Graphene-Supported, Iron-Based Nanoparticles for Catalytic Production of Liquid Hydrocarbons from Synthesis Gas: The Role of the Graphene Support in Comparison with Carbon Nanotubes
Fischer–Tropsch synthesis (FTS) is a potentially attractive technology for the production of clean liquid fuels from synthesis gas. The efficiency and selectivity of FTS can be enhanced by the design of new active catalyst systems with improved selectivity for long-chain hydrocarbons and low methane...
Saved in:
Published in: | ACS catalysis Vol. 4; no. 2; pp. 535 - 545 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
American Chemical Society
07-02-2014
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Fischer–Tropsch synthesis (FTS) is a potentially attractive technology for the production of clean liquid fuels from synthesis gas. The efficiency and selectivity of FTS can be enhanced by the design of new active catalyst systems with improved selectivity for long-chain hydrocarbons and low methane production. In this paper, we introduce a new class of FT catalysts supported on the high surface area graphene nanosheets and report on their high activity and selectivity for the production of long-chain hydrocarbons. The chemical reduction of graphene oxide in water in the presence of the metal salts under microwave irradiation allows the deposition of well-dispersed surface-oxidized metal nanoparticles on the defect sites of the graphene nanosheets. The Fe–K-nanoparticle catalyst supported on graphene exhibits high activity and selectivity toward C8 and higher hydrocarbons with excellent stability and recyclability. In comparison with other carbon supports, such as carbon nanotubes, the graphene support shows a unique tendency for minor formation of the low-value and undesirable products methane and carbon dioxide, respectively. The water-gas shift activity is reduced on the graphene support as compared with CNTs, and as a result, the formation of CO2 is significantly reduced. Evidence is presented for the formation of the active Fe5C2 iron carbide phase during the FTS on the graphene-supported Fe catalysts. The high activity and selectivity of the catalysts supported on graphene are correlated with the presence of defects within the graphene lattice that act as favorable nucleation sites to anchor the metal nanoparticles, thus providing tunable metal–support interactions. Given the activity, selectivity, and stability of the new graphene-supported, Fe-based nanoparticle catalysts, their industrial application appears to be promising. Controlling the nature and density of the defect sites in graphene could lead to improved understanding of the catalyst–graphene interactions and to further enhancement of the performance of these catalysts for the production of liquid fuels. |
---|---|
AbstractList | Fischer–Tropsch synthesis (FTS) is a potentially attractive technology for the production of clean liquid fuels from synthesis gas. The efficiency and selectivity of FTS can be enhanced by the design of new active catalyst systems with improved selectivity for long-chain hydrocarbons and low methane production. In this paper, we introduce a new class of FT catalysts supported on the high surface area graphene nanosheets and report on their high activity and selectivity for the production of long-chain hydrocarbons. The chemical reduction of graphene oxide in water in the presence of the metal salts under microwave irradiation allows the deposition of well-dispersed surface-oxidized metal nanoparticles on the defect sites of the graphene nanosheets. The Fe–K-nanoparticle catalyst supported on graphene exhibits high activity and selectivity toward C8 and higher hydrocarbons with excellent stability and recyclability. In comparison with other carbon supports, such as carbon nanotubes, the