LIRAT: Layout and Image Recognition Driving Automated Mobile Testing of Cross-Platform

The fragmentation issue spreads over multiple mobile platforms such as Android, iOS, mobile web, and WeChat, which hinders test scripts from running across platforms. To reduce the cost of adapting scripts for various platforms, some existing tools apply conventional computer vision techniques to re...

Full description

Saved in:
Bibliographic Details
Published in:2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE) pp. 1066 - 1069
Main Authors: Yu, Shengcheng, Fang, Chunrong, Feng, Yang, Zhao, Wenyuan, Chen, Zhenyu
Format: Conference Proceeding
Language:English
Published: IEEE 01-11-2019
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The fragmentation issue spreads over multiple mobile platforms such as Android, iOS, mobile web, and WeChat, which hinders test scripts from running across platforms. To reduce the cost of adapting scripts for various platforms, some existing tools apply conventional computer vision techniques to replay the same script on multiple platforms. However, because these solutions can hardly identify dynamic or similar widgets. It becomes difficult for engineers to apply them in practice. In this paper, we present an image-driven tool, namely LIRAT, to record and replay test scripts cross platforms, solving the problem of test script cross-platform replay for the first time. LIRAT records screenshots and layouts of the widgets, and leverages image understanding techniques to locate them in the replay process. Based on accurate widget localization, LIRAT supports replaying test scripts across devices and platforms. We employed LIRAT to replay 25 scripts from 5 application across 8 Android devices and 2 iOS devices. The results show that LIRAT can replay 88% scripts on Android platforms and 60% on iOS platforms. The demo can be found at: https: //github.com/YSC9848/LIRAT.
AbstractList The fragmentation issue spreads over multiple mobile platforms such as Android, iOS, mobile web, and WeChat, which hinders test scripts from running across platforms. To reduce the cost of adapting scripts for various platforms, some existing tools apply conventional computer vision techniques to replay the same script on multiple platforms. However, because these solutions can hardly identify dynamic or similar widgets. It becomes difficult for engineers to apply them in practice. In this paper, we present an image-driven tool, namely LIRAT, to record and replay test scripts cross platforms, solving the problem of test script cross-platform replay for the first time. LIRAT records screenshots and layouts of the widgets, and leverages image understanding techniques to locate them in the replay process. Based on accurate widget localization, LIRAT supports replaying test scripts across devices and platforms. We employed LIRAT to replay 25 scripts from 5 application across 8 Android devices and 2 iOS devices. The results show that LIRAT can replay 88% scripts on Android platforms and 60% on iOS platforms. The demo can be found at: https: //github.com/YSC9848/LIRAT.
Author Yu, Shengcheng
Zhao, Wenyuan
Feng, Yang
Chen, Zhenyu
Fang, Chunrong
Author_xml – sequence: 1
  givenname: Shengcheng
  surname: Yu
  fullname: Yu, Shengcheng
  organization: Nanjing University
– sequence: 2
  givenname: Chunrong
  surname: Fang
  fullname: Fang, Chunrong
  organization: Nanjing University
– sequence: 3
  givenname: Yang
  surname: Feng
  fullname: Feng, Yang
  organization: Nanjing University
– sequence: 4
  givenname: Wenyuan
  surname: Zhao
  fullname: Zhao, Wenyuan
  organization: Nanjing University
– sequence: 5
  givenname: Zhenyu
  surname: Chen
  fullname: Chen, Zhenyu
