End-Capping π‑Conjugated Naphthodithiophene Diimide (NDTI)-Based Triads with Noncovalent Intramolecular S···O Interactions: A Route towards High-Performance Solution-Processable Air-Stable n‑Type Semiconductors
Introducing noncovalent intramolecular interactions into functional π-conjugated organic molecules or polymers is a useful method to improve the performance of organic semiconducting devices. In this study, two small molecules based on naphthodithiophene diimide (NDTI), NDTI-BTIC1 and NDTI-BTIC2, we...
Saved in:
Published in: | ACS applied electronic materials Vol. 3; no. 12; pp. 5573 - 5583 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
American Chemical Society
28-12-2021
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Introducing noncovalent intramolecular interactions into functional π-conjugated organic molecules or polymers is a useful method to improve the performance of organic semiconducting devices. In this study, two small molecules based on naphthodithiophene diimide (NDTI), NDTI-BTIC1 and NDTI-BTIC2, were successfully designed and synthesized by covalently connecting an electron-deficient NDTI-core and two 3-(dicyanomethylidene)-indan-1-one (IC) groups with thiophene substituted by an alkoxy chain or alkyl chain, respectively. Density functional theory (DFT) calculations on the optimized geometries of the triads predict that the existence of noncovalent intramolecular S (thiophene)···O (alkoxy) interactions is possible in NDTI-BTIC1. The molecular orbital distributions of NDTI-BTIC1 and NDTI-BTIC2 show that the lowest unoccupied molecular orbitals (LUMOs) are delocalized in the whole molecule, implying the possibility to show n-type transport characteristics. The two molecules further demonstrated LUMOs at a low altitude of −4.37 to −4.45 eV, low enough for the stable transmission of electrons in the atmosphere. The solution-processing method was used to prepare transistors based on the two molecules’ bottom-gate top-contact (BGTC), which exhibited unipolar n-type field-effect transistor (FET) characteristics in the air. The FET performance of NDTI-BTIC1 is higher than that of NDTI-BTIC2 in both the as-spun and thermal annealed films, possibly attributed to the existence of noncovalent intramolecular S···O interactions in NDTI-BTIC1. Moreover, the maximum electron mobility of NDTI-BTIC1 obtained at 150 °C thermal annealing is improved by one order of magnitude compared to that of NDTI-BTIC2, being 0.17 and 0.085 cm2 V–1 s–1, respectively. The transport difference of the two molecules was proved by film morphology analysis. The results show that constructing noncovalent intramolecular S···O conformational locks between the TIC unit and NDTI can improve the organic field-effect transistor (OFET) devices’ performance through reasonable molecular design strategies. |
---|---|
AbstractList | Introducing noncovalent intramolecular interactions into functional π-conjugated organic molecules or polymers is a useful method to improve the performance of organic semiconducting devices. In this study, two small molecules based on naphthodithiophene diimide (NDTI), NDTI-BTIC1 and NDTI-BTIC2, were successfully designed and synthesized by covalently connecting an electron-deficient NDTI-core and two 3-(dicyanomethylidene)-indan-1-one (IC) groups with thiophene substituted by an alkoxy chain or alkyl chain, respectively. Density functional theory (DFT) calculations