End-Capping π‑Conjugated Naphthodithiophene Diimide (NDTI)-Based Triads with Noncovalent Intramolecular S···O Interactions: A Route towards High-Performance Solution-Processable Air-Stable n‑Type Semiconductors

Introducing noncovalent intramolecular interactions into functional π-conjugated organic molecules or polymers is a useful method to improve the performance of organic semiconducting devices. In this study, two small molecules based on naphthodithiophene diimide (NDTI), NDTI-BTIC1 and NDTI-BTIC2, we...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied electronic materials Vol. 3; no. 12; pp. 5573 - 5583
Main Authors: Ran, Huijuan, Li, Fei, Zheng, Rong, Ni, Wenjing, Lei, Zheng, Xie, Fuli, Duan, Xuewei, Han, Ruijun, Pan, Na, Hu, Jian-Yong
Format: Journal Article
Language:English
Published: American Chemical Society 28-12-2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Introducing noncovalent intramolecular interactions into functional π-conjugated organic molecules or polymers is a useful method to improve the performance of organic semiconducting devices. In this study, two small molecules based on naphthodithiophene diimide (NDTI), NDTI-BTIC1 and NDTI-BTIC2, were successfully designed and synthesized by covalently connecting an electron-deficient NDTI-core and two 3-(dicyanomethylidene)-indan-1-one (IC) groups with thiophene substituted by an alkoxy chain or alkyl chain, respectively. Density functional theory (DFT) calculations on the optimized geometries of the triads predict that the existence of noncovalent intramolecular S (thiophene)···O (alkoxy) interactions is possible in NDTI-BTIC1. The molecular orbital distributions of NDTI-BTIC1 and NDTI-BTIC2 show that the lowest unoccupied molecular orbitals (LUMOs) are delocalized in the whole molecule, implying the possibility to show n-type transport characteristics. The two molecules further demonstrated LUMOs at a low altitude of −4.37 to −4.45 eV, low enough for the stable transmission of electrons in the atmosphere. The solution-processing method was used to prepare transistors based on the two molecules’ bottom-gate top-contact (BGTC), which exhibited unipolar n-type field-effect transistor (FET) characteristics in the air. The FET performance of NDTI-BTIC1 is higher than that of NDTI-BTIC2 in both the as-spun and thermal annealed films, possibly attributed to the existence of noncovalent intramolecular S···O interactions in NDTI-BTIC1. Moreover, the maximum electron mobility of NDTI-BTIC1 obtained at 150 °C thermal annealing is improved by one order of magnitude compared to that of NDTI-BTIC2, being 0.17 and 0.085 cm2 V–1 s–1, respectively. The transport difference of the two molecules was proved by film morphology analysis. The results show that constructing noncovalent intramolecular S···O conformational locks between the TIC unit and NDTI can improve the organic field-effect transistor (OFET) devices’ performance through reasonable molecular design strategies.
AbstractList Introducing noncovalent intramolecular interactions into functional π-conjugated organic molecules or polymers is a useful method to improve the performance of organic semiconducting devices. In this study, two small molecules based on naphthodithiophene diimide (NDTI), NDTI-BTIC1 and NDTI-BTIC2, were successfully designed and synthesized by covalently connecting an electron-deficient NDTI-core and two 3-(dicyanomethylidene)-indan-1-one (IC) groups with thiophene substituted by an alkoxy chain or alkyl chain, respectively. Density functional theory (DFT) calculations on the optimized geometries of the triads predict that the existence of noncovalent intramolecular S (thiophene)···O (alkoxy) interactions is possible in NDTI-BTIC1. The molecular orbital distributions of NDTI-BTIC1 and NDTI-BTIC2 show that the lowest unoccupied molecular orbitals (LUMOs) are delocalized in the whole molecule, implying the possibility to show n-type transport characteristics. The two molecules further demonstrated LUMOs at a low altitude of −4.37 to −4.45 eV, low enough for the stable transmission of electrons in the atmosphere. The solution-processing method was used to prepare transistors based on the two molecules’ bottom-gate top-contact (BGTC), which exhibited unipolar n-type field-effect transistor (FET) characteristics in the air. The FET performance of NDTI-BTIC1 is higher than that of NDTI-BTIC2 in both the as-spun and thermal annealed films, possibly attributed to the existence of noncovalent intramolecular S···O interactions in NDTI-BTIC1. Moreover, the maximum electron mobility of NDTI-BTIC1 obtained at 150 °C thermal annealing is improved by one order of magnitude compared to that of NDTI-BTIC2, being 0.17 and 0.085 cm2 V–1 s–1, respectively. The transport difference of the two molecules was proved by film morphology analysis. The results show that constructing noncovalent intramolecular S···O conformational locks between the TIC unit and NDTI can improve the organic field-effect transistor (OFET) devices’ performance through reasonable molecular design strategies.
