Nature of Long-Lived Moiré Interlayer Excitons in Electrically Tunable MoS2/MoSe2 Heterobilayers

Interlayer excitons in transition-metal dichalcogenide heterobilayers combine high binding energy and valley-contrasting physics with a long optical lifetime and strong dipolar character. Their permanent electric dipole enables electric-field control of the emission energy, lifetime, and location. D...

Full description

Saved in:
Bibliographic Details
Published in:Nano letters Vol. 24; no. 36; pp. 11232 - 11238
Main Authors: Alexeev, Evgeny M., Purser, Carola M., Gilardoni, Carmem M., Kerfoot, James, Chen, Hao, Cadore, Alisson R., Rosa, Bárbara L.T., Feuer, Matthew S. G., Javary, Evans, Hays, Patrick, Watanabe, Kenji, Taniguchi, Takashi, Tongay, Seth Ariel, Kara, Dhiren M., Atatüre, Mete, Ferrari, Andrea C.
Format: Journal Article
Language:English
Published: American Chemical Society 11-09-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Interlayer excitons in transition-metal dichalcogenide heterobilayers combine high binding energy and valley-contrasting physics with a long optical lifetime and strong dipolar character. Their permanent electric dipole enables electric-field control of the emission energy, lifetime, and location. Device material and geometry impact the nature of the interlayer excitons via their real- and momentum-space configurations. Here, we show that interlayer excitons in MoS2/MoSe2 heterobilayers are formed by charge carriers residing at the Brillouin zone edges, with negligible interlayer hybridization. We find that the moiré superlattice leads to the reversal of the valley-dependent optical selection rules, yielding a positively valued g-factor and cross-polarized photoluminescence. Time-resolved photoluminescence measurements reveal that the interlayer exciton population retains the optically induced valley polarization throughout its microsecond-long lifetime. The combination of a long optical lifetime and valley polarization retention makes MoS2/MoSe2 heterobilayers a promising platform for studying fundamental bosonic interactions and developing excitonic circuits for optical information processing.
AbstractList Interlayer excitons in transition-metal dichalcogenide heterobilayers combine high binding energy and valley-contrasting physics with a long optical lifetime and strong dipolar character. Their permanent electric dipole enables electric-field control of the emission energy, lifetime, and location. Device material and geometry impact the nature of the interlayer excitons via their real- and momentum-space configurations. Here, we show that interlayer excitons in MoS2/MoSe2 heterobilayers are formed by charge carriers residing at the Brillouin zone edges, with negligible interlayer hybridization. We find that the moiré superlattice leads to the reversal of the valley-dependent optical selection rules, yielding a positively valued g-factor and cross-polarized photoluminescence. Time-resolved photoluminescence measurements reveal that the interlayer exciton population retains the optically induced valley polarization throughout its microsecond-long lifetime. The combination of a long optical lifetime and valley polarization retention makes MoS2/MoSe2 heterobilayers a promising platform for studying fundamental bosonic interactions and developing excitonic circuits for optical information processing.
Interlayer excitons in transition-metal dichalcogenide heterobilayers combine high binding energy and valley-contrasting physics with a long optical lifetime and strong dipolar character. Their permanent electric dipole enables electric-field control of the emission energy, lifetime, and location. Device material and geometry impact the nature of the interlayer excitons via their real- and momentum-space configurations. Here, we show that interlayer excitons in MoS 2 /MoSe 2 heterobilayers are formed by charge carriers residing at the Brillouin zone edges, with negligible interlayer hybridization. We find that the moiré superlattice leads to the reversal of the valley-dependent optical selection rules, yielding a positively valued g-factor and cross-polarized photoluminescence. Time-resolved photoluminescence measurements reveal that the interlayer exciton population retains the optically induced valley polarization throughout its microsecond-long lifetime. The combination of a long optical lifetime and valley polarization retention makes MoS 2 /MoSe 2 heterobilayers a promising platform for studying fundamental bosonic interactions and developing excitonic circuits for optical information processing.
