Atomistic Simulations of CdS Morphologies

Atomistic simulations based on the static lattice model are performed to calculate the equilibrium and growth morphologies of CdS polymorphs. Morphologically important surfaces are optimized to calculate their structural and energetical properties such as surface and attachment energies. A common fe...

Full description

Saved in:
Bibliographic Details
Published in:Crystal growth & design Vol. 15; no. 4; pp. 1792 - 1800
Main Authors: Shah, Shafqat H, Azam, Abdullah, Rafiq, Muhammad A
Format: Journal Article
Language:English
Published: American Chemical Society 01-04-2015
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Atomistic simulations based on the static lattice model are performed to calculate the equilibrium and growth morphologies of CdS polymorphs. Morphologically important surfaces are optimized to calculate their structural and energetical properties such as surface and attachment energies. A common feature of all the nonpolar CdS surfaces is the outward movement of their anions and the inward movement of their cations. The relaxation of surfaces is critically important as it changes the surface and attachment energies significantly. The {112̅0} surface has the lowest surface energy (0.58 J/m2) for the wurtzite phase of CdS, whereas {110} surface has the lowest surface energy (0.62 J/m2) for the zincblend phase of CdS. The {101̅0}, {123̅0}, and {11̅00} surfaces of wurtzite CdS all have the same surface energy value (0.60 J/m2), which is very close to that of {112̅0} surface. Therefore, all these surfaces appear in the equilibrium morphology of the wurtzite CdS. The equilibrium morphology of the zincblend CdS is completely dominated by the {110} surface. The growth morphology of the wurtzite CdS consists of {101̅0}, {11̅00}, {0001}, and {0001̅} surfaces. The growth morphology of the zincblend CdS is found to be identical to its equilibrium morphology and, therefore, includes only the {110} surface.
ISSN:1528-7483
1528-7505
DOI:10.1021/cg5018449