Graphene-Supported, Iron-Based Nanoparticles for Catalytic Production of Liquid Hydrocarbons from Synthesis Gas: The Role of the Graphene Support in Comparison with Carbon Nanotubes

Fischer–Tropsch synthesis (FTS) is a potentially attractive technology for the production of clean liquid fuels from synthesis gas. The efficiency and selectivity of FTS can be enhanced by the design of new active catalyst systems with improved selectivity for long-chain hydrocarbons and low methane...

Full description

Saved in:
Bibliographic Details
Published in:ACS catalysis Vol. 4; no. 2; pp. 535 - 545
Main Authors: Moussa, Sherif O, Panchakarla, Leela S, Ho, Minh Q, El-Shall, M. Samy
Format: Journal Article
Language:English
Published: American Chemical Society 07-02-2014
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Fischer–Tropsch synthesis (FTS) is a potentially attractive technology for the production of clean liquid fuels from synthesis gas. The efficiency and selectivity of FTS can be enhanced by the design of new active catalyst systems with improved selectivity for long-chain hydrocarbons and low methane production. In this paper, we introduce a new class of FT catalysts supported on the high surface area graphene nanosheets and report on their high activity and selectivity for the production of long-chain hydrocarbons. The chemical reduction of graphene oxide in water in the presence of the metal salts under microwave irradiation allows the deposition of well-dispersed surface-oxidized metal nanoparticles on the defect sites of the graphene nanosheets. The Fe–K-nanoparticle catalyst supported on graphene exhibits high activity and selectivity toward C8 and higher hydrocarbons with excellent stability and recyclability. In comparison with other carbon supports, such as carbon nanotubes, the graphene support shows a unique tendency for minor formation of the low-value and undesirable products methane and carbon dioxide, respectively. The water-gas shift activity is reduced on the graphene support as compared with CNTs, and as a result, the formation of CO2 is significantly reduced. Evidence is presented for the formation of the active Fe5C2 iron carbide phase during the FTS on the graphene-supported Fe catalysts. The high activity and selectivity of the catalysts supported on graphene are correlated with the presence of defects within the graphene lattice that act as favorable nucleation sites to anchor the metal nanoparticles, thus providing tunable metal–support interactions. Given the activity, selectivity, and stability of the new graphene-supported, Fe-based nanoparticle catalysts, their industrial application appears to be promising. Controlling the nature and density of the defect sites in graphene could lead to improved understanding of the catalyst–graphene interactions and to further enhancement of the performance of these catalysts for the production of liquid fuels.
AbstractList Fischer–Tropsch synthesis (FTS) is a potentially attractive technology for the production of clean liquid fuels from synthesis gas. The efficiency and selectivity of FTS can be enhanced by the design of new active catalyst systems with improved selectivity for long-chain hydrocarbons and low methane production. In this paper, we introduce a new class of FT catalysts supported on the high surface area graphene nanosheets and report on their high activity and selectivity for the production of long-chain hydrocarbons. The chemical reduction of graphene oxide in water in the presence of the metal salts under microwave irradiation allows the deposition of well-dispersed surface-oxidized metal nanoparticles on the defect sites of the graphene nanosheets. The Fe–K-nanoparticle catalyst supported on graphene exhibits high activity and selectivity toward C8 and higher hydrocarbons with excellent stability and recyclability. In comparison with other carbon supports, such as carbon nanotubes, the graphene support shows a unique tendency for minor formation of the low-value and undesirable products methane and carbon dioxide, respectively. The water-gas shift activity is reduced on the graphene support as compared with CNTs, and as a result, the formation of CO2 is significantly reduced. Evidence is presented for the formation of the active Fe5C2 iron carbide phase during the FTS on the graphene-supported Fe catalysts. The high activity and selectivity of the catalysts supported on graphene are correlated with the presence of defects within the graphene lattice that act as favorable nucleation sites to anchor the metal nanoparticles, thus providing tunable metal–support interactions. Given the activity, selectivity, and stability of the new graphene-supported, Fe-based nanoparticle catalysts, their industrial application appears to be promising. Controlling the nature and density of the defect sites in graphene could lead to improved understanding of the catalyst–graphene interactions and to further enhancement of the performance of these catalysts for the production of liquid fuels.
Author El-Shall, M. Samy
Moussa, Sherif O
Ho, Minh Q
Panchakarla, Leela S
AuthorAffiliation Department of Chemistry
Virginia Commonwealth University
AuthorAffiliation_xml – name: Virginia Commonwealth University
– name: Department of Chemistry
Author_xml – sequence: 1
  givenname: Sherif O
  surname: Moussa
  fullname: Moussa, Sherif O
– sequence: 2
  givenname: Leela S
  surname: Panchakarla
  fullname: Panchakarla, Leela S
– sequence: 3
  givenname: Minh Q
  surname: Ho
  fullname: Ho, Minh Q
– sequence: 4
  givenname: M. Samy
  surname: El-Shall
  fullname: El-Shall, M. Samy
  email: mselshal@vcu.edu
BookMark eNptUEFOwzAQtFCRKKUHfuALByQCcWKnMTeIoK1UAaLlHK1jR3XV2sFOhPow_odLC-LAXnY1mp0ZzSnqGWsUQuckviZxQm4qT2MSE54foX5CGIsYTVnvz32Cht6v4jCUZfko7qPPsYNmqYyK5l3TWNcqeYWnzproHryS-AmMbcC1ulorj2vrcAEtrLcBwC_Oyq5qtTXY1nim3zst8WQrna3ACWsC39kNnm9Nu1ReezwGf4sXS4Vf7VrtfgKOfwLgQwCsDS7sJphqH5Q_dLsMnju97zBtJ5Q_Q8c1rL0aHvYAvT0-LIpJNHseT4u7WQQJ422UCpGnmayhqgRPRjKnLMmBSC4pTwRJMwDOFFCeAs-A00xIIXiap5ISBoSmA3S5162c9d6pumyc3oDbliQud5WXv5UH7sWeC5UvV7ZzJiT7h_cFzEaEtA
CitedBy_id crossref_primary_10_1016_j_jcat_2020_11_033
crossref_primary_10_1039_D1CY02241E
crossref_primary_10_1007_s00339_016_0746_8
crossref_primary_10_1016_j_ccr_2015_12_005
crossref_primary_10_1016_j_jiec_2017_02_018
crossref_primary_10_1016_j_ijhydene_2019_03_015
crossref_primary_10_1016_j_mcat_2018_06_008
crossref_primary_10_1016_j_apcata_2015_04_024
crossref_primary_10_1039_D4TA01179A
crossref_primary_10_2139_ssrn_4103021
crossref_primary_10_1039_C4DT02544J
crossref_primary_10_1021_acscatal_6b00464
crossref_primary_10_1016_j_cherd_2017_01_021
crossref_primary_10_1016_j_jtice_2021_104170
crossref_primary_10_1021_acsanm_9b01762
crossref_primary_10_1007_s40090_019_00195_9
crossref_primary_10_1016_j_jcat_2021_08_026
crossref_primary_10_1016_j_apcatb_2016_11_058
crossref_primary_10_1016_j_msec_2019_05_008
crossref_primary_10_1021_acsanm_1c01122
crossref_primary_10_1021_acs_iecr_9b04221
crossref_primary_10_1039_C5NR04546K
crossref_primary_10_1016_j_colsurfa_2015_05_056
crossref_primary_10_1039_C8GC00433A
crossref_primary_10_1002_cctc_201500794
crossref_primary_10_2139_ssrn_4052304
crossref_primary_10_1016_S1872_5813_21_60063_4
crossref_primary_10_1016_j_mseb_2021_115388
crossref_primary_10_1021_acscatal_5b00480
crossref_primary_10_1016_j_carbon_2020_11_019
crossref_primary_10_1039_C5CY00630A
crossref_primary_10_1039_C7CY02449E
crossref_primary_10_1016_j_jechem_2020_03_062
crossref_primary_10_1021_acscatal_6b00321
crossref_primary_10_4028_www_scientific_net_KEM_835_130
crossref_primary_10_1007_s11705_020_1925_x
crossref_primary_10_1021_acs_iecr_6b05048
crossref_primary_10_1016_j_cattod_2016_07_023
crossref_primary_10_1021_acs_iecr_7b04864
crossref_primary_10_1016_j_apcata_2014_11_033
crossref_primary_10_1016_j_cej_2021_133970
crossref_primary_10_1021_acsomega_1c04476
crossref_primary_10_1016_j_enconman_2018_04_112
crossref_primary_10_1016_j_jcat_2020_03_011
crossref_primary_10_1021_acs_chemrev_5b00620
crossref_primary_10_3390_molecules28237749
crossref_primary_10_1016_S2095_4956_14_60170_4
crossref_primary_10_1016_j_cherd_2015_10_016
crossref_primary_10_1016_j_jcis_2016_11_058
crossref_primary_10_1021_acsami_7b00561
crossref_primary_10_1016_S1872_2067_18_63158_4
crossref_primary_10_1016_j_ultsonch_2017_11_031
crossref_primary_10_1016_j_apcata_2023_119448
crossref_primary_10_1039_C4RA04834B
crossref_primary_10_1007_s10562_018_2428_y
crossref_primary_10_1016_j_fuel_2021_122363
crossref_primary_10_1016_j_fuel_2022_127267
crossref_primary_10_1002_asia_201500507
crossref_primary_10_1016_j_ijhydene_2023_01_061
crossref_primary_10_1016_j_apcata_2019_117123
crossref_primary_10_1007_s12274_019_2487_4
crossref_primary_10_1021_acscatal_5b00697
crossref_primary_10_1021_acsanm_0c01522
crossref_primary_10_1021_jacs_5b05674
crossref_primary_10_1016_j_cej_2024_149787
crossref_primary_10_1039_D3CY00213F
crossref_primary_10_1002_open_201900368
crossref_primary_10_1016_j_jcis_2017_05_112
crossref_primary_10_1039_C8CY00617B
crossref_primary_10_1016_j_apsusc_2017_06_130
crossref_primary_10_1016_j_fuel_2023_129791
crossref_primary_10_1021_acs_chemrev_0c00083
crossref_primary_10_1039_C8RA02193G
crossref_primary_10_1016_j_cej_2022_138823
crossref_primary_10_1016_j_ijhydene_2020_07_188
crossref_primary_10_1016_j_carbon_2018_01_015
crossref_primary_10_1016_j_ijhydene_2024_03_086
crossref_primary_10_1039_D0CS00905A
crossref_primary_10_1016_j_cartre_2022_100196
crossref_primary_10_1142_S179360471650051X
crossref_primary_10_1016_j_jcat_2019_09_004
crossref_primary_10_1007_s11237_015_9405_y
crossref_primary_10_3390_catal13040686
crossref_primary_10_1016_j_molcata_2016_12_011
crossref_primary_10_1002_cctc_201600956
crossref_primary_10_1016_j_jechem_2019_12_003
crossref_primary_10_3389_fmats_2020_617432
crossref_primary_10_1016_j_apsusc_2017_08_152
crossref_primary_10_1039_C7RA05887J
crossref_primary_10_1016_j_apcata_2015_02_009
crossref_primary_10_1021_acssuschemeng_7b00924
crossref_primary_10_1021_acssuschemeng_8b04655
crossref_primary_10_1007_s42823_020_00200_7
crossref_primary_10_1039_C8NJ04115F
crossref_primary_10_1016_j_jiec_2015_06_002
crossref_primary_10_1016_j_cej_2017_10_093
crossref_primary_10_1039_C7CY01172E
crossref_primary_10_1007_s10562_021_03768_5
crossref_primary_10_1021_acs_iecr_1c03810
crossref_primary_10_1039_D0MA00920B
crossref_primary_10_1016_j_jhazmat_2021_125162
crossref_primary_10_1002_admi_201600590
crossref_primary_10_1002_aoc_4915
crossref_primary_10_1039_C9CY00403C
crossref_primary_10_1021_acsami_7b10638
crossref_primary_10_1016_j_snb_2016_09_134
crossref_primary_10_1021_acs_energyfuels_1c00168
crossref_primary_10_1016_j_cattod_2016_12_035
crossref_primary_10_1016_j_fuel_2016_03_023
crossref_primary_10_1039_C8RA09003C
crossref_primary_10_1039_D3EY00071K
crossref_primary_10_1016_j_ijhydene_2023_01_370
crossref_primary_10_1039_C6RA28467A
crossref_primary_10_1021_acssuschemeng_9b03831
crossref_primary_10_1016_j_jece_2022_108407
crossref_primary_10_1007_s11144_020_01742_7
Cites_doi 10.1021/ja305048p
10.1016/j.cattod.2011.11.034
10.1021/nn1017395
10.1126/science.1215614
10.1021/la201698k
10.1021/ef700343b
10.1016/S0926-860X(97)00300-1
10.1021/ja906370b
10.1021/cs200497e
10.1038/nchem.686
10.1016/j.jcat.2006.08.012
10.1016/j.jcat.2010.12.003
10.1016/j.cattod.2009.01.012
10.1126/science.1159210
10.1039/b805427d
10.1007/s12034-007-0005-x
10.1016/0021-9517(89)90216-9
10.1021/ja304958u
10.1021/nl201432g
10.1021/ja901006x
10.1021/ar100160t
10.1016/S0166-9834(00)84360-2
10.1021/ja0713072
10.1016/j.apcatb.2005.10.012
10.1021/cm9004486
10.1021/ef060654e
10.1021/ie00104a003
10.1021/ja01539a017
10.1126/science.1194218
10.1016/S0920-5861(01)00459-X
10.1021/ja8008192
10.1007/BF02062425
10.1016/j.cattod.2008.03.005
10.1006/jcat.1995.1247
10.1021/cs300014k
10.1016/S0926-860X(01)00694-9
10.1021/ja105853q
10.1021/jz900265j
10.1021/cr050972v
10.1007/s10562-005-8011-3
10.1021/jz100580x
10.1039/b906253j
10.1021/la901402f
10.1016/j.jcat.2006.07.012
10.1002/anie.200502895
10.1016/j.apcata.2010.03.006
10.1007/s10562-009-9925-y
10.1021/ef9005884
10.1016/j.cplett.2011.05.026
10.1021/ja1080508
10.1021/ja058282w
10.1016/j.apcata.2013.02.024
10.1007/BF00808838
10.1021/nn102598m
10.1021/nl904286r
10.1039/B614187K
10.1021/cs4003436
10.1002/cctc.201100275
10.1021/cr300367d
10.1016/j.apcata.2009.07.025
10.1016/0021-9517(87)90136-9
10.1021/j100411a023
10.1016/S1369-7021(08)70248-7
10.1126/science.285.5431.1209b
ContentType Journal Article
Copyright Copyright © 2013 American Chemical Society
Copyright_xml – notice: Copyright © 2013 American Chemical Society
DBID AAYXX
CITATION
DOI 10.1021/cs4010198
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2155-5435
EndPage 545
ExternalDocumentID 10_1021_cs4010198
c688569525
GroupedDBID 4.4
53G
55A
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
ED~
EJD
GNL
IH9
JG
JG~
RNS
ROL
UI2
VF5
VG9
W1F
.K2
AAHBH
AAYXX
ABJNI
ABQRX
ACGFO
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
ID FETCH-LOGICAL-a259t-3bb836dfaccb927d84528a1d9d492b136aa95ea493a96a946bdbb9383d415a143
IEDL.DBID ACS
ISSN 2155-5435
IngestDate Fri Aug 23 01:48:43 EDT 2024
Thu Aug 27 13:41:59 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords graphene defects
Fischer−Tropsch
microwave synthesis
Raman spectra of Fe−graphene catalysts
iron-based catalysts
graphene
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a259t-3bb836dfaccb927d84528a1d9d492b136aa95ea493a96a946bdbb9383d415a143
PageCount 11
ParticipantIDs crossref_primary_10_1021_cs4010198
acs_journals_10_1021_cs4010198
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2014-02-07
PublicationDateYYYYMMDD 2014-02-07
PublicationDate_xml – month: 02
  year: 2014
  text: 2014-02-07
  day: 07
PublicationDecade 2010
PublicationTitle ACS catalysis
PublicationTitleAlternate ACS Catal
PublicationYear 2014
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Yang Z. (ref59/cit59) 2012; 186
NAS-NAE-NRC (National Academy of Sciences-National Academy of Engineering-National Research Council) (ref1/cit1) 2009
Chen W. (ref38/cit38) 2007; 129
Hummers W. S. (ref55/cit55) 1958; 80
Panchakarla L. S. (ref100/ref100_1) 2007; 30
Kunkes E. L. (ref6/cit6) 2008; 322
De Klerk A. (ref13/cit13) 2009; 23
Van Steen E. (ref36/cit36) 2002; 71
Davis B. H. (ref15/cit15) 2008; 141
Ma W. (ref57/cit57) 2007; 21
Wang C. (ref60/cit60) 2006; 105
De Klerk A. (ref11/cit11) 2007; 9
Guczi L. (ref37/cit37) 2006; 244
Herring N. P. (ref54/cit54) 2011; 27
Metzger J. O. (ref5/cit5) 2006; 45
Bukur D. B. (ref21/cit21) 1990; 29
Borg O. (ref17/cit17) 2009; 142
Torres Galvis H. M. (ref29/cit29) 2012; 335
Zhao H. (ref45/cit45) 2013; 456
Ferrari A. C. (ref67/cit67) 2007; 446
Bagri A. (ref64/cit64) 2010; 2
Su D. S. (ref44/cit44) 2013; 113
Kang S. H. (ref28/cit28) 2009; 130
Vispute T. P. (ref7/cit7) 2010; 330
Bezemer G. L. (ref32/cit32) 2006; 128
Yu G. (ref56/cit56) 2010; 132
Anderson R. B. (ref10/cit10) 1984
Moussa S. (ref50/cit50) 2012; 2
El-Shall M. S. (ref51/cit51) 2013
Cancado L. G. (ref69/cit69) 2011; 11
Bull T. E. (ref4/cit4) 1999; 285
De Smit E. (ref27/cit27) 2008; 37
Chen W. (ref39/cit39) 2008; 130
Cahen D. (ref2/cit2) 2008; 11
Abbaslou R. M. M. (ref41/cit41) 2010; 379
Steynberg A. P. (ref9/cit9) 2004
Schutle H. J. (ref35/cit35) 2012; 4
Wielers A. F. H. (ref30/cit30) 1989; 117
Abbaslou R. M. M. (ref40/cit40) 2009; 367
Ngo H. L. (ref8/cit8) 2008; 22
Banhart F. (ref65/cit65) 2011; 5
Barrault J. (ref18/cit18) 1980; 15
Siamaki A. R. (ref48/cit48) 2011; 279
Dresselhaus M. S. (ref68/cit68) 2010; 10
De Smit E. (ref62/cit62) 2010; 132
Li S. (ref25/cit25) 2001; 219
Shroff M. D. (ref23/cit23) 1995; 156
Hassan H. M. A. (ref52/cit52) 2009; 19
Kim G. (ref66/cit66) 2011; 5
Moussa S. (ref49/cit49) 2011; 510
Dupain X. (ref14/cit14) 2006; 63
Cubeiroa M. L. (ref24/cit24) 1998; 167
Torres H. M. (ref34/cit34) 2013; 3
Yang C. (ref63/cit63) 2012; 134
Breejen J. P. (ref33/cit33) 2009; 131
Khodakov A. Y. (ref12/cit12) 2007; 107
Wang S. R. (ref61/cit61) 2009; 25
(ref3/cit3) 2010
Jasuja K. (ref47/cit47) 2010; 1
Eggenhuisen T. M. (ref16/cit16) 2010; 132
Schaetz A. (ref43/cit43) 2012; 2
Venter J. (ref58/cit58) 1987; 103
Kamat P. V. (ref46/cit46) 2010; 1
Sommen A. P. B. (ref19/cit19) 1985; 14
Torres Galvis H. M. (ref31/cit31) 2012; 134
Pan X. (ref42/cit42) 2011; 44
Abdelsayed V. (ref53/cit53) 2009; 21
Herranz T. (ref26/cit26) 2006; 243
Xu L. (ref22/cit22) 1995; 31
Jones V. K. (ref20/cit20) 1986; 90
References_xml – volume: 134
  start-page: 15814
  year: 2012
  ident: ref63/cit63
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja305048p
  contributor:
    fullname: Yang C.
– volume: 186
  start-page: 121
  year: 2012
  ident: ref59/cit59
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2011.11.034
  contributor:
    fullname: Yang Z.
– volume: 5
  start-page: 805
  year: 2011
  ident: ref66/cit66
  publication-title: ACS Nano
  doi: 10.1021/nn1017395
  contributor:
    fullname: Kim G.
– volume: 335
  start-page: 835
  year: 2012
  ident: ref29/cit29
  publication-title: Science
  doi: 10.1126/science.1215614
  contributor:
    fullname: Torres Galvis H. M.
– volume: 27
  start-page: 15146
  year: 2011
  ident: ref54/cit54
  publication-title: Lagmuir
  doi: 10.1021/la201698k
  contributor:
    fullname: Herring N. P.
– volume: 22
  start-page: 626
  year: 2008
  ident: ref8/cit8
  publication-title: Energy Fuels
  doi: 10.1021/ef700343b
  contributor:
    fullname: Ngo H. L.
– volume: 167
  start-page: 183
  year: 1998
  ident: ref24/cit24
  publication-title: Appl. Catal., A
  doi: 10.1016/S0926-860X(97)00300-1
  contributor:
    fullname: Cubeiroa M. L.
– volume: 132
  start-page: 935
  year: 2010
  ident: ref56/cit56
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja906370b
  contributor:
    fullname: Yu G.
– volume: 2
  start-page: 145
  year: 2012
  ident: ref50/cit50
  publication-title: ACS Catal.
  doi: 10.1021/cs200497e
  contributor:
    fullname: Moussa S.
– volume: 2
  start-page: 581
  year: 2010
  ident: ref64/cit64
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.686
  contributor:
    fullname: Bagri A.
– volume: 244
  start-page: 24
  year: 2006
  ident: ref37/cit37
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2006.08.012
  contributor:
    fullname: Guczi L.
– volume: 279
  start-page: 1
  year: 2011
  ident: ref48/cit48
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2010.12.003
  contributor:
    fullname: Siamaki A. R.
– volume: 142
  start-page: 70
  year: 2009
  ident: ref17/cit17
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2009.01.012
  contributor:
    fullname: Borg O.
– volume: 322
  start-page: 417
  year: 2008
  ident: ref6/cit6
  publication-title: Science
  doi: 10.1126/science.1159210
  contributor:
    fullname: Kunkes E. L.
– volume: 37
  start-page: 2758
  year: 2008
  ident: ref27/cit27
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b805427d
  contributor:
    fullname: De Smit E.
– volume: 30
  start-page: 23
  year: 2007
  ident: ref100/ref100_1
  publication-title: Bull. Mater. Sci.
  doi: 10.1007/s12034-007-0005-x
  contributor:
    fullname: Panchakarla L. S.
– volume-title: Fischer–Tropsch Technology
  year: 2004
  ident: ref9/cit9
  contributor:
    fullname: Steynberg A. P.
– volume: 117
  start-page: 1
  year: 1989
  ident: ref30/cit30
  publication-title: J. Catal.
  doi: 10.1016/0021-9517(89)90216-9
  contributor:
    fullname: Wielers A. F. H.
– volume: 134
  start-page: 16207
  year: 2012
  ident: ref31/cit31
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja304958u
  contributor:
    fullname: Torres Galvis H. M.
– volume: 446
  start-page: 60
  year: 2007
  ident: ref67/cit67
  publication-title: Solid State Commun.
  contributor:
    fullname: Ferrari A. C.
– volume: 11
  start-page: 3190
  year: 2011
  ident: ref69/cit69
  publication-title: Nano Lett.
  doi: 10.1021/nl201432g
  contributor:
    fullname: Cancado L. G.
– start-page: 303
  volume-title: Graphene: Synthesis, Properties and Phenomena
  year: 2013
  ident: ref51/cit51
  contributor:
    fullname: El-Shall M. S.
– volume: 131
  start-page: 7197
  year: 2009
  ident: ref33/cit33
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja901006x
  contributor:
    fullname: Breejen J. P.
– volume: 44
  start-page: 553
  year: 2011
  ident: ref42/cit42
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar100160t
  contributor:
    fullname: Pan X.
– volume: 14
  start-page: 277
  year: 1985
  ident: ref19/cit19
  publication-title: Appl. Catal.
  doi: 10.1016/S0166-9834(00)84360-2
  contributor:
    fullname: Sommen A. P. B.
– volume: 129
  start-page: 7421
  year: 2007
  ident: ref38/cit38
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0713072
  contributor:
    fullname: Chen W.
– volume: 63
  start-page: 277
  year: 2006
  ident: ref14/cit14
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2005.10.012
  contributor:
    fullname: Dupain X.
– volume: 21
  start-page: 2825
  year: 2009
  ident: ref53/cit53
  publication-title: Chem. Mater.
  doi: 10.1021/cm9004486
  contributor:
    fullname: Abdelsayed V.
– volume: 21
  start-page: 1832
  year: 2007
  ident: ref57/cit57
  publication-title: Energy Fuels
  doi: 10.1021/ef060654e
  contributor:
    fullname: Ma W.
– volume: 29
  start-page: 1588
  year: 1990
  ident: ref21/cit21
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie00104a003
  contributor:
    fullname: Bukur D. B.
– volume-title: Liquid Transportation Fuels from Coal and Biomass: Technological Status, Costs, and Environmental Impacts, America’s Energy Future Panel on Alternative Liquid Transportation Fuels
  year: 2010
  ident: ref3/cit3
– volume: 80
  start-page: 1339
  year: 1958
  ident: ref55/cit55
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01539a017
  contributor:
    fullname: Hummers W. S.
– volume: 330
  start-page: 1222
  year: 2010
  ident: ref7/cit7
  publication-title: Science
  doi: 10.1126/science.1194218
  contributor:
    fullname: Vispute T. P.
– volume: 71
  start-page: 327
  year: 2002
  ident: ref36/cit36
  publication-title: Catal. Today
  doi: 10.1016/S0920-5861(01)00459-X
  contributor:
    fullname: Van Steen E.
– volume: 130
  start-page: 9414
  year: 2008
  ident: ref39/cit39
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja8008192
  contributor:
    fullname: Chen W.
– volume: 15
  start-page: 153
  year: 1980
  ident: ref18/cit18
  publication-title: React. Kinet. Catal. Lett.
  doi: 10.1007/BF02062425
  contributor:
    fullname: Barrault J.
– volume: 141
  start-page: 25
  year: 2008
  ident: ref15/cit15
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2008.03.005
  contributor:
    fullname: Davis B. H.
– volume-title: The Fischer–Tropsch Synthesis
  year: 1984
  ident: ref10/cit10
  contributor:
    fullname: Anderson R. B.
– volume: 156
  start-page: 185
  year: 1995
  ident: ref23/cit23
  publication-title: J. Catal.
  doi: 10.1006/jcat.1995.1247
  contributor:
    fullname: Shroff M. D.
– volume: 2
  start-page: 1267
  year: 2012
  ident: ref43/cit43
  publication-title: ACS Catal.
  doi: 10.1021/cs300014k
  contributor:
    fullname: Schaetz A.
– volume: 219
  start-page: 215
  year: 2001
  ident: ref25/cit25
  publication-title: Appl. Catal., A
  doi: 10.1016/S0926-860X(01)00694-9
  contributor:
    fullname: Li S.
– volume: 132
  start-page: 14928
  year: 2010
  ident: ref62/cit62
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja105853q
  contributor:
    fullname: De Smit E.
– volume: 1
  start-page: 520
  year: 2010
  ident: ref46/cit46
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz900265j
  contributor:
    fullname: Kamat P. V.
– volume: 107
  start-page: 1692
  year: 2007
  ident: ref12/cit12
  publication-title: Chem. Rev.
  doi: 10.1021/cr050972v
  contributor:
    fullname: Khodakov A. Y.
– volume: 105
  start-page: 93
  year: 2006
  ident: ref60/cit60
  publication-title: Catal. Lett.
  doi: 10.1007/s10562-005-8011-3
  contributor:
    fullname: Wang C.
– volume: 1
  start-page: 1853
  year: 2010
  ident: ref47/cit47
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz100580x
  contributor:
    fullname: Jasuja K.
– volume: 19
  start-page: 3832
  year: 2009
  ident: ref52/cit52
  publication-title: J. Mater. Chem.
  doi: 10.1039/b906253j
  contributor:
    fullname: Hassan H. M. A.
– volume: 25
  start-page: 11078
  year: 2009
  ident: ref61/cit61
  publication-title: Langmuir
  doi: 10.1021/la901402f
  contributor:
    fullname: Wang S. R.
– volume: 243
  start-page: 199
  year: 2006
  ident: ref26/cit26
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2006.07.012
  contributor:
    fullname: Herranz T.
– volume-title: America’s Energy Future: Technology and Transformation
  year: 2009
  ident: ref1/cit1
  contributor:
    fullname: NAS-NAE-NRC (National Academy of Sciences-National Academy of Engineering-National Research Council)
– volume: 45
  start-page: 696
  year: 2006
  ident: ref5/cit5
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200502895
  contributor:
    fullname: Metzger J. O.
– volume: 379
  start-page: 129
  year: 2010
  ident: ref41/cit41
  publication-title: Appl. Catal., A
  doi: 10.1016/j.apcata.2010.03.006
  contributor:
    fullname: Abbaslou R. M. M.
– volume: 130
  start-page: 630
  year: 2009
  ident: ref28/cit28
  publication-title: Catal. Lett.
  doi: 10.1007/s10562-009-9925-y
  contributor:
    fullname: Kang S. H.
– volume: 23
  start-page: 4593
  year: 2009
  ident: ref13/cit13
  publication-title: Energy Fuels
  doi: 10.1021/ef9005884
  contributor:
    fullname: De Klerk A.
– volume: 510
  start-page: 179
  year: 2011
  ident: ref49/cit49
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2011.05.026
  contributor:
    fullname: Moussa S.
– volume: 132
  start-page: 18318
  year: 2010
  ident: ref16/cit16
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1080508
  contributor:
    fullname: Eggenhuisen T. M.
– volume: 128
  start-page: 3956
  year: 2006
  ident: ref32/cit32
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja058282w
  contributor:
    fullname: Bezemer G. L.
– volume: 456
  start-page: 223
  year: 2013
  ident: ref45/cit45
  publication-title: Appl. Catal., A
  doi: 10.1016/j.apcata.2013.02.024
  contributor:
    fullname: Zhao H.
– volume: 31
  start-page: 253
  year: 1995
  ident: ref22/cit22
  publication-title: Catal. Lett.
  doi: 10.1007/BF00808838
  contributor:
    fullname: Xu L.
– volume: 5
  start-page: 26
  year: 2011
  ident: ref65/cit65
  publication-title: ACS Nano
  doi: 10.1021/nn102598m
  contributor:
    fullname: Banhart F.
– volume: 10
  start-page: 751
  year: 2010
  ident: ref68/cit68
  publication-title: Nano Lett.
  doi: 10.1021/nl904286r
  contributor:
    fullname: Dresselhaus M. S.
– volume: 9
  start-page: 560
  year: 2007
  ident: ref11/cit11
  publication-title: Green Chem.
  doi: 10.1039/B614187K
  contributor:
    fullname: De Klerk A.
– volume: 3
  start-page: 2130
  year: 2013
  ident: ref34/cit34
  publication-title: ACS Catal.
  doi: 10.1021/cs4003436
  contributor:
    fullname: Torres H. M.
– volume: 4
  start-page: 350
  year: 2012
  ident: ref35/cit35
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201100275
  contributor:
    fullname: Schutle H. J.
– volume: 113
  start-page: 5782
  year: 2013
  ident: ref44/cit44
  publication-title: Chem. Rev.
  doi: 10.1021/cr300367d
  contributor:
    fullname: Su D. S.
– volume: 367
  start-page: 47
  year: 2009
  ident: ref40/cit40
  publication-title: Appl. Catal., A
  doi: 10.1016/j.apcata.2009.07.025
  contributor:
    fullname: Abbaslou R. M. M.
– volume: 103
  start-page: 450
  year: 1987
  ident: ref58/cit58
  publication-title: J. Catal.
  doi: 10.1016/0021-9517(87)90136-9
  contributor:
    fullname: Venter J.
– volume: 90
  start-page: 4832
  year: 1986
  ident: ref20/cit20
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100411a023
  contributor:
    fullname: Jones V. K.
– volume: 11
  start-page: 16
  year: 2008
  ident: ref2/cit2
  publication-title: Mater. Today
  doi: 10.1016/S1369-7021(08)70248-7
  contributor:
    fullname: Cahen D.
– volume: 285
  start-page: 1209
  year: 1999
  ident: ref4/cit4
  publication-title: Science
  doi: 10.1126/science.285.5431.1209b
  contributor:
    fullname: Bull T. E.
SSID ssj0000456870
Score 2.481255
Snippet Fischer–Tropsch synthesis (FTS) is a potentially attractive technology for the production of clean liquid fuels from synthesis gas. The efficiency and...
SourceID crossref
acs
SourceType Aggregation Database
Publisher
StartPage 535
Title Graphene-Supported, Iron-Based Nanoparticles for Catalytic Production of Liquid Hydrocarbons from Synthesis Gas: The Role of the Graphene Support in Comparison with Carbon Nanotubes
URI http://dx.doi.org/10.1021/cs4010198
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60HvTiW6yPMqhHF5vN5rHeNPYhiIhV8FZmuykEJNGmOfSH-f-cTZNSENFbWLKbITPZ75vZyQxjF6jaQhHMcgfJgqWWkmuByMdu0EaCnLHyyia2g-DxLbzr2DI557-c4AvnapRLWwdNhatsTQTEwC3_iQaLQIrlJGHZFI7Qy-Me4X9dQWh5tkWfUb6EPksw0t36lwDbbLNiiXAzV-sOW4nTXbYe1c3Z9thXzxaapn2K27acNmHWXML9JEv5LcGSAdo0yRuukt6AiClENk4zowF4mhd5JYVANoaH5LNIDPRnhqAMJ5qsEOw_JzCYpUQO8ySHHubXQPYEz9l7bOfQONQCQCUAJClEi6aGYOO79Ey7XinMtNBxvs9eu52XqM-rDgwcyS2aclfr0PXNGEcjrURgQumJEB2jjFRCO66PqLwYpXJR-aikr43WipxeQ7wAiYodsEaapfEhA01EQXrKEcL4UkmDpu0aS08cunCF02Qt0s-w-oLyYXk4Lpzh4u032VmtuuHHvBLHz5uO_lrlmG0Q5ZFl3nVwwhrTSRGfstXcFK3SrL4B7LPFrA
link.rule.ids 315,782,786,2770,27086,27934,27935,56749,56799
linkProvider American Chemical Society
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVYDnBhR5SljBBHLBrHWcythJYiCkIUJG7RuE6lSiiFuj30w_g_xmlaKnFA3CIrdkb2xO_ZHr9h7BxVTSiCWe4hebDUUnItEHnPj2pIkNNTQZHEthM9vsU3jblMjrsLQ0ZYaskWh_g_6gLeZddKJ4em4mW2GoSRdB5cTzrz_RRHTeIiNxyBWMADogEzIaHF2g6EunYBhBbQpLn5Hzu22EbJGaE-HeRttpTlO2wtmaVq22Vft052mmYt7pJ0uvBZcwF3w0HOrwmkDNAUSmvjMgQOiKZC4nZtJlQAT1PJVxoeGPSg3f8c9w20JoaADYeafBLcDRToTHKiirZv4RbtFZB3wfPgPXN1qBxmBkBpAPRzSOYpDsHt9tI3XXuFMaOxzuwee202XpIWL_MxcKRF0oj7Wsd-aHrY7WolIhPLQMToGWWkEtrzQ0QVZCiVjypEJUNttFa0BDbEEpCI2T5byQd5dsBAE22QgfKEMKFU0qCp-caRFY8efOFVWJU6Py3_J5sWR-XCS-e9X2FnsxFMP6a6HL9fOvyrlVO21np5aKftu8f7I7ZOZEgWEdnRMVsZDcfZCVu2ZlwtPO0btNbOGg
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA5eQH3xLt49iI9G1zS9xDftNhVFxCn4Vk6WFgbS6bI97If5_zzp2jHwQXwroUkPPSf5vty-w9gZqoZQBLPcQ4pgqaXkWiDy3I8aSJCTq6BMYtuJnt7jZsvJ5FzUd2HICEst2XIT3_XqT5NXCgPeZddKJ4mm4nm2GISRclF8nXSmayqOnsRlfjgCsoAHRAVqMaHZ2g6IunYGiGYQpb32X1vW2WrFHeF64uwNNpcVm2w5qVO2bbHvWyc_TaMXd8k63TFacw73g37BbwisDNBQSnPk6igcEF2FxK3ejKkAnifSr-Qm6Ofw2Psa9QzcjQ0BHA40xSa4myjQGRdEGW3Pwi3aK6Aog5f-R-bqUDnUBkBlAPQKSKapDsGt-tI3XXulMcORzuw2e2u3XpM7XuVl4EiTpSH3tY790OTY7WolIhPLQMToGWWkEtrzQ0QVZCiVjypEJUNttFY0FTbEFpAI2g5bKPpFtstAE32QgfKEMKFU0qBp-MaRFo8efOHtsWNyQFr1K5uWW-bCS6d_f4-d1l5MPyf6HL9f2v-rlRO29Nxsp4_3Tw8HbIU4kSwPZkeHbGE4GGVHbN6a0XEZbD-RGdCd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graphene-Supported%2C+Iron-Based+Nanoparticles+for+Catalytic+Production+of+Liquid+Hydrocarbons+from+Synthesis+Gas%3A+The+Role+of+the+Graphene+Support+in+Comparison+with+Carbon+Nanotubes&rft.jtitle=ACS+catalysis&rft.au=Moussa%2C+Sherif+O.&rft.au=Panchakarla%2C+Leela+S.&rft.au=Ho%2C+Minh+Q.&rft.au=El-Shall%2C+M.+Samy&rft.date=2014-02-07&rft.issn=2155-5435&rft.eissn=2155-5435&rft.volume=4&rft.issue=2&rft.spage=535&rft.epage=545&rft_id=info:doi/10.1021%2Fcs4010198&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_cs4010198
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2155-5435&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2155-5435&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2155-5435&client=summon