Author Duan, Xuewei
Zheng, Rong
Xie, Fuli
Ran, Huijuan
Ni, Wenjing
Lei, Zheng
Li, Fei
Han, Ruijun
Pan, Na
Hu, Jian-Yong
AuthorAffiliation Shaanxi Key Laboratory for Advanced Energy Devices
Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering
Tianjin University
Shaanxi Normal University
Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education
Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science
AuthorAffiliation_xml – name: Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering
– name: Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science
– name: Tianjin University
– name: Shaanxi Key Laboratory for Advanced Energy Devices
– name: Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education
– name: Shaanxi Normal University
Author_xml – sequence: 1
  givenname: Huijuan
  surname: Ran
  fullname: Ran, Huijuan
  organization: Shaanxi Normal University
– sequence: 2
  givenname: Fei
  surname: Li
  fullname: Li, Fei
  organization: Tianjin University
– sequence: 3
  givenname: Rong
  surname: Zheng
  fullname: Zheng, Rong
  organization: Shaanxi Normal University
– sequence: 4
  givenname: Wenjing
  surname: Ni
  fullname: Ni, Wenjing
  organization: Shaanxi Normal University
– sequence: 5
  givenname: Zheng
  surname: Lei
  fullname: Lei, Zheng
  organization: Shaanxi Normal University
– sequence: 6
  givenname: Fuli
  surname: Xie
  fullname: Xie, Fuli
  organization: Shaanxi Normal University
– sequence: 7
  givenname: Xuewei
  surname: Duan
  fullname: Duan, Xuewei
  organization: Shaanxi Normal University
– sequence: 8
  givenname: Ruijun
  surname: Han
  fullname: Han, Ruijun
  organization: Shaanxi Normal University
– sequence: 9
  givenname: Na
  surname: Pan
  fullname: Pan, Na
  organization: Shaanxi Normal University
– sequence: 10
  givenname: Jian-Yong
  orcidid: 0000-0002-6197-7531
  surname: Hu
  fullname: Hu, Jian-Yong
  email: hujianyong@snnu.edu.cn
  organization: Shaanxi Normal University
BookMark eNp1kb9u2zAQxokiBZqmmbNyTFEwIUVLsrK5dv4YCJwg1i6cSMqiIZECSSXIllfo03TPC2Tv2Ccp3XjoUhxwd7j7fYcDvs_owFijEDph9IzRhJ2D8KC6_owJSoti-gEdJhnPScYYP_in_4SOvd9SGiXJJEnZIfp1aSSZwzBos8FvL79ffsyt2Y4bCEriFQxtaK3UodV2aJVReKF1r6XCp6tFufxKvoOPXOk0SI-fIodX1gj7CJ0yAS9NcNDbTomxA4fXrz93cbebKwciaGv8BZ7hBzsGhYN9AhfP3OhNS-6Va6zrwQiF17Ybdyy5d1Yo76HuFJ5pR9bhb2vi1-XzEEHVa2GNHEWwzn9BHxvovDre1yNUXl2W8xtye3e9nM9uCSR5HkjC07rJUp5PZMJ4kzVFTNNJLmlOhcwLmKYy5XWdQU1TAYznqcj4RBaiyWTN-BE6fz8rnPXeqaYanO7BPVeMVjtzqr051d6cqPj2roiLamtHZ-J7_6X_AKUmne0
CitedBy_id crossref_primary_10_1021_acs_jpclett_3c02468
crossref_primary_10_1002_chem_202203571
crossref_primary_10_1039_D2CS00262K
crossref_primary_10_1016_j_tetlet_2024_155052
crossref_primary_10_3390_ma16206645
Cites_doi 10.1007/s11467-020-1009-x
10.1021/cm4042346
10.1039/C6TC02891H
10.1021/acsami.9b16686
10.1039/C7QO00061H
10.1039/D0CC07086F
10.1016/j.orgel.2015.07.038
10.1039/C9TC05038H
10.1021/cr500225d
10.1039/c0cc00947d
10.1002/adma.201400056
10.1021/acsami.0c04552
10.1021/am301793m
10.1039/c4nj02192d
10.1002/adfm.201801025
10.1038/srep00754
10.1021/acsami.8b16714
10.1021/ja405112s
10.1021/acs.macromol.6b01510
10.1021/ja00456a072
10.1039/c5tc00486a
10.1002/adma.200903152
10.1002/adma.19930051110
10.1039/C6CC07102C
10.1021/ma502306f
10.1002/adma.201606217
10.1021/ja810050y
10.1002/adfm.201802895
10.1021/jacs.7b00566
10.1021/acs.chemrev.7b00084
10.1021/acs.macromol.6b02313
10.1039/C7CC08497H
10.1021/acs.chemmater.8b02359
10.1007/S11467-020-1045-6
10.1002/adma.201903882
10.1002/slct.201803952
10.1002/adma.201205098
10.1021/ja3120532
10.1021/acs.macromol.8b00161
10.1021/cm503864u
10.1002/adma.200903712
10.1039/C7QM00025A
10.1021/cr100380z
10.1007/s11426-020-9868-8
10.1002/advs.202002930
10.1021/ja404753r
10.1039/D0TC00270D
10.1002/aenm.202002678
10.1021/cr990402t
10.1021/acsaem.0c02719
10.1002/anie.202013625
10.1021/acsami.9b18076
10.1002/aenm.201801618
10.1021/acs.chemmater.6b00850
10.1016/j.dyepig.2019.04.043
10.1002/anie.202013053
10.1063/1.3064160
10.1021/ja303401s
10.1021/ar200006r
10.1021/acs.macromol.7b00414
10.31635/ccschem.020.202000540
10.1039/C8TC05577G
10.1002/adfm.202000325
ContentType Journal Article
Copyright 2021 American Chemical Society
Copyright_xml – notice: 2021 American Chemical Society
DBID AAYXX
CITATION
DOI 10.1021/acsaelm.1c00998
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2637-6113
EndPage 5583
ExternalDocumentID 10_1021_acsaelm_1c00998
a804368050
GroupedDBID ABFRP
ABUCX
ACS
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
EBS
GGK
VF5
VG9
AAYXX
ABQRX
BAANH
CITATION
CUPRZ
ID FETCH-LOGICAL-a277t-235bf65374d213f6f93f6847d070cd79a85d53bb6ab05ca1375c634d9cf6db13
IEDL.DBID ACS
ISSN 2637-6113
IngestDate Fri Aug 23 01:49:03 EDT 2024
Thu Dec 30 08:20:01 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords naphthodithiophene diimide
solution-processable
noncovalent intramolecular S···O interactions
OFETs
air-stable
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a277t-235bf65374d213f6f93f6847d070cd79a85d53bb6ab05ca1375c634d9cf6db13
ORCID 0000-0002-6197-7531
PageCount 11
ParticipantIDs crossref_primary_10_1021_acsaelm_1c00998
acs_journals_10_1021_acsaelm_1c00998
PublicationCentury 2000
PublicationDate 20211228
2021-12-28
PublicationDateYYYYMMDD 2021-12-28
PublicationDate_xml – month: 12
  year: 2021
  text: 20211228
  day: 28
PublicationDecade 2020
PublicationTitle ACS applied electronic materials
PublicationTitleAlternate ACS Appl. Electron. Mater
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref4/cit4
  doi: 10.1007/s11467-020-1009-x
– ident: ref39/cit39
  doi: 10.1021/cm4042346
– ident: ref40/cit40
  doi: 10.1039/C6TC02891H
– ident: ref28/cit28
  doi: 10.1021/acsami.9b16686
– ident: ref17/cit17
  doi: 10.1039/C7QO00061H
– ident: ref27/cit27
  doi: 10.1039/D0CC07086F
– ident: ref45/cit45
  doi: 10.1016/j.orgel.2015.07.038
– ident: ref56/cit56
  doi: 10.1039/C9TC05038H
– ident: ref2/cit2
  doi: 10.1021/cr500225d
– ident: ref3/cit3
  doi: 10.1039/c0cc00947d
– ident: ref10/cit10
  doi: 10.1002/adma.201400056
– ident: ref52/cit52
  doi: 10.1021/acsami.0c04552
– ident: ref12/cit12
  doi: 10.1021/am301793m
– ident: ref63/cit63
  doi: 10.1039/c4nj02192d
– ident: ref9/cit9
  doi: 10.1002/adfm.201801025
– ident: ref13/cit13
  doi: 10.1038/srep00754
– ident: ref24/cit24
  doi: 10.1021/acsami.8b16714
– ident: ref14/cit14
  doi: 10.1021/ja405112s
– ident: ref38/cit38
  doi: 10.1021/acs.macromol.6b01510
– ident: ref26/cit26
  doi: 10.1021/ja00456a072
– ident: ref47/cit47
  doi: 10.1039/c5tc00486a
– ident: ref7/cit7
  doi: 10.1002/adma.200903152
– ident: ref62/cit62
  doi: 10.1002/adma.19930051110
– ident: ref23/cit23
  doi: 10.1039/C6CC07102C
– ident: ref48/cit48
  doi: 10.1021/ma502306f
– ident: ref20/cit20
  doi: 10.1002/adma.201606217
– ident: ref36/cit36
  doi: 10.1021/ja810050y
– ident: ref55/cit55
  doi: 10.1002/adfm.201802895
– ident: ref35/cit35
  doi: 10.1021/jacs.7b00566
– ident: ref58/cit58
  doi: 10.1021/acs.chemrev.7b00084
– ident: ref50/cit50
  doi: 10.1021/acs.macromol.6b02313
– ident: ref64/cit64
  doi: 10.1039/C7CC08497H
– ident: ref22/cit22
  doi: 10.1021/acs.chemmater.8b02359
– ident: ref6/cit6
  doi: 10.1007/S11467-020-1045-6
– ident: ref5/cit5
  doi: 10.1002/adma.201903882
– ident: ref54/cit54
  doi: 10.1002/slct.201803952
– ident: ref16/cit16
  doi: 10.1002/adma.201205098
– ident: ref42/cit42
  doi: 10.1021/ja3120532
– ident: ref30/cit30
  doi: 10.1021/acs.macromol.8b00161
– ident: ref43/cit43