on the optimized geometries of the triads predict that the existence of noncovalent intramolecular S (thiophene)···O (alkoxy) interactions is possible in NDTI-BTIC1. The molecular orbital distributions of NDTI-BTIC1 and NDTI-BTIC2 show that the lowest unoccupied molecular orbitals (LUMOs) are delocalized in the whole molecule, implying the possibility to show n-type transport characteristics. The two molecules further demonstrated LUMOs at a low altitude of −4.37 to −4.45 eV, low enough for the stable transmission of electrons in the atmosphere. The solution-processing method was used to prepare transistors based on the two molecules’ bottom-gate top-contact (BGTC), which exhibited unipolar n-type field-effect transistor (FET) characteristics in the air. The FET performance of NDTI-BTIC1 is higher than that of NDTI-BTIC2 in both the as-spun and thermal annealed films, possibly attributed to the existence of noncovalent intramolecular S···O interactions in NDTI-BTIC1. Moreover, the maximum electron mobility of NDTI-BTIC1 obtained at 150 °C thermal annealing is improved by one order of magnitude compared to that of NDTI-BTIC2, being 0.17 and 0.085 cm2 V–1 s–1, respectively. The transport difference of the two molecules was proved by film morphology analysis. The results show that constructing noncovalent intramolecular S···O conformational locks between the TIC unit and NDTI can improve the organic field-effect transistor (OFET) devices’ performance through reasonable molecular design strategies. |
Author | Duan, Xuewei Zheng, Rong Xie, Fuli Ran, Huijuan Ni, Wenjing Lei, Zheng Li, Fei Han, Ruijun Pan, Na Hu, Jian-Yong |
AuthorAffiliation | Shaanxi Key Laboratory for Advanced Energy Devices Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering Tianjin University Shaanxi Normal University Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science |
AuthorAffiliation_xml | – name: Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering – name: Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science – name: Tianjin University – name: Shaanxi Key Laboratory for Advanced Energy Devices – name: Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education – name: Shaanxi Normal University |
Author_xml | – sequence: 1 givenname: Huijuan surname: Ran fullname: Ran, Huijuan organization: Shaanxi Normal University – sequence: 2 givenname: Fei surname: Li fullname: Li, Fei organization: Tianjin University – sequence: 3 givenname: Rong surname: Zheng fullname: Zheng, Rong organization: Shaanxi Normal University – sequence: 4 givenname: Wenjing surname: Ni fullname: Ni, Wenjing organization: Shaanxi Normal University – sequence: 5 givenname: Zheng surname: Lei fullname: Lei, Zheng organization: Shaanxi Normal University – sequence: 6 givenname: Fuli surname: Xie fullname: Xie, Fuli organization: Shaanxi Normal University – sequence: 7 givenname: Xuewei surname: Duan fullname: Duan, Xuewei organization: Shaanxi Normal University – sequence: 8 givenname: Ruijun surname: Han fullname: Han, Ruijun organization: Shaanxi Normal University – sequence: 9 givenname: Na surname: Pan fullname: Pan, Na organization: Shaanxi Normal University – sequence: 10 givenname: Jian-Yong orcidid: 0000-0002-6197-7531 surname: Hu fullname: Hu, Jian-Yong email: hujianyong@snnu.edu.cn organization: Shaanxi Normal University |
BookMark | eNp1kb9u2zAQxokiBZqmmbNyTFEwIUVLsrK5dv4YCJwg1i6cSMqiIZECSSXIllfo03TPC2Tv2Ccp3XjoUhxwd7j7fYcDvs_owFijEDph9IzRhJ2D8KC6_owJSoti-gEdJhnPScYYP_in_4SOvd9SGiXJJEnZIfp1aSSZwzBos8FvL79ffsyt2Y4bCEriFQxtaK3UodV2aJVReKF1r6XCp6tFufxKvoOPXOk0SI-fIodX1gj7CJ0yAS9NcNDbTomxA4fXrz93cbebKwciaGv8BZ7hBzsGhYN9AhfP3OhNS-6Va6zrwQiF17Ybdyy5d1Yo76HuFJ5pR9bhb2vi1-XzEEHVa2GNHEWwzn9BHxvovDre1yNUXl2W8xtye3e9nM9uCSR5HkjC07rJUp5PZMJ4kzVFTNNJLmlOhcwLmKYy5XWdQU1TAYznqcj4RBaiyWTN-BE6fz8rnPXeqaYanO7BPVeMVjtzqr051d6cqPj2roiLamtHZ-J7_6X_AKUmne0 |
CitedBy_id | crossref_primary_10_1021_acs_jpclett_3c02468 crossref_primary_10_1002_chem_202203571 crossref_primary_10_1039_D2CS00262K crossref_primary_10_1016_j_tetlet_2024_155052 crossref_primary_10_3390_ma16206645 |
Cites_doi | 10.1007/s11467-020-1009-x 10.1021/cm4042346 10.1039/C6TC02891H 10.1021/acsami.9b16686 10.1039/C7QO00061H 10.1039/D0CC07086F 10.1016/j.orgel.2015.07.038 10.1039/C9TC05038H 10.1021/cr500225d 10.1039/c0cc00947d 10.1002/adma.201400056 10.1021/acsami.0c04552 10.1021/am301793m 10.1039/c4nj02192d 10.1002/adfm.201801025 10.1038/srep00754 10.1021/acsami.8b16714 10.1021/ja405112s 10.1021/acs.macromol.6b01510 10.1021/ja00456a072 10.1039/c5tc00486a 10.1002/adma.200903152 10.1002/adma.19930051110 10.1039/C6CC07102C 10.1021/ma502306f 10.1002/adma.201606217 10.1021/ja810050y 10.1002/adfm.201802895 10.1021/jacs.7b00566 10.1021/acs.chemrev.7b00084 10.1021/acs.macromol.6b02313 10.1039/C7CC08497H 10.1021/acs.chemmater.8b02359 10.1007/S11467-020-1045-6 10.1002/adma.201903882 10.1002/slct.201803952 10.1002/adma.201205098 10.1021/ja3120532 10.1021/acs.macromol.8b00161 10.1021/cm503864u 10.1002/adma.200903712 10.1039/C7QM00025A 10.1021/cr100380z 10.1007/s11426-020-9868-8 10.1002/advs.202002930 10.1021/ja404753r 10.1039/D0TC00270D 10.1002/aenm.202002678 10.1021/cr990402t 10.1021/acsaem.0c02719 10.1002/anie.202013625 10.1021/acsami.9b18076 10.1002/aenm.201801618 10.1021/acs.chemmater.6b00850 10.1016/j.dyepig.2019.04.043 10.1002/anie.202013053 10.1063/1.3064160 10.1021/ja303401s 10.1021/ar200006r 10.1021/acs.macromol.7b00414 10.31635/ccschem.020.202000540 10.1039/C8TC05577G 10.1002/adfm.202000325 |
ContentType | Journal Article |
Copyright | 2021 American Chemical Society |
Copyright_xml | – notice: 2021 American Chemical Society |
DBID | AAYXX CITATION |
DOI | 10.1021/acsaelm.1c00998 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2637-6113 |
EndPage | 5583 |
ExternalDocumentID | 10_1021_acsaelm_1c00998 a804368050 |
GroupedDBID | ABFRP ABUCX ACS AHGAQ ALMA_UNASSIGNED_HOLDINGS EBS GGK VF5 VG9 AAYXX ABQRX BAANH CITATION CUPRZ |
ID | FETCH-LOGICAL-a277t-235bf65374d213f6f93f6847d070cd79a85d53bb6ab05ca1375c634d9cf6db13 |
IEDL.DBID | ACS |
ISSN | 2637-6113 |
IngestDate | Fri Aug 23 01:49:03 EDT 2024 Thu Dec 30 08:20:01 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | naphthodithiophene diimide solution-processable noncovalent intramolecular S···O interactions OFETs air-stable |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a277t-235bf65374d213f6f93f6847d070cd79a85d53bb6ab05ca1375c634d9cf6db13 |
ORCID | 0000-0002-6197-7531 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1021_acsaelm_1c00998 acs_journals_10_1021_acsaelm_1c00998 |
PublicationCentury | 2000 |
PublicationDate | 20211228 2021-12-28 |
PublicationDateYYYYMMDD | 2021-12-28 |
PublicationDate_xml | – month: 12 year: 2021 text: 20211228 day: 28 |
PublicationDecade | 2020 |
PublicationTitle | ACS applied electronic materials |