Interlayer excitons in transition-metal dichalcogenide heterobilayers combine high binding energy and valley-contrasting physics with a long optical lifetime and strong dipolar character. Their permanent electric dipole enables electric-field control of the emission energy, lifetime, and location. Device material and geometry impact the nature of the interlayer excitons via their real- and momentum-space configurations. Here, we show that interlayer excitons in MoS2/MoSe2 heterobilayers are formed by charge carriers residing at the Brillouin zone edges, with negligible interlayer hybridization. We find that the moiré superlattice leads to the reversal of the valley-dependent optical selection rules, yielding a positively valued g-factor and cross-polarized photoluminescence. Time-resolved photoluminescence measurements reveal that the interlayer exciton population retains the optically induced valley polarization throughout its microsecond-long lifetime. The combination of a long optical lifetime and valley polarization retention makes MoS2/MoSe2 heterobilayers a promising platform for studying fundamental bosonic interactions and developing excitonic circuits for optical information processing.Interlayer excitons in transition-metal dichalcogenide heterobilayers combine high binding energy and valley-contrasting physics with a long optical lifetime and strong dipolar character. Their permanent electric dipole enables electric-field control of the emission energy, lifetime, and location. Device material and geometry impact the nature of the interlayer excitons via their real- and momentum-space configurations. Here, we show that interlayer excitons in MoS2/MoSe2 heterobilayers are formed by charge carriers residing at the Brillouin zone edges, with negligible interlayer hybridization. We find that the moiré superlattice leads to the reversal of the valley-dependent optical selection rules, yielding a positively valued g-factor and cross-polarized photoluminescence. Time-resolved photoluminescence measurements reveal that the interlayer exciton population retains the optically induced valley polarization throughout its microsecond-long lifetime. The combination of a long optical lifetime and valley polarization retention makes MoS2/MoSe2 heterobilayers a promising platform for studying fundamental bosonic interactions and developing excitonic circuits for optical information processing.
Author Purser, Carola M.
Gilardoni, Carmem M.
Feuer, Matthew S. G.
Hays, Patrick
Taniguchi, Takashi
Ferrari, Andrea C.
Kara, Dhiren M.
Rosa, Bárbara L.T.
Kerfoot, James
Tongay, Seth Ariel
Atatüre, Mete
Alexeev, Evgeny M.
Cadore, Alisson R.
Watanabe, Kenji
Chen, Hao
Javary, Evans
AuthorAffiliation Cambridge Graphene Centre
École Normale Supérieure
Brazilian Nanotechnology National Laboratory (LNNano)
Cavendish Laboratory
Research Center for Electronic and Optical Materials
National Institute for Materials Science
PSL
University of Cambridge
Materials Science and Engineering, School for Engineering of Matter,Transport and Energy
Research Center for Materials Nanoarchitectonics
AuthorAffiliation_xml – name: École Normale Supérieure
– name: PSL
– name: Research Center for Materials Nanoarchitectonics
– name: Materials Science and Engineering, School for Engineering of Matter,Transport and Energy
– name: National Institute for Materials Science
– name: Cambridge Graphene Centre
– name: Research Center for Electronic and Optical Materials
– name: University of Cambridge
– name: Brazilian Nanotechnology National Laboratory (LNNano)
– name: Cavendish Laboratory
Author_xml – sequence: 1
  givenname: Evgeny M.
  orcidid: 0000-0002-8149-6364
  surname: Alexeev
  fullname: Alexeev, Evgeny M.
  email: ea529@cam.ac.uk
  organization: University of Cambridge
– sequence: 2
  givenname: Carola M.
  surname: Purser
  fullname: Purser, Carola M.
  organization: University of Cambridge
– sequence: 3
  givenname: Carmem M.
  orcidid: 0000-0001-5318-3363
  surname: Gilardoni
  fullname: Gilardoni, Carmem M.