  doi: 10.1021/cm503864u
– ident: ref25/cit25
  doi: 10.1002/adma.200903712
– ident: ref53/cit53
  doi: 10.1039/C7QM00025A
– ident: ref1/cit1
  doi: 10.1021/cr100380z
– ident: ref31/cit31
  doi: 10.1007/s11426-020-9868-8
– ident: ref44/cit44
  doi: 10.1002/advs.202002930
– ident: ref46/cit46
  doi: 10.1021/ja404753r
– ident: ref32/cit32
  doi: 10.1039/D0TC00270D
– ident: ref60/cit60
  doi: 10.1002/aenm.202002678
– ident: ref65/cit65
  doi: 10.1021/cr990402t
– ident: ref33/cit33
  doi: 10.1021/acsaem.0c02719
– ident: ref19/cit19
  doi: 10.1002/anie.202013625
– ident: ref34/cit34
  doi: 10.1021/acsami.9b18076
– ident: ref57/cit57
– ident: ref29/cit29
  doi: 10.1002/aenm.201801618
– ident: ref41/cit41
  doi: 10.1021/acs.chemmater.6b00850
– ident: ref51/cit51
  doi: 10.1016/j.dyepig.2019.04.043
– ident: ref61/cit61
  doi: 10.1002/anie.202013053
– ident: ref8/cit8
  doi: 10.1063/1.3064160
– ident: ref37/cit37
  doi: 10.1021/ja303401s
– ident: ref18/cit18
  doi: 10.1002/adfm.201801025
– ident: ref11/cit11
  doi: 10.1021/ar200006r
– ident: ref49/cit49
  doi: 10.1021/acs.macromol.7b00414
– ident: ref59/cit59
  doi: 10.31635/ccschem.020.202000540
– ident: ref67/cit67
  doi: 10.1039/C8TC05577G
– ident: ref21/cit21
  doi: 10.1002/adfm.202000325
– ident: ref15/cit15
  doi: 10.1039/c0cc00947d
– ident: ref66/cit66
  doi: 10.1021/acsami.8b16714
SSID ssj0002124251
Score 2.2627175
Snippet Introducing noncovalent intramolecular interactions into functional π-conjugated organic molecules or polymers is a useful method to improve the performance of...
SourceID crossref
acs
SourceType Aggregation Database
Publisher
StartPage 5573
Title End-Capping π‑Conjugated Naphthodithiophene Diimide (NDTI)-Based Triads with Noncovalent Intramolecular S···O Interactions: A Route towards High-Performance Solution-Processable Air-Stable n‑Type Semiconductors
URI http://dx.doi.org/10.1021/acsaelm.1c00998
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29btswECaadEiXpk1bND8tbsiQDExL0SLlbK7swFncAPbQTaBIqlAQU4Fl73mFPE32vED3jnmS3MmyG6AI0EKAoEEgBNyJd_fxvu8YO7SYEouuVdw3otoeCxQjpeRCFVhsxD5ZiukMx3r0I-kPSCbn-JkT_Eh8MbY2_mp6IixlM8kGexlpzBMoC0rHazgFd2D0PiqvItUQ34RcC_n8tQZFIls_iURPQsrZ9n98zBv2us0bobc09Fv2wocdtpWuxrW9Y78HwfHUkNzCT_h183Bzm1bhckEomYORuSb8kwgYJQkJBA_9spyWzsPRqD85P-bfMJo5mKA7uhoInIVRFWyFfohRCc4JAp6uJunC-P6Oru_Q4IlLakR9Cj2g_iIP86YVtwbqIeEXf5gJsMLgeEtPINoW9MoZx5SXHgN-NRXGMKaW_SqQFm01q9-zydlgkg55O7iBm0jrOY9knBcqlrrjIiELVXTxhmHQ4f5ine6aJHaxzHNl8q-xNULq2CrZcV1bKJcL-YFthir4jwyUcDGdLJKqWSenOdkWMxDvisTqPFF6lx2iSbL2v6uz5kg9Ellrp6y10y47Wpk6u16qeDz36t6_rbjPXkXU3SKI3H7ANuezhf_ENmq3-Nw45iO2seYr
link.rule.ids 315,782,786,2769,27085,27933,27934,56747,56797
linkProvider American Chemical Society
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELZoOZRL-RctBebQQzkY6njtZLkt2a12RQlImwO3KLEdlKqbVOvde1-Bp-HOC3Dn2CdhJpu0lRASKFIURZFlaSae3-8bxg4NusRiaDR3Lam2wwAll1JyoUsMNpSLNmQ603mYfInGE6LJOe6xMLgJjyv5toh_wy4g3uK73J0v3ghDTk20xe4qja4wOUPx_DqrggcxKiFFWYFu8W9CXvP5_LEGGSTjbxmkW5bl5P7_7-kB2-28SBhtxP6Q3XH1I7YT98PbHrNfk9ryOCfyha_w8_Lq8lvc1GdryplZSPILyoYSHKMiWoHawbiqFpV1cJSM09lr_h5tm4UUldN6oFQtJE1tGtRKtFEwo4Twop-rC_Mf3-n6BG12cQOU8O9gBNRt5GDVNuZ6oI4S_vkGpwB9Ro53YAUCccGoWnJ0gOmxxl1TmAxzauBvamKmbZb-CUtPJmk85d0YB54HYbjigVRFqZUMBzYQstTlEG9oFC2eNsaGwzxSVsmi0HlxrEwuZKiMlgM7NKW2hZBP2Xbd1O4ZAy2sojojcZwNCpqabdAfcbaMTFhEOtxjhyiSrPsLfdYW2AORdXLKOjntsaNe4tnFhtPjb5_u_9uKr9jONP14mp3Okg_P2b2A-l4Ewd4P2PZquXYv2Ja365etrv4GiQXumA
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEBZNCm0u_S9Jf-eQQ3pQG1lr2e5t690lS4sb2D30ZmxJLi5deVnt3vMKfZre8wK595gnyYzXTgOlUIrBGGGEYEaaH833DWOHGl1ikWjFbUuqbTFAKaSUXKgKg43QxlsynZNZlH2JR2OiyRn0WBhchMeZfHuJT7t6aaqOYUC8w_HCfl-8FZocm3iH3Q5VlFDINUxn15kVPIxRESnSClSLgRPymtPnjznIKGl_wyjdsC6T-_-3rgfsXudNwnAr_ofslnWP2N20b-L2mP0aO8PTgkgYvsLF2eXZj7Rx3zaUOzOQFUvKihIsoyZ6AWdhVNeL2lg4ykbz6Rv-AW2cgTkqqfFAKVvIGqcb1E60VTClxPCi768Ls_Of9HyGNsu4BUz49zAEqjqysG4LdD1QZQk__Y1XgD4zxzvQAoG5YFivODrC9Olw1RQuw4wK-RtHDLXNyj9h88l4np7wrp0DL4IoWvNAhmWlQhkNTCBkpaoEX2gcDZ462kRJEYcmlGWpivI41IWQUaiVHJhEV8qUQj5lu65xdp-BEiak-0biOhuU1D1bo19iTRXrqIxVdMAOUSR5txt93l60ByLv5JR3cjpgR73U8-WW2-Nvvz77txlfszuno0n-aZp9fM72Aip_EYR-f8F216uNfcl2vNm8atX1ChGp8Rs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=End-Capping+%CF%80-Conjugated+Naphthodithiophene+Diimide+%28NDTI%29-Based+Triads+with+Noncovalent+Intramolecular+S%C2%B7%C2%B7%C2%B7O+Interactions%3A+A+Route+towards+High-Performance+Solution-Processable+Air-Stable+n-Type+Semiconductors&rft.jtitle=ACS+applied+electronic+materials&rft.au=Ran%2C+Huijuan&rft.au=Li%2C+Fei&rft.au=Zheng%2C+Rong&rft.au=Ni%2C+Wenjing&rft.date=2021-12-28&rft.issn=2637-6113&rft.eissn=2637-6113&rft.volume=3&rft.issue=12&rft.spage=5573&rft.epage=5583&rft_id=info:doi/10.1021%2Facsaelm.1c00998&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsaelm_1c00998
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2637-6113&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2637-6113&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2637-6113&client=summon