  organization: Nanjing University
BookMark eNotjEFLwzAYQKMouE2vXrzkD3TmS5o29Vbm1EJFmdPr-NJ-GZG1kTYb7N-r6OnxePCm7KwPPTF2DWIOIIrb8m05lwKKuRAg1AmbQi4NSC0MnLKJzFKVgM7lBZuO46cQ-kfyCfuoq1W5vuM1HsM-cuxbXnW4Jb6iJmx7H33o-f3gD77f8nIfQ4eRWv4crN8RX9MYf0NwfDGEcUxedxhdGLpLdu5wN9LVP2fs_WG5Xjwl9ctjtSjrBGWuYkI21ZC6FgW21GQFWiNzlBJS06gGitagKMjlCNY5Y63VmVSoDVqbKXSkZuzm7-uJaPM1-A6H48YUWmpQ6ht6rlJB
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ASE.2019.00103
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: http://ieeexplore.ieee.org/Xplore/DynWel.jsp
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1728125081
9781728125084
EISSN 2643-1572
EndPage 1069
ExternalDocumentID 8952513
Genre orig-research
GroupedDBID 29I
6IE
6IF
6IH
6IK
6IL
6IM
6IN
6J9
AAJGR
ABLEC
ACM
ACREN
ADYOE
ADZIZ
AFYQB
ALMA_UNASSIGNED_HOLDINGS
AMTXH
APO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-a273t-eb4514fda0adec69ab827a22148c3c19d8a09ef7a1bff8bbb5623a58abb63afe3
IEDL.DBID RIE
IngestDate Wed Jun 26 19:28:37 EDT 2024
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a273t-eb4514fda0adec69ab827a22148c3c19d8a09ef7a1bff8bbb5623a58abb63afe3
PageCount 4
ParticipantIDs ieee_primary_8952513
PublicationCentury 2000
PublicationDate 2019-Nov.
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-Nov.
PublicationDecade 2010
PublicationTitle 2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE)
PublicationTitleAbbrev ASE
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0051577
ssib040743839
Score 2.238368
Snippet The fragmentation issue spreads over multiple mobile platforms such as Android, iOS, mobile web, and WeChat, which hinders test scripts from running across...
SourceID ieee
SourceType Publisher
StartPage 1066
SubjectTerms Cross-Platform Testing
Feature extraction
Image recognition
Layout
Optical character recognition software
Record and Replay
Smart phones
Testing
Title LIRAT: Layout and Image Recognition Driving Automated Mobile Testing of Cross-Platform
URI https://ieeexplore.ieee.org/document/8952513
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVoJ6YCLeJbHhgxTeIkttmqtqiVCqragtgqOz5LSBCjkgz8e-wkLQwsbJEjRdbZuffOvnuH0DUEijEdUpLoGEgca0NUFAkSK5omNDMuLvI3upMle3zho7GXybnZ1cIAQJV8Brf-sbrL1zYr_VFZn4vEwTFtoRYTvK7V2u6d2EMh9wqXtRd2MM1YI9IYBqI_WI59HlclTukbZP1qpVIhyX3nf3M4QL2fkjw834HNIdqD_Ah1tj0ZcPOLdtHzbLoYrO7wTH7ZssAy13j67nwGXmwzhWyOR5tXf46AB2VhHWMFjR-scu4Br7zmhnthDR56-CTzN1l4WttDT_fj1XBCmt4JRDpCUhBQsaNCRstAashSIRWPmIwiF_1kNAuF5jIQYJgMlTFcKeV5kEy4VCql0gA9Ru3c5nCCMI0UCEd8tAuk40g6A3DnIDWDwH075fwUdb2Z1h-1PMa6sdDZ38PnaN-vQ13Od4HaxaaES9T61OVVtaDfLS-gkw
link.rule.ids 310,311,782,786,791,792,798,23939,23940,25149,27934,54767
linkProvider IEEE
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgDDAVaBHfeGAkNI2d2GGr-qFWpFXVBsRW2fFZQoIElWTg32MnaWFgYYscKbLOzr139t07hG7BlYypLnF8RcGhVGlHel7oUEkCnyTaxEX2Rne8ZLMXPhhamZy7bS0MAJTJZ3BvH8u7fJUlhT0q6_DQN3BMdtGeT1nAqmqtze6hFgy51bis_LABasZqmcauG3Z6y6HN5CrlKW2LrF_NVEosGTX_N4tD1P4pysPzLdwcoR1Ij1Fz05UB1z9pCz1Hk0UvfsCR-MqKHItU4cm78Rp4sckVylI8WL_akwTcK_LMcFZQeJpJ4yBwbFU3zItM474FUGf-JnJLbNvoaTSM-2On7p7gCENJcgckNWRIK-EKBUkQCsk9JjzPxD8JSbqh4sINQTPRlVpzKaVlQsLnQsqACA3kBDXSLIVThIknITTUR5lQmnrCGIAbF6kYuObbAednqGXNtPqoBDJWtYXO_x6-QfvjeBqtosns8QId2DWpivsuUSNfF3CFdj9VcV0u7jfQ6KPk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=2019+34th+IEEE%2FACM+International+Conference+on+Automated+Software+Engineering+%28ASE%29&rft.atitle=LIRAT%3A+Layout+and+Image+Recognition+Driving+Automated+Mobile+Testing+of+Cross-Platform&rft.au=Yu%2C+Shengcheng&rft.au=Fang%2C+Chunrong&rft.au=Feng%2C+Yang&rft.au=Zhao%2C+Wenyuan&rft.date=2019-11-01&rft.pub=IEEE&rft.eissn=2643-1572&rft.spage=1066&rft.epage=1069&rft_id=info:doi/10.1109%2FASE.2019.00103&rft.externalDocID=8952513