graphene support shows a unique tendency for minor formation of the low-value and undesirable products methane and carbon dioxide, respectively. The water-gas shift activity is reduced on the graphene support as compared with CNTs, and as a result, the formation of CO2 is significantly reduced. Evidence is presented for the formation of the active Fe5C2 iron carbide phase during the FTS on the graphene-supported Fe catalysts. The high activity and selectivity of the catalysts supported on graphene are correlated with the presence of defects within the graphene lattice that act as favorable nucleation sites to anchor the metal nanoparticles, thus providing tunable metal–support interactions. Given the activity, selectivity, and stability of the new graphene-supported, Fe-based nanoparticle catalysts, their industrial application appears to be promising. Controlling the nature and density of the defect sites in graphene could lead to improved understanding of the catalyst–graphene interactions and to further enhancement of the performance of these catalysts for the production of liquid fuels. |
Author | El-Shall, M. Samy Moussa, Sherif O Ho, Minh Q Panchakarla, Leela S |
AuthorAffiliation | Department of Chemistry Virginia Commonwealth University |
AuthorAffiliation_xml | – name: Virginia Commonwealth University – name: Department of Chemistry |
Author_xml | – sequence: 1 givenname: Sherif O surname: Moussa fullname: Moussa, Sherif O – sequence: 2 givenname: Leela S surname: Panchakarla fullname: Panchakarla, Leela S – sequence: 3 givenname: Minh Q surname: Ho fullname: Ho, Minh Q – sequence: 4 givenname: M. Samy surname: El-Shall fullname: El-Shall, M. Samy email: mselshal@vcu.edu |
BookMark | eNptUEFOwzAQtFCRKKUHfuALByQCcWKnMTeIoK1UAaLlHK1jR3XV2sFOhPow_odLC-LAXnY1mp0ZzSnqGWsUQuckviZxQm4qT2MSE54foX5CGIsYTVnvz32Cht6v4jCUZfko7qPPsYNmqYyK5l3TWNcqeYWnzproHryS-AmMbcC1ulorj2vrcAEtrLcBwC_Oyq5qtTXY1nim3zst8WQrna3ACWsC39kNnm9Nu1ReezwGf4sXS4Vf7VrtfgKOfwLgQwCsDS7sJphqH5Q_dLsMnju97zBtJ5Q_Q8c1rL0aHvYAvT0-LIpJNHseT4u7WQQJ422UCpGnmayhqgRPRjKnLMmBSC4pTwRJMwDOFFCeAs-A00xIIXiap5ISBoSmA3S5162c9d6pumyc3oDbliQud5WXv5UH7sWeC5UvV7ZzJiT7h_cFzEaEtA |
CitedBy_id | crossref_primary_10_1016_j_jcat_2020_11_033 crossref_primary_10_1039_D1CY02241E crossref_primary_10_1007_s00339_016_0746_8 crossref_primary_10_1016_j_ccr_2015_12_005 crossref_primary_10_1016_j_jiec_2017_02_018 crossref_primary_10_1016_j_ijhydene_2019_03_015 crossref_primary_10_1016_j_mcat_2018_06_008 crossref_primary_10_1016_j_apcata_2015_04_024 crossref_primary_10_1039_D4TA01179A crossref_primary_10_2139_ssrn_4103021 crossref_primary_10_1039_C4DT02544J crossref_primary_10_1021_acscatal_6b00464 crossref_primary_10_1016_j_cherd_2017_01_021 crossref_primary_10_1016_j_jtice_2021_104170 crossref_primary_10_1021_acsanm_9b01762 crossref_primary_10_1007_s40090_019_00195_9 crossref_primary_10_1016_j_jcat_2021_08_026 crossref_primary_10_1016_j_apcatb_2016_11_058 crossref_primary_10_1016_j_msec_2019_05_008 crossref_primary_10_1021_acsanm_1c01122 crossref_primary_10_1021_acs_iecr_9b04221 crossref_primary_10_1039_C5NR04546K crossref_primary_10_1016_j_colsurfa_2015_05_056 crossref_primary_10_1039_C8GC00433A crossref_primary_10_1002_cctc_201500794 crossref_primary_10_2139_ssrn_4052304 crossref_primary_10_1016_S1872_5813_21_60063_4 crossref_primary_10_1016_j_mseb_2021_115388 crossref_primary_10_1021_acscatal_5b00480 crossref_primary_10_1016_j_carbon_2020_11_019 crossref_primary_10_1039_C5CY00630A crossref_primary_10_1039_C7CY02449E crossref_primary_10_1016_j_jechem_2020_03_062 crossref_primary_10_1021_acscatal_6b00321 crossref_primary_10_4028_www_scientific_net_KEM_835_130 crossref_primary_10_1007_s11705_020_1925_x crossref_primary_10_1021_acs_iecr_6b05048 crossref_primary_10_1016_j_cattod_2016_07_023 crossref_primary_10_1021_acs_iecr_7b04864 crossref_primary_10_1016_j_apcata_2014_11_033 crossref_primary_10_1016_j_cej_2021_133970 crossref_primary_10_1021_acsomega_1c04476 crossref_primary_10_1016_j_enconman_2018_04_112 crossref_primary_10_1016_j_jcat_2020_03_011 crossref_primary_10_1021_acs_chemrev_5b00620 crossref_primary_10_3390_molecules28237749 crossref_primary_10_1016_S2095_4956_14_60170_4 crossref_primary_10_1016_j_cherd_2015_10_016 crossref_primary_10_1016_j_jcis_2016_11_058 crossref_primary_10_1021_acsami_7b00561 crossref_primary_10_1016_S1872_2067_18_63158_4 crossref_primary_10_1016_j_ultsonch_2017_11_031 crossref_primary_10_1016_j_apcata_2023_119448 crossref_primary_10_1039_C4RA04834B crossref_primary_10_1007_s10562_018_2428_y crossref_primary_10_1016_j_fuel_2021_122363 crossref_primary_10_1016_j_fuel_2022_127267 crossref_primary_10_1002_asia_201500507 crossref_primary_10_1016_j_ijhydene_2023_01_061 crossref_primary_10_1016_j_apcata_2019_117123 crossref_primary_10_1007_s12274_019_2487_4 crossref_primary_10_1021_acscatal_5b00697 crossref_primary_10_1021_acsanm_0c01522 crossref_primary_10_1021_jacs_5b05674 crossref_primary_10_1016_j_cej_2024_149787 crossref_primary_10_1039_D3CY00213F crossref_primary_10_1002_open_201900368 crossref_primary_10_1016_j_jcis_2017_05_112 crossref_primary_10_1039_C8CY00617B crossref_primary_10_1016_j_apsusc_2017_06_130 crossref_primary_10_1016_j_fuel_2023_129791 crossref_primary_10_1021_acs_chemrev_0c00083 crossref_primary_10_1039_C8RA02193G crossref_primary_10_1016_j_cej_2022_138823 crossref_primary_10_1016_j_ijhydene_2020_07_188 crossref_primary_10_1016_j_carbon_2018_01_015 crossref_primary_10_1016_j_ijhydene_2024_03_086 crossref_primary_10_1039_D0CS00905A crossref_primary_10_1016_j_cartre_2022_100196 crossref_primary_10_1142_S179360471650051X crossref_primary_10_1016_j_jcat_2019_09_004 crossref_primary_10_1007_s11237_015_9405_y crossref_primary_10_3390_catal13040686 crossref_primary_10_1016_j_molcata_2016_12_011 crossref_primary_10_1002_cctc_201600956 crossref_primary_10_1016_j_jechem_2019_12_003 crossref_primary_10_3389_fmats_2020_617432 crossref_primary_10_1016_j_apsusc_2017_08_152 crossref_primary_10_1039_C7RA05887J crossref_primary_10_1016_j_apcata_2015_02_009 crossref_primary_10_1021_acssuschemeng_7b00924 crossref_primary_10_1021_acssuschemeng_8b04655 crossref_primary_10_1007_s42823_020_00200_7 crossref_primary_10_1039_C8NJ04115F crossref_primary_10_1016_j_jiec_2015_06_002 crossref_primary_10_1016_j_cej_2017_10_093 crossref_primary_10_1039_C7CY01172E crossref_primary_10_1007_s10562_021_03768_5 crossref_primary_10_1021_acs_iecr_1c03810 crossref_primary_10_1039_D0MA00920B crossref_primary_10_1016_j_jhazmat_2021_125162 crossref_primary_10_1002_admi_201600590 crossref_primary_10_1002_aoc_4915 crossref_primary_10_1039_C9CY00403C crossref_primary_10_1021_acsami_7b10638 crossref_primary_10_1016_j_snb_2016_09_134 crossref_primary_10_1021_acs_energyfuels_1c00168 crossref_primary_10_1016_j_cattod_2016_12_035 crossref_primary_10_1016_j_fuel_2016_03_023 crossref_primary_10_1039_C8RA09003C crossref_primary_10_1039_D3EY00071K crossref_primary_10_1016_j_ijhydene_2023_01_370 crossref_primary_10_1039_C6RA28467A crossref_primary_10_1021_acssuschemeng_9b03831 crossref_primary_10_1016_j_jece_2022_108407 crossref_primary_10_1007_s11144_020_01742_7 |
Cites_doi | 10.1021/ja305048p 10.1016/j.cattod.2011.11.034 10.1021/nn1017395 10.1126/science.1215614 10.1021/la201698k 10.1021/ef700343b 10.1016/S0926-860X(97)00300-1 10.1021/ja906370b 10.1021/cs200497e 10.1038/nchem.686 10.1016/j.jcat.2006.08.012 10.1016/j.jcat.2010.12.003 10.1016/j.cattod.2009.01.012 10.1126/science.1159210 10.1039/b805427d 10.1007/s12034-007-0005-x 10.1016/0021-9517(89)90216-9 10.1021/ja304958u 10.1021/nl201432g 10.1021/ja901006x 10.1021/ar100160t 10.1016/S0166-9834(00)84360-2 10.1021/ja0713072 10.1016/j.apcatb.2005.10.012 10.1021/cm9004486 10.1021/ef060654e 10.1021/ie00104a003 10.1021/ja01539a017 10.1126/science.1194218 10.1016/S0920-5861(01)00459-X 10.1021/ja8008192 10.1007/BF02062425 10.1016/j.cattod.2008.03.005 10.1006/jcat.1995.1247 10.1021/cs300014k 10.1016/S0926-860X(01)00694-9 10.1021/ja105853q 10.1021/jz900265j 10.1021/cr050972v 10.1007/s10562-005-8011-3 10.1021/jz100580x 10.1039/b906253j 10.1021/la901402f 10.1016/j.jcat.2006.07.012 10.1002/anie.200502895 10.1016/j.apcata.2010.03.006 10.1007/s10562-009-9925-y 10.1021/ef9005884 10.1016/j.cplett.2011.05.026 10.1021/ja1080508 10.1021/ja058282w 10.1016/j.apcata.2013.02.024 10.1007/BF00808838 10.1021/nn102598m 10.1021/nl904286r 10.1039/B614187K 10.1021/cs4003436 10.1002/cctc.201100275 10.1021/cr300367d 10.1016/j.apcata.2009.07.025 10.1016/0021-9517(87)90136-9 10.1021/j100411a023 10.1016/S1369-7021(08)70248-7 10.1126/science.285.5431.1209b |
ContentType | Journal Article |
Copyright | Copyright © 2013 American Chemical
Society |
Copyright_xml | – notice: Copyright © 2013 American Chemical Society |
DBID | AAYXX CITATION |
DOI | 10.1021/cs4010198 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2155-5435 |
EndPage | 545 |
ExternalDocumentID | 10_1021_cs4010198 c688569525 |
GroupedDBID | 4.4 53G 55A 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED ED~ EJD GNL IH9 JG JG~ RNS ROL UI2 VF5 VG9 W1F .K2 AAHBH AAYXX ABJNI ABQRX ACGFO ADHLV AHGAQ BAANH CITATION CUPRZ GGK |
ID | FETCH-LOGICAL-a259t-3bb836dfaccb927d84528a1d9d492b136aa95ea493a96a946bdbb9383d415a143 |
IEDL.DBID | ACS |
ISSN | 2155-5435 |
IngestDate | Fri Aug 23 01:48:43 EDT 2024 Thu Aug 27 13:41:59 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | graphene defects Fischer−Tropsch microwave synthesis Raman spectra of Fe−graphene catalysts iron-based catalysts graphene |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a259t-3bb836dfaccb927d84528a1d9d492b136aa95ea493a96a946bdbb9383d415a143 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1021_cs4010198 acs_journals_10_1021_cs4010198 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 2014-02-07 |
PublicationDateYYYYMMDD | 2014-02-07 |
PublicationDate_xml | – month: 02 year: 2014 text: 2014-02-07 day: 07 |
PublicationDecade | 2010 |
PublicationTitle | ACS catalysis |
PublicationTitleAlternate | ACS Catal |
PublicationYear | 2014 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Yang Z. (ref59/cit59) 2012; 186 NAS-NAE-NRC (National Academy of Sciences-National Academy of Engineering-National Research Council) (ref1/cit1) 2009 Chen W. (ref38/cit38) 2007; 129 Hummers W. S. (ref55/cit55) 1958; 80 Panchakarla L. S. (ref100/ref100_1) 2007; 30 Kunkes E. L. (ref6/cit6) 2008; 322 De Klerk A. (ref13/cit13) 2009; 23 Van Steen E. (ref36/cit36) 2002; 71 Davis B. H. (ref15/cit15) 2008; 141 Ma W. (ref57/cit57) 2007; 21 Wang C. (ref60/cit60) 2006; 105 De Klerk A. (ref11/cit11) 2007; 9 Guczi L. (ref37/cit37) 2006; 244 Herring N. P. (ref54/cit54) 2011; 27 Metzger J. O. (ref5/cit5) 2006; 45 Bukur D. B. (ref21/cit21) 1990; 29 Borg O. (ref17/cit17) 2009; 142 Torres Galvis H. M. (ref29/cit29) 2012; 335 Zhao H. (ref45/cit45) 2013; 456 Ferrari A. C. (ref67/cit67) 2007; 446 Bagri A. (ref64/cit64) 2010; 2 Su D. S. (ref44/cit44) 2013; 113 Kang S. H. (ref28/cit28) 2009; 130 Vispute T. P. (ref7/cit7) 2010; 330 Bezemer G. L. (ref32/cit32) 2006; 128 Yu G. (ref56/cit56) 2010; 132 Anderson R. B. (ref10/cit10) 1984 Moussa S. (ref50/cit50) 2012; 2 El-Shall M. S. (ref51/cit51) 2013 Cancado L. G. (ref69/cit69) 2011; 11 Bull T. E. (ref4/cit4) 1999; 285 De Smit E. (ref27/cit27) 2008; 37 Chen W. (ref39/cit39) 2008; 130 Cahen D. (ref2/cit2) 2008; 11 Abbaslou R. M. M. (ref41/cit41) 2010; 379 Steynberg A. P. (ref9/cit9) 2004 Schutle H. J. (ref35/cit35) 2012; 4 Wielers A. F. H. (ref30/cit30) 1989; 117 Abbaslou R. M. M. (ref40/cit40) 2009; 367 Ngo H. L. (ref8/cit8) 2008; 22 Banhart F. (ref65/cit65) 2011; 5 Barrault J. (ref18/cit18) 1980; 15 Siamaki A. R. (ref48/cit48) 2011; 279 Dresselhaus M. S. (ref68/cit68) 2010; 10 De Smit E. (ref62/cit62) 2010; 132 Li S. (ref25/cit25) 2001; 219 Shroff M. D. (ref23/cit23) 1995; 156 Hassan H. M. A. (ref52/cit52) 2009; 19 Kim G. (ref66/cit66) 2011; 5 Moussa S. (ref49/cit49) 2011; 510 Dupain X. (ref14/cit14) 2006; 63 Cubeiroa M. L. (ref24/cit24) 1998; 167 Torres H. M. (ref34/cit34) 2013; 3 Yang C. (ref63/cit63) 2012; 134 Breejen J. P. (ref33/cit33) 2009; 131 Khodakov A. Y. (ref12/cit12) 2007; 107 Wang S. R. (ref61/cit61) 2009; 25 (ref3/cit3) 2010 Jasuja K. (ref47/cit47) 2010; 1 Eggenhuisen T. M. (ref16/cit16) 2010; 132 Schaetz A. (ref43/cit43) 2012; 2 Venter J. (ref58/cit58) 1987; 103 Kamat P. V. (ref46/cit46) 2010; 1 Sommen A. P. B. (ref19/cit19) 1985; 14 Torres Galvis H. M. (ref31/cit31) 2012; 134 Pan X. (ref42/cit42) 2011; 44 Abdelsayed V. (ref53/cit53) 2009; 21 Herranz T. (ref26/cit26) 2006; 243 Xu L. (ref22/cit22) 1995; 31 Jones V. K. (ref20/cit20) 1986; 90 |
References_xml | – volume: 134 start-page: 15814 year: 2012 ident: ref63/cit63 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja305048p contributor: fullname: Yang C. – volume: 186 start-page: 121 year: 2012 ident: ref59/cit59 publication-title: Catal. Today doi: 10.1016/j.cattod.2011.11.034 contributor: fullname: Yang Z. – volume: 5 start-page: 805 year: 2011 ident: ref66/cit66 publication-title: ACS Nano doi: 10.1021/nn1017395 contributor: fullname: Kim G. – volume: 335 start-page: 835 year: 2012 ident: ref29/cit29 publication-title: Science doi: 10.1126/science.1215614 contributor: fullname: Torres Galvis H. M. – volume: 27 start-page: 15146 year: 2011 ident: ref54/cit54 publication-title: Lagmuir doi: 10.1021/la201698k contributor: fullname: Herring N. P. – volume: 22 start-page: 626 year: 2008 ident: ref8/cit8 publication-title: Energy Fuels doi: 10.1021/ef700343b contributor: fullname: Ngo H. L. – volume: 167 start-page: 183 year: 1998 ident: ref24/cit24 publication-title: Appl. Catal., A doi: 10.1016/S0926-860X(97)00300-1 contributor: fullname: Cubeiroa M. L. – volume: 132 start-page: 935 year: 2010 ident: ref56/cit56 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja906370b contributor: fullname: Yu G. – volume: 2 start-page: 145 year: 2012 ident: ref50/cit50 publication-title: ACS Catal. doi: 10.1021/cs200497e contributor: fullname: Moussa S. – volume: 2 start-page: 581 year: 2010 ident: ref64/cit64 publication-title: Nat. Chem. doi: 10.1038/nchem.686 contributor: fullname: Bagri A. – volume: 244 start-page: 24 year: 2006 ident: ref37/cit37 publication-title: J. Catal. doi: 10.1016/j.jcat.2006.08.012 contributor: fullname: Guczi L. – volume: 279 start-page: 1 year: 2011 ident: ref48/cit48 publication-title: J. Catal. doi: 10.1016/j.jcat.2010.12.003 contributor: fullname: Siamaki A. R. – volume: 142 start-page: 70 year: 2009 ident: ref17/cit17 publication-title: Catal. Today doi: 10.1016/j.cattod.2009.01.012 contributor: fullname: Borg O. – volume: 322 start-page: 417 year: 2008 ident: ref6/cit6 publication-title: Science doi: 10.1126/science.1159210 contributor: fullname: Kunkes E. L. – volume: 37 start-page: 2758 year: 2008 ident: ref27/cit27 publication-title: Chem. Soc. Rev. doi: 10.1039/b805427d contributor: fullname: De Smit E. – volume: 30 start-page: 23 year: 2007 ident: ref100/ref100_1 publication-title: Bull. Mater. Sci. doi: 10.1007/s12034-007-0005-x contributor: fullname: Panchakarla L. S. – volume-title: Fischer–Tropsch Technology year: 2004 ident: ref9/cit9 contributor: fullname: Steynberg A. P. – volume: 117 start-page: 1 year: 1989 ident: ref30/cit30 publication-title: J. Catal. doi: 10.1016/0021-9517(89)90216-9 contributor: fullname: Wielers A. F. H. – volume: 134 start-page: 16207 year: 2012 ident: ref31/cit31 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja304958u contributor: fullname: Torres Galvis H. M. – volume: 446 start-page: 60 year: 2007 ident: ref67/cit67 publication-title: Solid State Commun. contributor: fullname: Ferrari A. C. – volume: 11 start-page: 3190 year: 2011 ident: ref69/cit69 publication-title: Nano Lett. doi: 10.1021/nl201432g contributor: fullname: Cancado L. G. – start-page: 303 volume-title: Graphene: Synthesis, Properties and Phenomena year: 2013 ident: ref51/cit51 contributor: fullname: El-Shall M. S. – volume: 131 start-page: 7197 year: 2009 ident: ref33/cit33 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja901006x contributor: fullname: Breejen J. P. – volume: 44 start-page: 553 year: 2011 ident: ref42/cit42 publication-title: Acc. Chem. Res. doi: 10.1021/ar100160t contributor: fullname: Pan X. – volume: 14 start-page: 277 year: 1985 ident: ref19/cit19 publication-title: Appl. Catal. doi: 10.1016/S0166-9834(00)84360-2 contributor: fullname: Sommen A. P. B. – volume: 129 start-page: 7421 year: 2007 ident: ref38/cit38 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0713072 contributor: fullname: Chen W. – volume: 63 start-page: 277 year: 2006 ident: ref14/cit14 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2005.10.012 contributor: fullname: Dupain X. – volume: 21 start-page: 2825 year: 2009 ident: ref53/cit53 publication-title: Chem. Mater. doi: 10.1021/cm9004486 contributor: fullname: Abdelsayed V. – volume: 21 start-page: 1832 year: 2007 ident: ref57/cit57 publication-title: Energy Fuels doi: 10.1021/ef060654e contributor: fullname: Ma W. – volume: 29 start-page: 1588 year: 1990 ident: ref21/cit21 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie00104a003 contributor: fullname: Bukur D. B. – volume-title: Liquid Transportation Fuels from Coal and Biomass: Technological Status, Costs, and Environmental Impacts, America’s Energy Future Panel on Alternative Liquid Transportation Fuels year: 2010 ident: ref3/cit3 – volume: 80 start-page: 1339 year: 1958 ident: ref55/cit55 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01539a017 contributor: fullname: Hummers W. S. – volume: 330 start-page: 1222 year: 2010 ident: ref7/cit7 publication-title: Science doi: 10.1126/science.1194218 contributor: fullname: Vispute T. P. – volume: 71 start-page: 327 year: 2002 ident: ref36/cit36 publication-title: Catal. Today doi: 10.1016/S0920-5861(01)00459-X contributor: fullname: Van Steen E. – volume: 130 start-page: 9414 year: 2008 ident: ref39/cit39 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8008192 contributor: fullname: Chen W. – volume: 15 start-page: 153 year: 1980 ident: ref18/cit18 publication-title: React. Kinet. Catal. Lett. doi: 10.1007/BF02062425 contributor: fullname: Barrault J. – volume: 141 start-page: 25 year: 2008 ident: ref15/cit15 publication-title: Catal. Today doi: 10.1016/j.cattod.2008.03.005 contributor: fullname: Davis B. H. – volume-title: The Fischer–Tropsch Synthesis year: 1984 ident: ref10/cit10 contributor: fullname: Anderson R. B. – volume: 156 start-page: 185 year: 1995 ident: ref23/cit23 publication-title: J. Catal. doi: 10.1006/jcat.1995.1247 contributor: fullname: Shroff M. D. – volume: 2 start-page: 1267 year: 2012 ident: ref43/cit43 publication-title: ACS Catal. doi: 10.1021/cs300014k contributor: fullname: Schaetz A. – volume: 219 start-page: 215 year: 2001 ident: ref25/cit25 publication-title: Appl. Catal., A doi: 10.1016/S0926-860X(01)00694-9 contributor: fullname: Li S. – volume: 132 start-page: 14928 year: 2010 ident: ref62/cit62 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja105853q contributor: fullname: De Smit E. – volume: 1 start-page: 520 year: 2010 ident: ref46/cit46 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz900265j contributor: fullname: Kamat P. V. – volume: 107 start-page: 1692 year: 2007 ident: ref12/cit12 publication-title: Chem. Rev. doi: 10.1021/cr050972v contributor: fullname: Khodakov A. Y. – volume: 105 start-page: 93 year: 2006 ident: ref60/cit60 publication-title: Catal. Lett. doi: 10.1007/s10562-005-8011-3 contributor: fullname: Wang C. – volume: 1 start-page: 1853 year: 2010 ident: ref47/cit47 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz100580x contributor: fullname: Jasuja K. – volume: 19 start-page: 3832 year: 2009 ident: ref52/cit52 publication-title: J. Mater. Chem. doi: 10.1039/b906253j contributor: fullname: Hassan H. M. A. – volume: 25 start-page: 11078 year: 2009 ident: ref61/cit61 publication-title: Langmuir doi: 10.1021/la901402f contributor: fullname: Wang S. R. – volume: 243 start-page: 199 year: 2006 ident: ref26/cit26 publication-title: J. Catal. doi: 10.1016/j.jcat.2006.07.012 contributor: fullname: Herranz T. – volume-title: America’s Energy Future: Technology and Transformation year: 2009 ident: ref1/cit1 contributor: fullname: NAS-NAE-NRC (National Academy of Sciences-National Academy of Engineering-National Research Council) – volume: 45 start-page: 696 year: 2006 ident: ref5/cit5 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200502895 contributor: fullname: Metzger J. O. – volume: 379 start-page: 129 year: 2010 ident: ref41/cit41 publication-title: Appl. Catal., A doi: 10.1016/j.apcata.2010.03.006 contributor: fullname: Abbaslou R. M. M. – volume: 130 start-page: 630 year: 2009 ident: ref28/cit28 publication-title: Catal. Lett. doi: 10.1007/s10562-009-9925-y contributor: fullname: Kang S. H. – volume: 23 start-page: 4593 year: 2009 ident: ref13/cit13 publication-title: Energy Fuels doi: 10.1021/ef9005884 contributor: fullname: De Klerk A. – volume: 510 start-page: 179 year: 2011 ident: ref49/cit49 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2011.05.026 contributor: fullname: Moussa S. – volume: 132 start-page: 18318 year: 2010 ident: ref16/cit16 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1080508 contributor: fullname: Eggenhuisen T. M. – volume: 128 start-page: 3956 year: 2006 ident: ref32/cit32 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja058282w contributor: fullname: Bezemer G. L. – volume: 456 start-page: 223 year: 2013 ident: ref45/cit45 publication-title: Appl. Catal., A doi: 10.1016/j.apcata.2013.02.024 contributor: fullname: Zhao H. – volume: 31 start-page: 253 year: 1995 ident: ref22/cit22 publication-title: Catal. Lett. doi: 10.1007/BF00808838 contributor: fullname: Xu L. – volume: 5 start-page: 26 year: 2011 ident: ref65/cit65 publication-title: ACS Nano doi: 10.1021/nn102598m contributor: fullname: Banhart F. – volume: 10 start-page: 751 year: 2010 ident: ref68/cit68 publication-title: Nano Lett. doi: 10.1021/nl904286r contributor: fullname: Dresselhaus M. S. – volume: 9 start-page: 560 year: 2007 ident: ref11/cit11 publication-title: Green Chem. doi: 10.1039/B614187K contributor: fullname: De Klerk A. – volume: 3 start-page: 2130 year: 2013 ident: ref34/cit34 publication-title: ACS Catal. doi: 10.1021/cs4003436 contributor: fullname: Torres H. M. – volume: 4 start-page: 350 year: 2012 ident: ref35/cit35 publication-title: ChemCatChem doi: 10.1002/cctc.201100275 contributor: fullname: Schutle H. J. – volume: 113 start-page: 5782 year: 2013 ident: ref44/cit44 publication-title: Chem. Rev. doi: 10.1021/cr300367d contributor: fullname: Su D. S. – volume: 367 start-page: 47 year: 2009 ident: ref40/cit40 publication-title: Appl. Catal., A doi: 10.1016/j.apcata.2009.07.025 contributor: fullname: Abbaslou R. M. M. – volume: 103 start-page: 450 year: 1987 ident: ref58/cit58 publication-title: J. Catal. doi: 10.1016/0021-9517(87)90136-9 contributor: fullname: Venter J. – volume: 90 start-page: 4832 year: 1986 ident: ref20/cit20 publication-title: J. Phys. Chem. doi: 10.1021/j100411a023 contributor: fullname: Jones V. K. – volume: 11 start-page: 16 year: 2008 ident: ref2/cit2 publication-title: Mater. Today doi: 10.1016/S1369-7021(08)70248-7 contributor: fullname: Cahen D. – volume: 285 start-page: 1209 year: 1999 ident: ref4/cit4 publication-title: Science doi: 10.1126/science.285.5431.1209b contributor: fullname: Bull T. E. |
SSID | ssj0000456870 |
Score | 2.481255 |
Snippet | Fischer–Tropsch synthesis (FTS) is a potentially attractive technology for the production of clean liquid fuels from synthesis gas. The efficiency and... |
SourceID | crossref acs |
SourceType | Aggregation Database Publisher |
StartPage | 535 |
Title | Graphene-Supported, Iron-Based Nanoparticles for Catalytic Production of Liquid Hydrocarbons from Synthesis Gas: The Role of the Graphene Support in Comparison with Carbon Nanotubes |
URI | http://dx.doi.org/10.1021/cs4010198 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60HvTiW6yPMqhHF5vN5rHeNPYhiIhV8FZmuykEJNGmOfSH-f-cTZNSENFbWLKbITPZ75vZyQxjF6jaQhHMcgfJgqWWkmuByMdu0EaCnLHyyia2g-DxLbzr2DI557-c4AvnapRLWwdNhatsTQTEwC3_iQaLQIrlJGHZFI7Qy-Me4X9dQWh5tkWfUb6EPksw0t36lwDbbLNiiXAzV-sOW4nTXbYe1c3Z9thXzxaapn2K27acNmHWXML9JEv5LcGSAdo0yRuukt6AiClENk4zowF4mhd5JYVANoaH5LNIDPRnhqAMJ5qsEOw_JzCYpUQO8ySHHubXQPYEz9l7bOfQONQCQCUAJClEi6aGYOO79Ey7XinMtNBxvs9eu52XqM-rDgwcyS2aclfr0PXNGEcjrURgQumJEB2jjFRCO66PqLwYpXJR-aikr43WipxeQ7wAiYodsEaapfEhA01EQXrKEcL4UkmDpu0aS08cunCF02Qt0s-w-oLyYXk4Lpzh4u032VmtuuHHvBLHz5uO_lrlmG0Q5ZFl3nVwwhrTSRGfstXcFK3SrL4B7LPFrA |
link.rule.ids | 315,782,786,2770,27086,27934,27935,56749,56799 |
linkProvider | American Chemical Society |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVYDnBhR5SljBBHLBrHWcythJYiCkIUJG7RuE6lSiiFuj30w_g_xmlaKnFA3CIrdkb2xO_ZHr9h7BxVTSiCWe4hebDUUnItEHnPj2pIkNNTQZHEthM9vsU3jblMjrsLQ0ZYaskWh_g_6gLeZddKJ4em4mW2GoSRdB5cTzrz_RRHTeIiNxyBWMADogEzIaHF2g6EunYBhBbQpLn5Hzu22EbJGaE-HeRttpTlO2wtmaVq22Vft052mmYt7pJ0uvBZcwF3w0HOrwmkDNAUSmvjMgQOiKZC4nZtJlQAT1PJVxoeGPSg3f8c9w20JoaADYeafBLcDRToTHKiirZv4RbtFZB3wfPgPXN1qBxmBkBpAPRzSOYpDsHt9tI3XXuFMaOxzuwee202XpIWL_MxcKRF0oj7Wsd-aHrY7WolIhPLQMToGWWkEtrzQ0QVZCiVjypEJUNttFa0BDbEEpCI2T5byQd5dsBAE22QgfKEMKFU0qCp-caRFY8efOFVWJU6Py3_J5sWR-XCS-e9X2FnsxFMP6a6HL9fOvyrlVO21np5aKftu8f7I7ZOZEgWEdnRMVsZDcfZCVu2ZlwtPO0btNbOGg |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA5eQH3xLt49iI9G1zS9xDftNhVFxCn4Vk6WFgbS6bI97If5_zzp2jHwQXwroUkPPSf5vty-w9gZqoZQBLPcQ4pgqaXkWiDy3I8aSJCTq6BMYtuJnt7jZsvJ5FzUd2HICEst2XIT3_XqT5NXCgPeZddKJ4mm4nm2GISRclF8nXSmayqOnsRlfjgCsoAHRAVqMaHZ2g6IunYGiGYQpb32X1vW2WrFHeF64uwNNpcVm2w5qVO2bbHvWyc_TaMXd8k63TFacw73g37BbwisDNBQSnPk6igcEF2FxK3ejKkAnifSr-Qm6Ofw2Psa9QzcjQ0BHA40xSa4myjQGRdEGW3Pwi3aK6Aog5f-R-bqUDnUBkBlAPQKSKapDsGt-tI3XXulMcORzuw2e2u3XpM7XuVl4EiTpSH3tY790OTY7WolIhPLQMToGWWkEtrzQ0QVZCiVjypEJUNttFY0FTbEFpAI2g5bKPpFtstAE32QgfKEMKFU0qBp-MaRFo8efOHtsWNyQFr1K5uWW-bCS6d_f4-d1l5MPyf6HL9f2v-rlRO29Nxsp4_3Tw8HbIU4kSwPZkeHbGE4GGVHbN6a0XEZbD-RGdCd |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graphene-Supported%2C+Iron-Based+Nanoparticles+for+Catalytic+Production+of+Liquid+Hydrocarbons+from+Synthesis+Gas%3A+The+Role+of+the+Graphene+Support+in+Comparison+with+Carbon+Nanotubes&rft.jtitle=ACS+catalysis&rft.au=Moussa%2C+Sherif+O.&rft.au=Panchakarla%2C+Leela+S.&rft.au=Ho%2C+Minh+Q.&rft.au=El-Shall%2C+M.+Samy&rft.date=2014-02-07&rft.issn=2155-5435&rft.eissn=2155-5435&rft.volume=4&rft.issue=2&rft.spage=535&rft.epage=545&rft_id=info:doi/10.1021%2Fcs4010198&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_cs4010198 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2155-5435&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2155-5435&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2155-5435&client=summon |