PublicationTitleAlternate | ACS Appl. Electron. Mater |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref4/cit4 doi: 10.1007/s11467-020-1009-x – ident: ref39/cit39 doi: 10.1021/cm4042346 – ident: ref40/cit40 doi: 10.1039/C6TC02891H – ident: ref28/cit28 doi: 10.1021/acsami.9b16686 – ident: ref17/cit17 doi: 10.1039/C7QO00061H – ident: ref27/cit27 doi: 10.1039/D0CC07086F – ident: ref45/cit45 doi: 10.1016/j.orgel.2015.07.038 – ident: ref56/cit56 doi: 10.1039/C9TC05038H – ident: ref2/cit2 doi: 10.1021/cr500225d – ident: ref3/cit3 doi: 10.1039/c0cc00947d – ident: ref10/cit10 doi: 10.1002/adma.201400056 – ident: ref52/cit52 doi: 10.1021/acsami.0c04552 – ident: ref12/cit12 doi: 10.1021/am301793m – ident: ref63/cit63 doi: 10.1039/c4nj02192d – ident: ref9/cit9 doi: 10.1002/adfm.201801025 – ident: ref13/cit13 doi: 10.1038/srep00754 – ident: ref24/cit24 doi: 10.1021/acsami.8b16714 – ident: ref14/cit14 doi: 10.1021/ja405112s – ident: ref38/cit38 doi: 10.1021/acs.macromol.6b01510 – ident: ref26/cit26 doi: 10.1021/ja00456a072 – ident: ref47/cit47 doi: 10.1039/c5tc00486a – ident: ref7/cit7 doi: 10.1002/adma.200903152 – ident: ref62/cit62 doi: 10.1002/adma.19930051110 – ident: ref23/cit23 doi: 10.1039/C6CC07102C – ident: ref48/cit48 doi: 10.1021/ma502306f – ident: ref20/cit20 doi: 10.1002/adma.201606217 – ident: ref36/cit36 doi: 10.1021/ja810050y – ident: ref55/cit55 doi: 10.1002/adfm.201802895 – ident: ref35/cit35 doi: 10.1021/jacs.7b00566 – ident: ref58/cit58 doi: 10.1021/acs.chemrev.7b00084 – ident: ref50/cit50 doi: 10.1021/acs.macromol.6b02313 – ident: ref64/cit64 doi: 10.1039/C7CC08497H – ident: ref22/cit22 doi: 10.1021/acs.chemmater.8b02359 – ident: ref6/cit6 doi: 10.1007/S11467-020-1045-6 – ident: ref5/cit5 doi: 10.1002/adma.201903882 – ident: ref54/cit54 doi: 10.1002/slct.201803952 – ident: ref16/cit16 doi: 10.1002/adma.201205098 – ident: ref42/cit42 doi: 10.1021/ja3120532 – ident: ref30/cit30 doi: 10.1021/acs.macromol.8b00161 – ident: ref43/cit43 doi: 10.1021/cm503864u – ident: ref25/cit25 doi: 10.1002/adma.200903712 – ident: ref53/cit53 doi: 10.1039/C7QM00025A – ident: ref1/cit1 doi: 10.1021/cr100380z – ident: ref31/cit31 doi: 10.1007/s11426-020-9868-8 – ident: ref44/cit44 doi: 10.1002/advs.202002930 – ident: ref46/cit46 doi: 10.1021/ja404753r – ident: ref32/cit32 doi: 10.1039/D0TC00270D – ident: ref60/cit60 doi: 10.1002/aenm.202002678 – ident: ref65/cit65 doi: 10.1021/cr990402t – ident: ref33/cit33 doi: 10.1021/acsaem.0c02719 – ident: ref19/cit19 doi: 10.1002/anie.202013625 – ident: ref34/cit34 doi: 10.1021/acsami.9b18076 – ident: ref57/cit57 – ident: ref29/cit29 doi: 10.1002/aenm.201801618 – ident: ref41/cit41 doi: 10.1021/acs.chemmater.6b00850 – ident: ref51/cit51 doi: 10.1016/j.dyepig.2019.04.043 – ident: ref61/cit61 doi: 10.1002/anie.202013053 – ident: ref8/cit8 doi: 10.1063/1.3064160 – ident: ref37/cit37 doi: 10.1021/ja303401s – ident: ref18/cit18 doi: 10.1002/adfm.201801025 – ident: ref11/cit11 doi: 10.1021/ar200006r – ident: ref49/cit49 doi: 10.1021/acs.macromol.7b00414 – ident: ref59/cit59 doi: 10.31635/ccschem.020.202000540 – ident: ref67/cit67 doi: 10.1039/C8TC05577G – ident: ref21/cit21 doi: 10.1002/adfm.202000325 – ident: ref15/cit15 doi: 10.1039/c0cc00947d – ident: ref66/cit66 doi: 10.1021/acsami.8b16714 |
SSID | ssj0002124251 |
Score | 2.2627175 |
Snippet | Introducing noncovalent intramolecular interactions into functional π-conjugated organic molecules or polymers is a useful method to improve the performance of... |
