One-Pot Self-Assembly of Sequence-Controlled Mesoporous Heterostructures via Structure-Directing Agents
Multimaterial heterostructures have led to characteristics surpassing the individual components. Nature controls the architecture and placement of multiple materials through biomineralization of nanoparticles (NPs); however, synthetic heterostructure formation remains limited and generally departs f...
Saved in:
Published in: | ACS nano Vol. 18; no. 31; pp. 20133 - 20141 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
American Chemical Society
29-07-2024
American Chemical Society (ACS) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Multimaterial heterostructures have led to characteristics surpassing the individual components. Nature controls the architecture and placement of multiple materials through biomineralization of nanoparticles (NPs); however, synthetic heterostructure formation remains limited and generally departs from the elegance of self-assembly. Here, a class of block polymer structure-directing agents (SDAs) are developed containing repeat units capable of persistent (covalent) NP interactions that enable the direct fabrication of nanoscale porous heterostructures, where a single material is localized at the pore surface as a continuous layer. This SDA binding motif (design rule 1) enables sequence-controlled heterostructures, where the composition profile and interfaces correspond to the synthetic addition order. This approach is generalized with 5 material sequences using an SDA with only persistent SDA-NP interactions (“P-NP1–NP2”; NPi = TiO2, Nb2O5, ZrO2). Expanding these polymer SDA design guidelines, it is shown that the combination of both persistent and dynamic (noncovalent) SDA-NP interactions (“PD-NP1–NP2”) improves the production of uniform interconnected porosity (design rule 2). The resulting competitive binding between two segments of the SDA (P- vs D-) requires additional time for the first NP type (NP1) to reach and covalently attach to the SDA (design rule 3). The combination of these three design rules enables the direct self-assembly of heterostructures that localize a single material at the pore surface while preserving continuous porosity. |
---|---|
AbstractList | Multimaterial heterostructures have led to characteristics surpassing the individual components. Nature controls the architecture and placement of multiple materials through biomineralization of nanoparticles (NPs); however, synthetic heterostructure formation remains limited and generally departs from the elegance of self-assembly. Here, a class of block polymer structure-directing agents (SDAs) are developed containing repeat units capable of persistent (covalent) NP interactions that enable the direct fabrication of nanoscale porous heterostructures, where a single material is localized at the pore surface as a continuous layer. This SDA binding motif (design rule 1) enables sequence-controlled heterostructures, where the composition profile and interfaces correspond to the synthetic addition order. This approach is generalized with 5 material sequences using an SDA with only persistent SDA-NP interactions ("P-NP1-NP2"; NPi = TiO2, Nb2O5, ZrO2). Expanding these polymer SDA design guidelines, it is shown that the combination of both persistent and dynamic (noncovalent) SDA-NP interactions ("PD-NP1-NP2") improves the production of uniform interconnected porosity (design rule 2). The resulting competitive binding between two segments of the SDA (P- vs D-) requires additional time for the first NP type (NP1) to reach and covalently attach to the SDA (design rule 3). The combination of these three design rules enables the direct self-assembly of heterostructures that localize a single material at the pore surface while preserving continuous porosity.Multimaterial heterostructures have led to characteristics surpassing the individual components. Nature controls the architecture and placement of multiple materials through biomineralization of nanoparticles (NPs); however, synthetic heterostructure formation remains limited and generally departs from the elegance of self-assembly. Here, a class of block polymer structure-directing agents (SDAs) are developed containing repeat units capable of persistent (covalent) NP interactions that enable the direct fabrication of nanoscale porous heterostructures, where a single material is localized at the pore surface as a continuous layer. This SDA binding motif (design rule 1) enables sequence-controlled heterostructures, where the composition profile and interfaces correspond to the synthetic addition order. This approach is generalized with 5 material sequences using an SDA with only persistent SDA-NP interactions ("P-NP1-NP2"; NPi = TiO2, Nb2O5, ZrO2). Expanding these polymer SDA design guidelines, it is shown that the combination of both persistent and dynamic (noncovalent) SDA-NP interactions ("PD-NP1-NP2") improves the production of uniform interconnected porosity (design rule 2). The resulting competitive binding between two segments of the SDA (P- vs D-) requires additional time for the first NP type (NP1) to reach and covalently attach to the SDA (design rule 3). The combination of these three design rules enables the direct self-assembly of heterostructures that localize a single material at the pore surface while preserving continuous porosity. Multimaterial heterostructures have led to characteristics surpassing the individual components. Nature controls the architecture and placement of multiple materials through biomineralization of nanoparticles (NPs); however, synthetic heterostructure formation remains limited and generally departs from the elegance of self-assembly. Here, a class of block polymer structure-directing agents (SDAs) are developed containing repeat units capable of persistent (covalent) NP interactions that enable the direct fabrication of nanoscale porous heterostructures, where a single material is localized at the pore surface as a continuous layer. This SDA binding motif (design rule 1) enables sequence-controlled heterostructures, where the composition profile and interfaces correspond to the synthetic addition order. This approach is generalized with 5 material sequences using an SDA with only persistent SDA-NP interactions ("P-NP -NP "; NP = TiO , Nb O , ZrO ). Expanding these polymer SDA design guidelines, it is shown that the combination of both persistent and dynamic (noncovalent) SDA-NP interactions ("PD-NP -NP ") improves the production of uniform interconnected porosity (design rule 2). The resulting competitive binding between two segments of the SDA (P- vs D-) requires additional time for the first NP type (NP ) to reach and covalently attach to the SDA (design rule 3). The combination of these three design rules enables the direct self-assembly of heterostructures that localize a single material at the pore surface while preserving continuous porosity. Multimaterial heterostructures have led to characteristics surpassing the individual components. Nature controls the architecture and placement of multiple materials through biomineralization of nanoparticles (NPs); however, synthetic heterostructure formation remains limited and generally departs from the elegance of self-assembly. Here, in this study, a class of block polymer structure-directing agents (SDAs) are developed containing repeat units capable of persistent (covalent) NP interactions that enable the direct fabrication of nanoscale porous heterostructures, where a single material is localized at the pore surface as a continuous layer. This SDA binding motif (design rule 1) enables sequence-controlled heterostructures, where the composition profile and interfaces correspond to the synthetic addition order. This approach is generalized with 5 material sequences using an SDA with only persistent SDA-NP interactions (“P-NP1–NP2”; NPi = TiO2, Nb2O5, ZrO2). Expanding these polymer SDA design guidelines, it is shown that the combination of both persistent and dynamic (noncovalent) SDA-NP interactions (“PD-NP1–NP2”) improves the production of uniform interconnected porosity (design rule 2). The resulting competitive binding between two segments of the SDA (P- vs D-) requires additional time for the first NP type (NP1) to reach and covalently attach to the SDA (design rule 3). The combination of these three design rules enables the direct self-assembly of heterostructures that localize a single material at the pore surface while preserving continuous porosity. Multimaterial heterostructures have led to characteristics surpassing the individual components. Nature controls the architecture and placement of multiple materials through biomineralization of nanoparticles (NPs); however, synthetic heterostructure formation remains limited and generally departs from the elegance of self-assembly. Here, a class of block polymer structure-directing agents (SDAs) are developed containing repeat units capable of persistent (covalent) NP interactions that enable the direct fabrication of nanoscale porous heterostructures, where a single material is localized at the pore surface as a continuous layer. This SDA binding motif (design rule 1) enables sequence-controlled heterostructures, where the composition profile and interfaces correspond to the synthetic addition order. This approach is generalized with 5 material sequences using an SDA with only persistent SDA-NP interactions (“P-NP1–NP2”; NPi = TiO2, Nb2O5, ZrO2). Expanding these polymer SDA design guidelines, it is shown that the combination of both persistent and dynamic (noncovalent) SDA-NP interactions (“PD-NP1–NP2”) improves the production of uniform interconnected porosity (design rule 2). The resulting competitive binding between two segments of the SDA (P- vs D-) requires additional time for the first NP type (NP1) to reach and covalently attach to the SDA (design rule 3). The combination of these three design rules enables the direct self-assembly of heterostructures that localize a single material at the pore surface while preserving continuous porosity. |
Author | Zhang, Mengxue Stefik, Morgan Boebinger, Matthew G. Tang, Chuanbing Tengco, John Larison, Taylor Williams, Eric R. Wright, Mason |
AuthorAffiliation | Department of Chemistry and Biochemistry Department of Chemical Engineering University of South Carolina Center for Nanophase Materials Science |
AuthorAffiliation_xml | – name: Department of Chemical Engineering – name: Center for Nanophase Materials Science – name: University of South Carolina – name: Department of Chemistry and Biochemistry |
Author_xml | – sequence: 1 givenname: Taylor orcidid: 0000-0002-4418-9330 surname: Larison fullname: Larison, Taylor organization: Department of Chemistry and Biochemistry – sequence: 2 givenname: Eric R. surname: Williams fullname: Williams, Eric R. organization: Department of Chemistry and Biochemistry – sequence: 3 givenname: Mason surname: Wright fullname: Wright, Mason organization: Department of Chemistry and Biochemistry – sequence: 4 givenname: Mengxue orcidid: 0000-0001-6848-314X surname: Zhang fullname: Zhang, Mengxue organization: Department of Chemistry and Biochemistry – sequence: 5 givenname: John orcidid: 0000-0002-3582-3766 surname: Tengco fullname: Tengco, John organization: University of South Carolina – sequence: 6 givenname: Matthew G. orcidid: 0000-0001-9622-2043 surname: Boebinger fullname: Boebinger, Matthew G. organization: Center for Nanophase Materials Science – sequence: 7 givenname: Chuanbing orcidid: 0000-0002-0242-8241 surname: Tang fullname: Tang, Chuanbing organization: Department of Chemistry and Biochemistry – sequence: 8 givenname: Morgan orcidid: 0000-0002-2645-7442 surname: Stefik fullname: Stefik, Morgan email: morgan@stefikgroup.com organization: Department of Chemistry and Biochemistry |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39074064$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/2438840$$D View this record in Osti.gov |
BookMark | eNp1kUtLAzEUhYMoaqtrdzK4EmQ0z3ksS31UqChUwV3IpDd1ZJrUJCP03xtp685VHnz3cM85A7RvnQWEzgi-JpiSG6WDVdZdc41JJcQeOiY1K3JcFe_7f3dBjtAghE-MRVmVxSE6YjUuOS74MVo8W8hfXMxm0Jl8FAIsm26dOZM-vnqwGvKxs9G7roN59gTBrZx3fcgmEMG7EH2vY-8hZN-tyma7Z37betCxtYtstAAbwwk6MKoLcLo9h-jt_u51PMmnzw-P49E0V5TzmOumooTVJcOiaUjNjeGiUZpwWmqqOGW64bgWVWUA10A4J8zMTUFFzURDecmG6GKjm1ZrZdBtBP2hnbVpG0k5qyqOE3S5gVbeJZMhymUbNHSdspC8SZbywwWhgif0ZoPqZDZ4MHLl26Xya0mw_K1AbiuQ2wrSxPlWvG-WMP_jd5kn4GoDpEn56XpvUyD_yv0AQ1mUBg |
Cites_doi | 10.1021/nl303101n 10.1126/science.1200770 10.1021/ja066708g 10.1039/b911107g 10.1039/C7TA01034F 10.1002/adma.201802439 10.1002/anie.200461051 10.1038/s41578-019-0144-x 10.1021/ja050376i 10.1016/j.apsusc.2013.03.138 10.1126/science.1181862 10.1021/ma021009j 10.1016/S1359-0286(02)00151-1 10.1021/cm400999b 10.1021/ma500338p 10.1039/b617073k 10.1021/ja9106385 10.1038/nature01141 10.1039/D1MA00146A 10.1039/b406286h 10.1021/acs.langmuir.1c01384 10.29172/562c76d9-02eb-4582-9d33-536bc9402994 10.1002/batt.202200122 10.1126/science.1159950 10.1021/cm001253u 10.1002/adma.201100599 10.1002/app.20246 10.1039/C5TA00117J 10.1021/nl051401l 10.1038/nmat3601 10.1021/am505143h 10.1039/b700389g 10.1021/ma2000288 10.1021/ja804414f 10.1021/ja0633518 10.1016/j.addr.2011.05.011 10.1021/nn901825y 10.1073/pnas.0404778101 10.1002/adma.201104942 10.1021/acs.langmuir.1c01865 10.1002/chem.201601920 10.1039/C6NR07313A 10.1063/1.334028 10.1039/D1MA00955A 10.21203/rs.3.rs-3470490/v1 10.1038/s41563-021-01183-0 10.1038/35016535 10.1126/science.279.5350.548 10.1021/ma701931z 10.1038/nature03310 10.1021/jz1016729 10.1039/B713310C 10.1038/nmat3223 10.1038/nmat2111 10.1126/science.1184769 10.1002/ange.200501663 10.1038/ncomms5105 10.1002/adfm.200601190 10.1039/c3nr00176h 10.1002/anie.202211307 10.3762/bjoc.13.219 |
ContentType | Journal Article |
Copyright | 2024 American Chemical Society |
Copyright_xml | – notice: 2024 American Chemical Society |
CorporateAuthor | Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States) |
CorporateAuthor_xml | – name: Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States) |
DBID | NPM AAYXX CITATION 7X8 OTOTI |
DOI | 10.1021/acsnano.4c01855 |
DatabaseName | PubMed CrossRef MEDLINE - Academic OSTI.GOV |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 20141 |
ExternalDocumentID | 2438840 10_1021_acsnano_4c01855 39074064 d209200335 |
Genre | Journal Article |
GroupedDBID | --- .K2 23M 4.4 55A 5GY 5VS 6J9 7~N AABXI AAHBH ABFRP ABJNI ABMVS ABQRX ABUCX ACBEA ACGFO ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 CUPRZ EBS ED~ F5P GGK GNL IH9 IHE JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ NPM AAYXX CITATION 7X8 OTOTI |
ID | FETCH-LOGICAL-a244t-cb821397305bb194ff45bac1427c2a423cb409588fe09e14413fdf625935b2473 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Mon Oct 21 03:31:29 EDT 2024 Sat Oct 26 04:31:07 EDT 2024 Fri Aug 23 04:22:02 EDT 2024 Sat Nov 02 12:30:51 EDT 2024 Wed Aug 07 03:10:12 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 31 |
Keywords | sequence control self-assembly phosphonic acid heterostructure mesoporous |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a244t-cb821397305bb194ff45bac1427c2a423cb409588fe09e14413fdf625935b2473 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities (SUF) National Science Foundation (NSF) AC05-00OR22725; CNMS2023-R-01970; DMR-1752615; ECCS-2025064 |
ORCID | 0000-0001-6848-314X 0000-0002-3582-3766 0000-0002-4418-9330 0000-0002-2645-7442 0000-0001-9622-2043 0000-0002-0242-8241 0000000226457442 0000000202428241 0000000244189330 000000016848314X 0000000235823766 0000000196222043 |
PMID | 39074064 |
PQID | 3086061254 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | osti_scitechconnect_2438840 proquest_miscellaneous_3086061254 crossref_primary_10_1021_acsnano_4c01855 pubmed_primary_39074064 acs_journals_10_1021_acsnano_4c01855 |
PublicationCentury | 2000 |
PublicationDate | 2024-07-29 |
PublicationDateYYYYMMDD | 2024-07-29 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-29 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2024 |
Publisher | American Chemical Society American Chemical Society (ACS) |
Publisher_xml | – name: American Chemical Society – name: American Chemical Society (ACS) |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref400/cit400 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref500/cit500 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref300/cit300 ref600/cit600 ref50/cit50 ref700/cit700 ref6/cit6 ref36/cit36 ref18/cit18 ref100/cit100 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref200/cit200 ref39/cit39 ref14/cit14 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref800/cit800 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref21/cit21 doi: 10.1021/nl303101n – ident: ref12/cit12 doi: 10.1126/science.1200770 – ident: ref300/cit300 doi: 10.1021/ja066708g – ident: ref41/cit41 doi: 10.1039/b911107g – ident: ref51/cit51 doi: 10.1039/C7TA01034F – ident: ref23/cit23 doi: 10.1002/adma.201802439 – ident: ref35/cit35 doi: 10.1002/anie.200461051 – ident: ref26/cit26 doi: 10.1038/s41578-019-0144-x – ident: ref100/cit100 doi: 10.1021/ja050376i – ident: ref48/cit48 doi: 10.1016/j.apsusc.2013.03.138 – ident: ref22/cit22 doi: 10.1126/science.1181862 – ident: ref52/cit52 doi: 10.1021/ma021009j – ident: ref46/cit46 doi: 10.1016/S1359-0286(02)00151-1 – ident: ref31/cit31 doi: 10.1021/cm400999b – ident: ref39/cit39 doi: 10.1021/ma500338p – ident: ref7/cit7 doi: 10.1039/b617073k – ident: ref32/cit32 doi: 10.1021/ja9106385 – ident: ref2/cit2 doi: 10.1038/nature01141 – ident: ref37/cit37 doi: 10.1039/D1MA00146A – ident: ref5/cit5 doi: 10.1039/b406286h – ident: ref50/cit50 doi: 10.1021/acs.langmuir.1c01384 – ident: ref24/cit24 doi: 10.29172/562c76d9-02eb-4582-9d33-536bc9402994 – ident: ref30/cit30 doi: 10.1002/batt.202200122 – ident: ref38/cit38 doi: 10.1126/science.1159950 – ident: ref44/cit44 doi: 10.1021/cm001253u – ident: ref9/cit9 doi: 10.1002/adma.201100599 – ident: ref47/cit47 doi: 10.1002/app.20246 – ident: ref34/cit34 doi: 10.1039/C5TA00117J – ident: ref6/cit6 doi: 10.1021/nl051401l – ident: ref14/cit14 doi: 10.1038/nmat3601 – ident: ref33/cit33 doi: 10.1021/am505143h – ident: ref15/cit15 doi: 10.1039/b700389g – ident: ref600/cit600 doi: 10.1021/ma2000288 – ident: ref45/cit45 doi: 10.1021/ja804414f – ident: ref40/cit40 doi: 10.1021/ja0633518 – ident: ref500/cit500 doi: 10.1016/j.addr.2011.05.011 – ident: ref11/cit11 doi: 10.1021/nn901825y – ident: ref18/cit18 doi: 10.1073/pnas.0404778101 – ident: ref13/cit13 doi: 10.1002/adma.201104942 – ident: ref29/cit29 doi: 10.1021/acs.langmuir.1c01865 – ident: ref700/cit700 doi: 10.1002/chem.201601920 – ident: ref28/cit28 doi: 10.1039/C6NR07313A – ident: ref1/cit1 doi: 10.1063/1.334028 – ident: ref4/cit4 doi: 10.1039/D1MA00955A – ident: ref53/cit53 doi: 10.21203/rs.3.rs-3470490/v1 – ident: ref17/cit17 doi: 10.1038/s41563-021-01183-0 – ident: ref19/cit19 doi: 10.1038/35016535 – ident: ref25/cit25 doi: 10.1126/science.279.5350.548 – ident: ref400/cit400 doi: 10.1021/ma701931z – ident: ref200/cit200 doi: 10.1038/nature03310 – ident: ref49/cit49 doi: 10.1021/jz1016729 – ident: ref36/cit36 doi: 10.1039/B713310C – ident: ref20/cit20 doi: 10.1038/nmat3223 – ident: ref27/cit27 doi: 10.1038/nmat2111 – ident: ref3/cit3 doi: 10.1126/science.1184769 – ident: ref8/cit8 doi: 10.1002/ange.200501663 – ident: ref10/cit10 doi: 10.1038/ncomms5105 – ident: ref43/cit43 doi: 10.1002/adfm.200601190 – ident: ref16/cit16 doi: 10.1039/c3nr00176h – ident: ref42/cit42 doi: 10.1002/anie.202211307 – ident: ref800/cit800 doi: 10.3762/bjoc.13.219 |
SSID | ssj0057876 |
Score | 2.5019112 |
Snippet | Multimaterial heterostructures have led to characteristics surpassing the individual components. Nature controls the architecture and placement of multiple... |
SourceID | osti proquest crossref pubmed acs |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 20133 |
SubjectTerms | heterostructure INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY mesoporous phosphonic acid self-assembly sequence control |
Title | One-Pot Self-Assembly of Sequence-Controlled Mesoporous Heterostructures via Structure-Directing Agents |
URI | http://dx.doi.org/10.1021/acsnano.4c01855 https://www.ncbi.nlm.nih.gov/pubmed/39074064 https://www.proquest.com/docview/3086061254 https://www.osti.gov/biblio/2438840 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS-RAEC50vLgH36vjqLTgYT20m3R3XkcZFS8-YHZhb013p1uEMREyI_jvrZpkRJEB95gQOk09v6-rUgE4kT43sUkdTworuUIr4YXzZMuZKiVC7Kg9uhhlt__yi0sak3O6oIIv4t_GNZWp6jPlIswtyTKsiAxxAqGg4WgedMnu0raAjAQZUcT7FJ8vC1Aacs2nNNSr0Z0WQ8xZqrla_49NbsBahyfZeWsAm7Dkqy348WHK4DY83FWe39cTNvLjwKnK-2THr6wOeKPto-bDtmF97Et245saMXk9bdg1tcrU7YTZKdJy9vJo2Gh-ybtoWT2wc_o-q9mBv1eXf4bXvPu_AjeY1Cfc2VwQAESXtzYuVAgqscbFSmROGMRZziL7S_I8-KjwxLxkKAMRJplYoTL5E3pVXfk9YCaKbJw6jBAmVakvipDimiGJSicyK9M-nKCIdOcfjZ6VvkWsO7npTm59-DXXin5up20sfnRAWtMIFGjaraO2IDfRQskcOWsfjufK1OgvVAQxlUfRaYkcbgbrVB92Wy2_v0rSSQFitP3v7XYAqwIhDp30iuIAeih_fwjLTTk9mhnnGxJX3sY |
link.rule.ids | 230,315,782,786,887,2769,27085,27933,27934,56747,56797 |
linkProvider | American Chemical Society |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB6V7QE49AG03dIWI3HgYkhs53VEW9BWPIq0IHGzbMdGlbYJUnYr9d93Jg9KhZDoMVbkWDPjme_zjCcAe9LnJjap40lhJVdoJbxwnmw5U6VEiB11Rxez7OIm_3pMbXKi4S4MLqLBmZo2if-3u0B8iGOVqeoD5SIMMckKvExShMIEhiazwfeS-aVdHhl5MoKJ-2Y-jyagaOSaf6LRqMZd9TTSbCPOyev_X-sbeNWjS3bUmcNbeOGrDVh_0HNwE26_V55f1gs28_PAKef7085_szrgQFdVzSdd-frcl-zcNzUi9HrZsCkVztRdv9klknT264dhs-GR976zumVHdFur2YLrk-OryZT3f1vgBkP8gjubC4KD6ACsjQsVgkqscbESmRMGUZezyAWTPA8-KjzxMBnKQPRJJlaoTL6DUVVX_gMwE0U2Th36C5Oq1BdFSHHOkESlE5mV6Rj2UES63y2NbhPhIta93HQvtzHsD8rRd13vjadf3SblaYQN1PvWUZGQW2ihZI4Mdgy7g0417h5KiZjKo-i0REbXgjw1hvedsu8_JencABHbx-etdgdWp1fnZ_rs28XpNqwJBD90BiyKTzBCXfjPsNKUyy-tvf4Bl2HnMw |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6aLZTmkDR9pJukjQo59KLWluTXcdlkSckTNoHehCRLIbCxA94t9N93xo-QUgIlRwsji5nRzPdpRmOAA-lzE5vU8aSwkiu0El44T7acqVIixI66o4t5dv4zPzyiNjlquAuDi2hwpqZN4tOuvi9D32Eg_o7jlanqb8pFGGaSNXiZpFlBlGsynQ_-l0ww7XLJyJURUDw09PlnAopIrvkrIo1q3FlPo8026sw2n7feN7DRo0w26cxiC1746i2sP-o9-A5uLirPL-slm_tF4JT7vbOL36wOONBVV_NpV8a-8CU7802NSL1eNeyYCmjqru_sCsk6-3Vr2Hx45L0PrW7YhG5tNe_henZ0NT3m_V8XuMFQv-TO5oJgIToCa-NChaASa1ysROaEQfTlLHLCJM-DjwpPfEyGMhCNkokVKpMfYFTVlf8IzESRjVOHfsOkKvVFEVKcMyRR6URmZTqGAxSR7ndNo9uEuIh1Lzfdy20MXwcF6fuuB8fTr-6SAjXCB-qB66hYyC21UDJHJjuGL4NeNe4iSo2YyqPotERm14I9NYbtTuEPn5J0foDIbef_VrsPry4PZ_r0x_nJLrwWiIHoKFgUezBCVfhPsNaUq8-tyf4BMILptg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=One-Pot+Self-Assembly+of+Sequence-Controlled+Mesoporous+Heterostructures+via+Structure-Directing+Agents&rft.jtitle=ACS+nano&rft.au=Larison%2C+Taylor&rft.au=Williams%2C+Eric+R&rft.au=Wright%2C+Mason&rft.au=Zhang%2C+Mengxue&rft.date=2024-07-29&rft.issn=1936-086X&rft.eissn=1936-086X&rft_id=info:doi/10.1021%2Facsnano.4c01855&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |