One-Pot Self-Assembly of Sequence-Controlled Mesoporous Heterostructures via Structure-Directing Agents

Multimaterial heterostructures have led to characteristics surpassing the individual components. Nature controls the architecture and placement of multiple materials through biomineralization of nanoparticles (NPs); however, synthetic heterostructure formation remains limited and generally departs f...

Full description

Saved in:
Bibliographic Details
Published in:ACS nano Vol. 18; no. 31; pp. 20133 - 20141
Main Authors: Larison, Taylor, Williams, Eric R., Wright, Mason, Zhang, Mengxue, Tengco, John, Boebinger, Matthew G., Tang, Chuanbing, Stefik, Morgan
Format: Journal Article
Language:English
Published: United States American Chemical Society 29-07-2024
American Chemical Society (ACS)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Multimaterial heterostructures have led to characteristics surpassing the individual components. Nature controls the architecture and placement of multiple materials through biomineralization of nanoparticles (NPs); however, synthetic heterostructure formation remains limited and generally departs from the elegance of self-assembly. Here, a class of block polymer structure-directing agents (SDAs) are developed containing repeat units capable of persistent (covalent) NP interactions that enable the direct fabrication of nanoscale porous heterostructures, where a single material is localized at the pore surface as a continuous layer. This SDA binding motif (design rule 1) enables sequence-controlled heterostructures, where the composition profile and interfaces correspond to the synthetic addition order. This approach is generalized with 5 material sequences using an SDA with only persistent SDA-NP interactions (“P-NP1–NP2”; NPi = TiO2, Nb2O5, ZrO2). Expanding these polymer SDA design guidelines, it is shown that the combination of both persistent and dynamic (noncovalent) SDA-NP interactions (“PD-NP1–NP2”) improves the production of uniform interconnected porosity (design rule 2). The resulting competitive binding between two segments of the SDA (P- vs D-) requires additional time for the first NP type (NP1) to reach and covalently attach to the SDA (design rule 3). The combination of these three design rules enables the direct self-assembly of heterostructures that localize a single material at the pore surface while preserving continuous porosity.
AbstractList Multimaterial heterostructures have led to characteristics surpassing the individual components. Nature controls the architecture and placement of multiple materials through biomineralization of nanoparticles (NPs); however, synthetic heterostructure formation remains limited and generally departs from the elegance of self-assembly. Here, a class of block polymer structure-directing agents (SDAs) are developed containing repeat units capable of persistent (covalent) NP interactions that enable the direct fabrication of nanoscale porous heterostructures, where a single material is localized at the pore surface as a continuous layer. This SDA binding motif (design rule 1) enables sequence-controlled heterostructures, where the composition profile and interfaces correspond to the synthetic addition order. This approach is generalized with 5 material sequences using an SDA with only persistent SDA-NP interactions ("P-NP1-NP2"; NPi = TiO2, Nb2O5, ZrO2). Expanding these polymer SDA design guidelines, it is shown that the combination of both persistent and dynamic (noncovalent) SDA-NP interactions ("PD-NP1-NP2") improves the production of uniform interconnected porosity (design rule 2). The resulting competitive binding between two segments of the SDA (P- vs D-) requires additional time for the first NP type (NP1) to reach and covalently attach to the SDA (design rule 3). The combination of these three design rules enables the direct self-assembly of heterostructures that localize a single material at the pore surface while preserving continuous porosity.Multimaterial heterostructures have led to characteristics surpassing the individual components. Nature controls the architecture and placement of multiple materials through biomineralization of nanoparticles (NPs); however, synthetic heterostructure formation remains limited and generally departs from the elegance of self-assembly. Here, a class of block polymer structure-directing agents (SDAs) are developed containing repeat units capable of persistent (covalent) NP interactions that enable the direct fabrication of nanoscale porous heterostructures, where a single material is localized at the pore surface as a continuous layer. This SDA binding motif (design rule 1) enables sequence-controlled heterostructures, where the composition profile and interfaces correspond to the synthetic addition order. This approach is generalized with 5 material sequences using an SDA with only persistent SDA-NP interactions ("P-NP1-NP2"; NPi = TiO2, Nb2O5, ZrO2). Expanding these polymer SDA design guidelines, it is shown that the combination of both persistent and dynamic (noncovalent) SDA-NP interactions ("PD-NP1-NP2") improves the production of uniform interconnected porosity (design rule 2). The resulting competitive binding between two segments of the SDA (P- vs D-) requires additional time for the first NP type (NP1) to reach and covalently attach to the SDA (design rule 3). The combination of these three design rules enables the direct self-assembly of heterostructures that localize a single material at the pore surface while preserving continuous porosity.
Multimaterial heterostructures have led to characteristics surpassing the individual components. Nature controls the architecture and placement of multiple materials through biomineralization of nanoparticles (NPs); however, synthetic heterostructure formation remains limited and generally departs from the elegance of self-assembly. Here, a class of block polymer structure-directing agents (SDAs) are developed containing repeat units capable of persistent (covalent) NP interactions that enable the direct fabrication of nanoscale porous heterostructures, where a single material is localized at the pore surface as a continuous layer. This SDA binding motif (design rule 1) enables sequence-controlled heterostructures, where the composition profile and interfaces correspond to the synthetic addition order. This approach is generalized with 5 material sequences using an SDA with only persistent SDA-NP interactions ("P-NP -NP "; NP = TiO , Nb O , ZrO ). Expanding these polymer SDA design guidelines, it is shown that the combination of both persistent and dynamic (noncovalent) SDA-NP interactions ("PD-NP -NP ") improves the production of uniform interconnected porosity (design rule 2). The resulting competitive binding between two segments of the SDA (P- vs D-) requires additional time for the first NP type (NP ) to reach and covalently attach to the SDA (design rule 3). The combination of these three design rules enables the direct self-assembly of heterostructures that localize a single material at the pore surface while preserving continuous porosity.
Multimaterial heterostructures have led to characteristics surpassing the individual components. Nature controls the architecture and placement of multiple materials through biomineralization of nanoparticles (NPs); however, synthetic heterostructure formation remains limited and generally departs from the elegance of self-assembly. Here, in this study, a class of block polymer structure-directing agents (SDAs) are developed containing repeat units capable of persistent (covalent) NP interactions that enable the direct fabrication of nanoscale porous heterostructures, where a single material is localized at the pore surface as a continuous layer. This SDA binding motif (design rule 1) enables sequence-controlled heterostructures, where the composition profile and interfaces correspond to the synthetic addition order. This approach is generalized with 5 material sequences using an SDA with only persistent SDA-NP interactions (“P-NP1–NP2”; NPi = TiO2, Nb2O5, ZrO2). Expanding these polymer SDA design guidelines, it is shown that the combination of both persistent and dynamic (noncovalent) SDA-NP interactions (“PD-NP1–NP2”) improves the production of uniform interconnected porosity (design rule 2). The resulting competitive binding between two segments of the SDA (P- vs D-) requires additional time for the first NP type (NP1) to reach and covalently attach to the SDA (design rule 3). The combination of these three design rules enables the direct self-assembly of heterostructures that localize a single material at the pore surface while preserving continuous porosity.
Multimaterial heterostructures have led to characteristics surpassing the individual components. Nature controls the architecture and placement of multiple materials through biomineralization of nanoparticles (NPs); however, synthetic heterostructure formation remains limited and generally departs from the elegance of self-assembly. Here, a class of block polymer structure-directing agents (SDAs) are developed containing repeat units capable of persistent (covalent) NP interactions that enable the direct fabrication of nanoscale porous heterostructures, where a single material is localized at the pore surface as a continuous layer. This SDA binding motif (design rule 1) enables sequence-controlled heterostructures, where the composition profile and interfaces correspond to the synthetic addition order. This approach is generalized with 5 material sequences using an SDA with only persistent SDA-NP interactions (“P-NP1–NP2”; NPi = TiO2, Nb2O5, ZrO2). Expanding these polymer SDA design guidelines, it is shown that the combination of both persistent and dynamic (noncovalent) SDA-NP interactions (“PD-NP1–NP2”) improves the production of uniform interconnected porosity (design rule 2). The resulting competitive binding between two segments of the SDA (P- vs D-) requires additional time for the first NP type (NP1) to reach and covalently attach to the SDA (design rule 3). The combination of these three design rules enables the direct self-assembly of heterostructures that localize a single material at the pore surface while preserving continuous porosity.
Author Zhang, Mengxue
Stefik, Morgan
Boebinger, Matthew G.
Tang, Chuanbing
Tengco, John
Larison, Taylor
Williams, Eric R.
Wright, Mason
AuthorAffiliation Department of Chemistry and Biochemistry
Department of Chemical Engineering
University of South Carolina
Center for Nanophase Materials Science
AuthorAffiliation_xml – name: Department of Chemical Engineering
– name: Center for Nanophase Materials Science
– name: University of South Carolina
– name: Department of Chemistry and Biochemistry
Author_xml – sequence: 1
  givenname: Taylor
  orcidid: 0000-0002-4418-9330
  surname: Larison
  fullname: Larison, Taylor
  organization: Department of Chemistry and Biochemistry
– sequence: 2
  givenname: Eric R.
  surname: Williams
  fullname: Williams, Eric R.
  organization: Department of Chemistry and Biochemistry
– sequence: 3
  givenname: Mason
  surname: Wright
  fullname: Wright, Mason
  organization: Department of Chemistry and Biochemistry
– sequence: 4
  givenname: Mengxue
  orcidid: 0000-0001-6848-314X
  surname: Zhang
  fullname: Zhang, Mengxue
  organization: Department of Chemistry and Biochemistry
– sequence: 5
  givenname: John
  orcidid: 0000-0002-3582-3766
  surname: Tengco
  fullname: Tengco, John
  organization: University of South Carolina
– sequence: 6
  givenname: Matthew G.
  orcidid: 0000-0001-9622-2043
  surname: Boebinger
  fullname: Boebinger, Matthew G.
  organization: Center for Nanophase Materials Science
– sequence: 7
  givenname: Chuanbing
  orcidid: 0000-0002-0242-8241
  surname: Tang
  fullname: Tang, Chuanbing
  organization: Department of Chemistry and Biochemistry
– sequence: 8
  givenname: Morgan
  orcidid: 0000-0002-2645-7442
  surname: Stefik
  fullname: Stefik, Morgan
  email: morgan@stefikgroup.com
  organization: Department of Chemistry and Biochemistry
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39074064$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/2438840$$D View this record in Osti.gov
BookMark eNp1kUtLAzEUhYMoaqtrdzK4EmQ0z3ksS31UqChUwV3IpDd1ZJrUJCP03xtp685VHnz3cM85A7RvnQWEzgi-JpiSG6WDVdZdc41JJcQeOiY1K3JcFe_7f3dBjtAghE-MRVmVxSE6YjUuOS74MVo8W8hfXMxm0Jl8FAIsm26dOZM-vnqwGvKxs9G7roN59gTBrZx3fcgmEMG7EH2vY-8hZN-tyma7Z37betCxtYtstAAbwwk6MKoLcLo9h-jt_u51PMmnzw-P49E0V5TzmOumooTVJcOiaUjNjeGiUZpwWmqqOGW64bgWVWUA10A4J8zMTUFFzURDecmG6GKjm1ZrZdBtBP2hnbVpG0k5qyqOE3S5gVbeJZMhymUbNHSdspC8SZbywwWhgif0ZoPqZDZ4MHLl26Xya0mw_K1AbiuQ2wrSxPlWvG-WMP_jd5kn4GoDpEn56XpvUyD_yv0AQ1mUBg
Cites_doi 10.1021/nl303101n
10.1126/science.1200770
10.1021/ja066708g
10.1039/b911107g
10.1039/C7TA01034F
10.1002/adma.201802439
10.1002/anie.200461051
10.1038/s41578-019-0144-x
10.1021/ja050376i
10.1016/j.apsusc.2013.03.138
10.1126/science.1181862
10.1021/ma021009j
10.1016/S1359-0286(02)00151-1
10.1021/cm400999b
10.1021/ma500338p
10.1039/b617073k
10.1021/ja9106385
10.1038/nature01141
10.1039/D1MA00146A
10.1039/b406286h
10.1021/acs.langmuir.1c01384
10.29172/562c76d9-02eb-4582-9d33-536bc9402994
10.1002/batt.202200122
10.1126/science.1159950
10.1021/cm001253u
10.1002/adma.201100599
10.1002/app.20246
10.1039/C5TA00117J
10.1021/nl051401l
10.1038/nmat3601
10.1021/am505143h
10.1039/b700389g
10.1021/ma2000288
10.1021/ja804414f
10.1021/ja0633518
10.1016/j.addr.2011.05.011
10.1021/nn901825y
10.1073/pnas.0404778101
10.1002/adma.201104942
10.1021/acs.langmuir.1c01865
10.1002/chem.201601920
10.1039/C6NR07313A
10.1063/1.334028
10.1039/D1MA00955A
10.21203/rs.3.rs-3470490/v1
10.1038/s41563-021-01183-0
10.1038/35016535
10.1126/science.279.5350.548
10.1021/ma701931z
10.1038/nature03310
10.1021/jz1016729
10.1039/B713310C
10.1038/nmat3223
10.1038/nmat2111
10.1126/science.1184769
10.1002/ange.200501663
10.1038/ncomms5105
10.1002/adfm.200601190
10.1039/c3nr00176h
10.1002/anie.202211307
10.3762/bjoc.13.219
ContentType Journal Article
Copyright 2024 American Chemical Society
Copyright_xml – notice: 2024 American Chemical Society
CorporateAuthor Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
CorporateAuthor_xml – name: Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
DBID NPM
AAYXX
CITATION
7X8
OTOTI
DOI 10.1021/acsnano.4c01855
DatabaseName PubMed
CrossRef
MEDLINE - Academic
OSTI.GOV
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 20141
ExternalDocumentID 2438840
10_1021_acsnano_4c01855
39074064
d209200335
Genre Journal Article
GroupedDBID ---
.K2
23M
4.4
55A
5GY
5VS
6J9
7~N
AABXI
AAHBH
ABFRP
ABJNI
ABMVS
ABQRX
ABUCX
ACBEA
ACGFO
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
CUPRZ
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
NPM
AAYXX
CITATION
7X8
OTOTI
ID FETCH-LOGICAL-a244t-cb821397305bb194ff45bac1427c2a423cb409588fe09e14413fdf625935b2473
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Mon Oct 21 03:31:29 EDT 2024
Sat Oct 26 04:31:07 EDT 2024
Fri Aug 23 04:22:02 EDT 2024
Sat Nov 02 12:30:51 EDT 2024
Wed Aug 07 03:10:12 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 31
Keywords sequence control
self-assembly
phosphonic acid
heterostructure
mesoporous
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a244t-cb821397305bb194ff45bac1427c2a423cb409588fe09e14413fdf625935b2473
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities (SUF)
National Science Foundation (NSF)
AC05-00OR22725; CNMS2023-R-01970; DMR-1752615; ECCS-2025064
ORCID 0000-0001-6848-314X
0000-0002-3582-3766
0000-0002-4418-9330
0000-0002-2645-7442
0000-0001-9622-2043
0000-0002-0242-8241
0000000226457442
0000000202428241
0000000244189330
000000016848314X
0000000235823766
0000000196222043
PMID 39074064
PQID 3086061254
PQPubID 23479
PageCount 9
ParticipantIDs osti_scitechconnect_2438840
proquest_miscellaneous_3086061254
crossref_primary_10_1021_acsnano_4c01855
pubmed_primary_39074064
acs_journals_10_1021_acsnano_4c01855
PublicationCentury 2000
PublicationDate 2024-07-29
PublicationDateYYYYMMDD 2024-07-29
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-29
  day: 29
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2024
Publisher American Chemical Society
American Chemical Society (ACS)
Publisher_xml – name: American Chemical Society
– name: American Chemical Society (ACS)
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref400/cit400
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref500/cit500
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref300/cit300
ref600/cit600
ref50/cit50
ref700/cit700
ref6/cit6
ref36/cit36
ref18/cit18
ref100/cit100
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref200/cit200
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref800/cit800
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref21/cit21
  doi: 10.1021/nl303101n
– ident: ref12/cit12
  doi: 10.1126/science.1200770
– ident: ref300/cit300
  doi: 10.1021/ja066708g
– ident: ref41/cit41
  doi: 10.1039/b911107g
– ident: ref51/cit51
  doi: 10.1039/C7TA01034F
– ident: ref23/cit23
  doi: 10.1002/adma.201802439
– ident: ref35/cit35
  doi: 10.1002/anie.200461051
– ident: ref26/cit26
  doi: 10.1038/s41578-019-0144-x
– ident: ref100/cit100
  doi: 10.1021/ja050376i
– ident: ref48/cit48
  doi: 10.1016/j.apsusc.2013.03.138
– ident: ref22/cit22
  doi: 10.1126/science.1181862
– ident: ref52/cit52
  doi: 10.1021/ma021009j
– ident: ref46/cit46
  doi: 10.1016/S1359-0286(02)00151-1
– ident: ref31/cit31
  doi: 10.1021/cm400999b
– ident: ref39/cit39
  doi: 10.1021/ma500338p
– ident: ref7/cit7
  doi: 10.1039/b617073k
– ident: ref32/cit32
  doi: 10.1021/ja9106385
– ident: ref2/cit2
  doi: 10.1038/nature01141
– ident: ref37/cit37
  doi: 10.1039/D1MA00146A
– ident: ref5/cit5
  doi: 10.1039/b406286h
– ident: ref50/cit50
  doi: 10.1021/acs.langmuir.1c01384
– ident: ref24/cit24
  doi: 10.29172/562c76d9-02eb-4582-9d33-536bc9402994
– ident: ref30/cit30
  doi: 10.1002/batt.202200122
– ident: ref38/cit38
  doi: 10.1126/science.1159950
– ident: ref44/cit44
  doi: 10.1021/cm001253u
– ident: ref9/cit9
  doi: 10.1002/adma.201100599
– ident: ref47/cit47
  doi: 10.1002/app.20246
– ident: ref34/cit34
  doi: 10.1039/C5TA00117J
– ident: ref6/cit6
  doi: 10.1021/nl051401l
– ident: ref14/cit14
  doi: 10.1038/nmat3601
– ident: ref33/cit33
  doi: 10.1021/am505143h
– ident: ref15/cit15
  doi: 10.1039/b700389g
– ident: ref600/cit600
  doi: 10.1021/ma2000288
– ident: ref45/cit45
  doi: 10.1021/ja804414f
– ident: ref40/cit40
  doi: 10.1021/ja0633518
– ident: ref500/cit500
  doi: 10.1016/j.addr.2011.05.011
– ident: ref11/cit11
  doi: 10.1021/nn901825y
– ident: ref18/cit18
  doi: 10.1073/pnas.0404778101
– ident: ref13/cit13
  doi: 10.1002/adma.201104942
– ident: ref29/cit29
  doi: 10.1021/acs.langmuir.1c01865
– ident: ref700/cit700
  doi: 10.1002/chem.201601920
– ident: ref28/cit28
  doi: 10.1039/C6NR07313A
– ident: ref1/cit1
  doi: 10.1063/1.334028
– ident: ref4/cit4
  doi: 10.1039/D1MA00955A
– ident: ref53/cit53
  doi: 10.21203/rs.3.rs-3470490/v1
– ident: ref17/cit17
  doi: 10.1038/s41563-021-01183-0
– ident: ref19/cit19
  doi: 10.1038/35016535
– ident: ref25/cit25
  doi: 10.1126/science.279.5350.548
– ident: ref400/cit400
  doi: 10.1021/ma701931z
– ident: ref200/cit200
  doi: 10.1038/nature03310
– ident: ref49/cit49
  doi: 10.1021/jz1016729
– ident: ref36/cit36
  doi: 10.1039/B713310C
– ident: ref20/cit20
  doi: 10.1038/nmat3223
– ident: ref27/cit27
  doi: 10.1038/nmat2111
– ident: ref3/cit3
  doi: 10.1126/science.1184769
– ident: ref8/cit8
  doi: 10.1002/ange.200501663
– ident: ref10/cit10
  doi: 10.1038/ncomms5105
– ident: ref43/cit43
  doi: 10.1002/adfm.200601190
– ident: ref16/cit16
  doi: 10.1039/c3nr00176h
– ident: ref42/cit42
  doi: 10.1002/anie.202211307
– ident: ref800/cit800
  doi: 10.3762/bjoc.13.219
SSID ssj0057876
Score 2.5019112
Snippet Multimaterial heterostructures have led to characteristics surpassing the individual components. Nature controls the architecture and placement of multiple...
SourceID osti
proquest
crossref
pubmed
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 20133
SubjectTerms heterostructure
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
mesoporous
phosphonic acid
self-assembly
sequence control
Title One-Pot Self-Assembly of Sequence-Controlled Mesoporous Heterostructures via Structure-Directing Agents
URI http://dx.doi.org/10.1021/acsnano.4c01855
https://www.ncbi.nlm.nih.gov/pubmed/39074064
https://www.proquest.com/docview/3086061254
https://www.osti.gov/biblio/2438840
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS-RAEC50vLgH36vjqLTgYT20m3R3XkcZFS8-YHZhb013p1uEMREyI_jvrZpkRJEB95gQOk09v6-rUgE4kT43sUkdTworuUIr4YXzZMuZKiVC7Kg9uhhlt__yi0sak3O6oIIv4t_GNZWp6jPlIswtyTKsiAxxAqGg4WgedMnu0raAjAQZUcT7FJ8vC1Aacs2nNNSr0Z0WQ8xZqrla_49NbsBahyfZeWsAm7Dkqy348WHK4DY83FWe39cTNvLjwKnK-2THr6wOeKPto-bDtmF97Et245saMXk9bdg1tcrU7YTZKdJy9vJo2Gh-ybtoWT2wc_o-q9mBv1eXf4bXvPu_AjeY1Cfc2VwQAESXtzYuVAgqscbFSmROGMRZziL7S_I8-KjwxLxkKAMRJplYoTL5E3pVXfk9YCaKbJw6jBAmVakvipDimiGJSicyK9M-nKCIdOcfjZ6VvkWsO7npTm59-DXXin5up20sfnRAWtMIFGjaraO2IDfRQskcOWsfjufK1OgvVAQxlUfRaYkcbgbrVB92Wy2_v0rSSQFitP3v7XYAqwIhDp30iuIAeih_fwjLTTk9mhnnGxJX3sY
link.rule.ids 230,315,782,786,887,2769,27085,27933,27934,56747,56797
linkProvider American Chemical Society
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB6V7QE49AG03dIWI3HgYkhs53VEW9BWPIq0IHGzbMdGlbYJUnYr9d93Jg9KhZDoMVbkWDPjme_zjCcAe9LnJjap40lhJVdoJbxwnmw5U6VEiB11Rxez7OIm_3pMbXKi4S4MLqLBmZo2if-3u0B8iGOVqeoD5SIMMckKvExShMIEhiazwfeS-aVdHhl5MoKJ-2Y-jyagaOSaf6LRqMZd9TTSbCPOyev_X-sbeNWjS3bUmcNbeOGrDVh_0HNwE26_V55f1gs28_PAKef7085_szrgQFdVzSdd-frcl-zcNzUi9HrZsCkVztRdv9klknT264dhs-GR976zumVHdFur2YLrk-OryZT3f1vgBkP8gjubC4KD6ACsjQsVgkqscbESmRMGUZezyAWTPA8-KjzxMBnKQPRJJlaoTL6DUVVX_gMwE0U2Th36C5Oq1BdFSHHOkESlE5mV6Rj2UES63y2NbhPhIta93HQvtzHsD8rRd13vjadf3SblaYQN1PvWUZGQW2ihZI4Mdgy7g0417h5KiZjKo-i0REbXgjw1hvedsu8_JencABHbx-etdgdWp1fnZ_rs28XpNqwJBD90BiyKTzBCXfjPsNKUyy-tvf4Bl2HnMw
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6aLZTmkDR9pJukjQo59KLWluTXcdlkSckTNoHehCRLIbCxA94t9N93xo-QUgIlRwsji5nRzPdpRmOAA-lzE5vU8aSwkiu0El44T7acqVIixI66o4t5dv4zPzyiNjlquAuDi2hwpqZN4tOuvi9D32Eg_o7jlanqb8pFGGaSNXiZpFlBlGsynQ_-l0ww7XLJyJURUDw09PlnAopIrvkrIo1q3FlPo8026sw2n7feN7DRo0w26cxiC1746i2sP-o9-A5uLirPL-slm_tF4JT7vbOL36wOONBVV_NpV8a-8CU7802NSL1eNeyYCmjqru_sCsk6-3Vr2Hx45L0PrW7YhG5tNe_henZ0NT3m_V8XuMFQv-TO5oJgIToCa-NChaASa1ysROaEQfTlLHLCJM-DjwpPfEyGMhCNkokVKpMfYFTVlf8IzESRjVOHfsOkKvVFEVKcMyRR6URmZTqGAxSR7ndNo9uEuIh1Lzfdy20MXwcF6fuuB8fTr-6SAjXCB-qB66hYyC21UDJHJjuGL4NeNe4iSo2YyqPotERm14I9NYbtTuEPn5J0foDIbef_VrsPry4PZ_r0x_nJLrwWiIHoKFgUezBCVfhPsNaUq8-tyf4BMILptg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=One-Pot+Self-Assembly+of+Sequence-Controlled+Mesoporous+Heterostructures+via+Structure-Directing+Agents&rft.jtitle=ACS+nano&rft.au=Larison%2C+Taylor&rft.au=Williams%2C+Eric+R&rft.au=Wright%2C+Mason&rft.au=Zhang%2C+Mengxue&rft.date=2024-07-29&rft.issn=1936-086X&rft.eissn=1936-086X&rft_id=info:doi/10.1021%2Facsnano.4c01855&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon