Structural, Vibrational, and Electronic Study of α‑As2Te3 under Compression

We report a study of the structural, vibrational, and electronic properties of layered monoclinic arsenic telluride (α-As2Te3) at high pressures. Powder X-ray diffraction and Raman scattering measurements up to 17 GPa have been complemented with ab initio total-energy, lattice dynamics, and electron...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physical chemistry. C Vol. 120; no. 34; pp. 19340 - 19352
Main Authors: Cuenca-Gotor, V. P, Sans, J. A, Ibáñez, J, Popescu, C, Gomis, O, Vilaplana, R, Manjón, F. J, Leonardo, A, Sagasta, E, Suárez-Alcubilla, A, Gurtubay, I. G, Mollar, M, Bergara, A
Format: Journal Article
Language:English
Published: American Chemical Society 01-09-2016
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We report a study of the structural, vibrational, and electronic properties of layered monoclinic arsenic telluride (α-As2Te3) at high pressures. Powder X-ray diffraction and Raman scattering measurements up to 17 GPa have been complemented with ab initio total-energy, lattice dynamics, and electronic band structure calculations. Our measurements, which include previously unreported Raman scattering measurements for crystalline α-As2Te3, show that this compound undergoes a reversible phase transition above 14 GPa at room temperature. The monoclinic crystalline structure of α-As2Te3 and its behavior under compression are analyzed by means of the compressibility tensor. Major structural and vibrational changes are observed in the range between 2 and 4 GPa and can be ascribed to the strengthening of interlayer bonds. No evidence of any isostructural phase transition has been observed in α-As2Te3. A comparison with other group 15 sesquichalcogenides allows understanding the structure of α-As2Te3 and its behavior under compression based on the activity of the cation lone electron pair in these compounds. Finally, our electronic band structure calculations show that α-As2Te3 is a semiconductor at 1 atm, which undergoes a trivial semiconducting–metal transition above 4 GPa. The absence of a pressure-induced electronic topological transition in α-As2Te3 is discussed.
ISSN:1932-7447
1932-7455
DOI:10.1021/acs.jpcc.6b06049