  organization: University of Cambridge
– sequence: 4
  givenname: James
  orcidid: 0000-0002-6041-4833
  surname: Kerfoot
  fullname: Kerfoot, James
  organization: Cambridge Graphene Centre
– sequence: 5
  givenname: Hao
  surname: Chen
  fullname: Chen, Hao
  organization: Cambridge Graphene Centre
– sequence: 6
  givenname: Alisson R.
  orcidid: 0000-0003-1081-0915
  surname: Cadore
  fullname: Cadore, Alisson R.
  organization: Brazilian Nanotechnology National Laboratory (LNNano)
– sequence: 7
  givenname: Bárbara L.T.
  surname: Rosa
  fullname: Rosa, Bárbara L.T.
  organization: Cambridge Graphene Centre
– sequence: 8
  givenname: Matthew S. G.
  surname: Feuer
  fullname: Feuer, Matthew S. G.
  organization: University of Cambridge
– sequence: 9
  givenname: Evans
  surname: Javary
  fullname: Javary, Evans
  organization: PSL
– sequence: 10
  givenname: Patrick
  surname: Hays
  fullname: Hays, Patrick
  organization: Materials Science and Engineering, School for Engineering of Matter,Transport and Energy
– sequence: 11
  givenname: Kenji
  surname: Watanabe
  fullname: Watanabe, Kenji
  organization: Research Center for Electronic and Optical Materials
– sequence: 12
  givenname: Takashi
  orcidid: 0000-0002-1467-3105
  surname: Taniguchi
  fullname: Taniguchi, Takashi
  organization: National Institute for Materials Science
– sequence: 13
  givenname: Seth Ariel
  orcidid: 0000-0001-8294-984X
  surname: Tongay
  fullname: Tongay, Seth Ariel
  organization: Materials Science and Engineering, School for Engineering of Matter,Transport and Energy
– sequence: 14
  givenname: Dhiren M.
  surname: Kara
  fullname: Kara, Dhiren M.
  organization: University of Cambridge
– sequence: 15
  givenname: Mete
  orcidid: 0000-0003-3852-0944
  surname: Atatüre
  fullname: Atatüre, Mete
  email: ma424@cam.ac.uk
  organization: University of Cambridge
– sequence: 16
  givenname: Andrea C.
  orcidid: 0000-0003-0907-9993
  surname: Ferrari
  fullname: Ferrari, Andrea C.
  email: acf26@cam.ac.uk
  organization: Cambridge Graphene Centre
BookMark eNpVkc1OWzEQha0KVH7aN-jCy25uGP9c33hVVSgtSCksoGvLdibUyLHB9kXNsu_Xh-oNBKRuZkaec440_k7IQcoJCfnEYMaAszPr6yzZlCO2NpMeuBL9O3LMegGd0pofvM1zeUROar0HAC16eE-OhOZMKCmPibuybSxI85ouc7rrluEJV_RHDgX__qGXqWGJdouFLn770HKqNCS6iOhbCd7GuKW3Y7Iu4uS54WdTQU4vcLJlF56d9QM5XNtY8eO-n5Kf3xa35xfd8vr75fnXZWe5Yq2bO-nW1nHgvh-48CvpvZWWIRParf0wlwIUgvLKcjto5ZxHDys1DDu1RnFKvrzkPoxugyuPqRUbzUMJG1u2Jttg_t-k8Mvc5SfDmAQxKDUlfN4nlPw4Ym1mE6rHGG3CPFYjQOs59NNHT1J4kU4YzH0eS5pOMwzMjo3ZPb6yMXs24h_BR4iZ
ContentType Journal Article
Copyright 2024 The Authors. Published by American Chemical Society