SourceID | crossref acs |
SourceType | Aggregation Database Publisher |
StartPage | 5573 |
Title | End-Capping π‑Conjugated Naphthodithiophene Diimide (NDTI)-Based Triads with Noncovalent Intramolecular S···O Interactions: A Route towards High-Performance Solution-Processable Air-Stable n‑Type Semiconductors |
URI | http://dx.doi.org/10.1021/acsaelm.1c00998 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29btswECaadEiXpk1bND8tbsiQDExL0SLlbK7swFncAPbQTaBIqlAQU4Fl73mFPE32vED3jnmS3MmyG6AI0EKAoEEgBNyJd_fxvu8YO7SYEouuVdw3otoeCxQjpeRCFVhsxD5ZiukMx3r0I-kPSCbn-JkT_Eh8MbY2_mp6IixlM8kGexlpzBMoC0rHazgFd2D0PiqvItUQ34RcC_n8tQZFIls_iURPQsrZ9n98zBv2us0bobc09Fv2wocdtpWuxrW9Y78HwfHUkNzCT_h183Bzm1bhckEomYORuSb8kwgYJQkJBA_9spyWzsPRqD85P-bfMJo5mKA7uhoInIVRFWyFfohRCc4JAp6uJunC-P6Oru_Q4IlLakR9Cj2g_iIP86YVtwbqIeEXf5gJsMLgeEtPINoW9MoZx5SXHgN-NRXGMKaW_SqQFm01q9-zydlgkg55O7iBm0jrOY9knBcqlrrjIiELVXTxhmHQ4f5ine6aJHaxzHNl8q-xNULq2CrZcV1bKJcL-YFthir4jwyUcDGdLJKqWSenOdkWMxDvisTqPFF6lx2iSbL2v6uz5kg9Ellrp6y10y47Wpk6u16qeDz36t6_rbjPXkXU3SKI3H7ANuezhf_ENmq3-Nw45iO2seYr |
link.rule.ids | 315,782,786,2769,27085,27933,27934,56747,56797 |
linkProvider | American Chemical Society |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELZoOZRL-RctBebQQzkY6njtZLkt2a12RQlImwO3KLEdlKqbVOvde1-Bp-HOC3Dn2CdhJpu0lRASKFIURZFlaSae3-8bxg4NusRiaDR3Lam2wwAll1JyoUsMNpSLNmQ603mYfInGE6LJOe6xMLgJjyv5toh_wy4g3uK73J0v3ghDTk20xe4qja4wOUPx_DqrggcxKiFFWYFu8W9CXvP5_LEGGSTjbxmkW5bl5P7_7-kB2-28SBhtxP6Q3XH1I7YT98PbHrNfk9ryOCfyha_w8_Lq8lvc1GdryplZSPILyoYSHKMiWoHawbiqFpV1cJSM09lr_h5tm4UUldN6oFQtJE1tGtRKtFEwo4Twop-rC_Mf3-n6BG12cQOU8O9gBNRt5GDVNuZ6oI4S_vkGpwB9Ro53YAUCccGoWnJ0gOmxxl1TmAxzauBvamKmbZb-CUtPJmk85d0YB54HYbjigVRFqZUMBzYQstTlEG9oFC2eNsaGwzxSVsmi0HlxrEwuZKiMlgM7NKW2hZBP2Xbd1O4ZAy2sojojcZwNCpqabdAfcbaMTFhEOtxjhyiSrPsLfdYW2AORdXLKOjntsaNe4tnFhtPjb5_u_9uKr9jONP14mp3Okg_P2b2A-l4Ewd4P2PZquXYv2Ja365etrv4GiQXumA |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEBZNCm0u_S9Jf-eQQ3pQG1lr2e5t690lS4sb2D30ZmxJLi5deVnt3vMKfZre8wK595gnyYzXTgOlUIrBGGGEYEaaH833DWOHGl1ikWjFbUuqbTFAKaSUXKgKg43QxlsynZNZlH2JR2OiyRn0WBhchMeZfHuJT7t6aaqOYUC8w_HCfl-8FZocm3iH3Q5VlFDINUxn15kVPIxRESnSClSLgRPymtPnjznIKGl_wyjdsC6T-_-3rgfsXudNwnAr_ofslnWP2N20b-L2mP0aO8PTgkgYvsLF2eXZj7Rx3zaUOzOQFUvKihIsoyZ6AWdhVNeL2lg4ykbz6Rv-AW2cgTkqqfFAKVvIGqcb1E60VTClxPCi768Ls_Of9HyGNsu4BUz49zAEqjqysG4LdD1QZQk__Y1XgD4zxzvQAoG5YFivODrC9Olw1RQuw4wK-RtHDLXNyj9h88l4np7wrp0DL4IoWvNAhmWlQhkNTCBkpaoEX2gcDZ462kRJEYcmlGWpivI41IWQUaiVHJhEV8qUQj5lu65xdp-BEiak-0biOhuU1D1bo19iTRXrqIxVdMAOUSR5txt93l60ByLv5JR3cjpgR73U8-WW2-Nvvz77txlfszuno0n-aZp9fM72Aip_EYR-f8F216uNfcl2vNm8atX1ChGp8Rs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=End-Capping+%CF%80-Conjugated+Naphthodithiophene+Diimide+%28NDTI%29-Based+Triads+with+Noncovalent+Intramolecular+S%C2%B7%C2%B7%C2%B7O+Interactions%3A+A+Route+towards+High-Performance+Solution-Processable+Air-Stable+n-Type+Semiconductors&rft.jtitle=ACS+applied+electronic+materials&rft.au=Ran%2C+Huijuan&rft.au=Li%2C+Fei&rft.au=Zheng%2C+Rong&rft.au=Ni%2C+Wenjing&rft.date=2021-12-28&rft.issn=2637-6113&rft.eissn=2637-6113&rft.volume=3&rft.issue=12&rft.spage=5573&rft.epage=5583&rft_id=info:doi/10.1021%2Facsaelm.1c00998&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsaelm_1c00998 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2637-6113&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2637-6113&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2637-6113&client=summon |