2155-5435&rft.volume=7&rft.issue=6&rft.spage=4173&rft.epage=4181&rft_id=info:doi/10.1021%2Facscatal.6b03603&rft.externalDocID=b641468715
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2155-5435&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2155-5435&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2155-5435&client=summon