2024 The Authors. Published by American Chemical Society 2024 The Authors
Copyright_xml – notice: 2024 The Authors. Published by American Chemical Society
– notice: 2024 The Authors. Published by American Chemical Society 2024 The Authors
DBID 7X8
5PM
DOI 10.1021/acs.nanolett.4c02635
DatabaseName MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1530-6992
EndPage 11238
ExternalDocumentID c952304787
GroupedDBID ---
-~X
.K2
123
4.4
55A
5VS
6P2
7~N
AABXI
AAHBH
ABJNI
ABMVS
ABQRX
ABUCX
ACBEA
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
CUPRZ
DU5
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
RNS
ROL
TN5
UI2
VF5
VG9
W1F
7X8
5PM
ID FETCH-LOGICAL-a261t-8b4bfab202c5723cd4cca4a1e139bfc784306e06c6a2a796bbcec0d677723c9e3
IEDL.DBID ACS
ISSN 1530-6984
1530-6992
IngestDate Wed Sep 18 05:54:15 EDT 2024
Sat Oct 26 04:05:43 EDT 2024
Thu Sep 12 03:10:26 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 36
Keywords moiré superlattice
interlayer excitons
valley polarization
photoluminescence
layered materials heterostructures
Stark shift
transition-metal dichalcogenides
Language English
License Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a261t-8b4bfab202c5723cd4cca4a1e139bfc784306e06c6a2a796bbcec0d677723c9e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8294-984X
0000-0001-5318-3363
0000-0003-3852-0944
0000-0002-6041-4833
0000-0002-8149-6364
0000-0003-0907-9993
0000-0002-1467-3105
0000-0003-1081-0915
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC11403766
PMID 39213644
PQID 3099805635
PQPubID 23479
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11403766
proquest_miscellaneous_3099805635
acs_journals_10_1021_acs_nanolett_4c02635
PublicationCentury 2000
PublicationDate 20240911
PublicationDateYYYYMMDD 2024-09-11
PublicationDate_xml – month: 09
  year: 2024
  text: 20240911
  day: 11
PublicationDecade 2020
PublicationTitle Nano letters
PublicationTitleAlternate Nano Lett
PublicationYear 2024
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
SSID ssj0009350
Score 2.5070024
Snippet Interlayer excitons in transition-metal dichalcogenide heterobilayers combine high binding energy and valley-contrasting physics with a long optical lifetime...
Interlayer excitons in transition-metal dichalcogenide heterobilayers combine high binding energy and valley-contrasting physics with a long optical lifetime...
SourceID pubmedcentral
proquest
acs
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 11232
SubjectTerms Letter
Title Nature of Long-Lived Moiré Interlayer Excitons in Electrically Tunable MoS2/MoSe2 Heterobilayers
URI http://dx.doi.org/10.1021/acs.nanolett.4c02635
https://www.proquest.com/docview/3099805635
https://pubmed.ncbi.nlm.nih.gov/PMC11403766
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoWWDgjSgvGYmFIW3iuLEzopKqQ-nSIrFFtuNApcpBpJFg5P_xozi7rWiGDl0yJGfHvvPjO5_9GaH7QMZdwXNwS8BJ9mhXdz1wm4UH0Bzwgs5YIOyC22DMRq_8KbE0Oe0NEXwSdIQq20aYAqoxb1PlW_aUBtolDMCChUK98T_JbuhuZIVODP-OOV0dlduQi52QVFmDlvWNkWszTf9w2zIeoYMlpsSPi0ZwjHa0OUH7a0yDp0iOHIEnLnI8LMybN4RBLsPPBQx4vz_YLQvOBKBvnHwp6OOmxFODE3dFjrXi7BtPKnfKCtKMSQcemuCB3UpTyKlLWZ6hl34y6Q285fUKngC3ae5xSWUuJPGJ6jISqoyCNakINIBCmSvGKbgT2o9UJIhgcSSl0srPIsasdKzDc9Q0hdEXCEvhwpE8pFJRKwmwScUK8tJZxgVpoQdQUbrsHmXqIt8kSO3Lld7Spd5a6G5ljxSauo1fCKOLqkxDQLMcAJuV4TVDpR8Lao7UkmXXv5jpuyPNDiwxIYuiyy2KcoX2QDvUbg8JgmvUnH9W-gY1yqy6dQ3vD4t52vQ
link.rule.ids 230,315,782,786,887,27085,27933,27934,56747,56797
linkProvider American Chemical Society
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZoGYCBN6I8jcTCENokTuKMqLQqIu3SIrFZtuNCpcpBpJVg5P_xozi7idoMDLBkcGzrfOfHdz77M0LXrogDTsfgloCT7JBABQ64zdwBaA54QaWRy82GW28YDZ7pfcfQ5ATlXRgQIoeachvEX7ILuE2TprnOoDWzWyJbhkSlhtaDEPCwQUTt4ZJr17cPs8JYBhFiSsobc7_UYtYlmVcQZvV85MqC0935p6i7aLtAmPhu0SX20JrS-2hrhXfwAImBpfPE2RgnmX5xEpjyUtzPYPr7_sJ2k3DKAYvjzoeEEa9zPNG4Yx_MMTadfuLR3N65gjJDrwkf5eGeOViTiYktmR-ip25n1O45xWMLDgcnauZQQcSYC6_lySDyfJkSsC3hrgKIKMYyogScC9UKZcg9HsWhEFLJVhpGkckdK_8I1XWm1THCgtvgJPWJkMTkBBAlYwl1qTSl3GugG1ARKwZLzmwc3HOZSSz1xgq9NdBVaRYGHd9EM7hW2TxnPmBbCvDN5KEVe7G3BVEHM9TZ1T968moptF1DUxiF4ckfRLlEG71RP2HJw-DxFG2Cpog5OOK6Z6g-e5-rc1TL0_mF7Ys_RKrjYQ
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA4-QPTgW3wbwYuH6rZNm_QousuK6yKsgreQpKkuLKnYXdCj_88f5UzsqnvwIF56SJMwncmk32SSL4QchTpLlCggLIEgOWCJTQIIm1UA0Bzwgs15qHDBrd3j3Xtx0USanK-rvkCICnqqfBIfvfopL2qGgfAUy51yJXzR8ISZBhKpTJPZJOUZxl1n571vvt3YX84K_gxiZIKNT8390gv-m0w1gTIn90j--Om0lv4h7jJZrJEmPfscGitkyrpVsvCDf3CN6K6n9aRlQTulewg6MPXl9LqEafD9jfrFwoECTE6bLwY831W072jTX5yDth280tuRP3sFbXrRKTxsRNu4wabUfd-yWid3rebteTuoL10IFARTw0Bopgulo0ZkEh7FJmdgY6ZCC1BRF4YLBkGGbaQmVZHiWaq1saaRp5xj7czGG2TGlc5uEqqVT1KKmGnDsCaAKZMZ6MvmuVDRFjkGFcnaaSrp8-FRKLFwrDdZ622LHI5NI8EBMKuhnC1HlYwB4wqAcVhHTNhMPn0Sdkik0J584_qPnko7RLpCnqbbfxDlgMzdXLRk57J7tUPmQVEM94-E4S6ZGT6P7B6ZrvLRvh-OH4-G5eQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nature+of+Long-Lived+Moir%C3%A9+Interlayer+Excitons+in+Electrically+Tunable+MoS2%2FMoSe2+Heterobilayers&rft.jtitle=Nano+letters&rft.au=Alexeev%2C+Evgeny+M&rft.au=Purser%2C+Carola+M&rft.au=Gilardoni%2C+Carmem+M&rft.au=Kerfoot%2C+James&rft.date=2024-09-11&rft.issn=1530-6992&rft.eissn=1530-6992&rft.volume=24&rft.issue=36&rft.spage=11232&rft_id=info:doi/10.1021%2Facs.nanolett.4c02635&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon