Synthesis of Tunable SnS-TaS2 Nanoscale Superlattices
Nanoscale superlattices represent a compelling platform for designed materials as the specific identity and spatial arrangement of constituent layers can lead to tunable properties. A number of kinetically stabilized, nonepitaxial superlattices with almost limitless structural tunability have been r...
Saved in:
Published in: | Nano letters Vol. 20; no. 10; pp. 7059 - 7067 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
American Chemical Society
14-10-2020
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Nanoscale superlattices represent a compelling platform for designed materials as the specific identity and spatial arrangement of constituent layers can lead to tunable properties. A number of kinetically stabilized, nonepitaxial superlattices with almost limitless structural tunability have been reported in telluride and selenide chemistries but have not yet been extended to sulfides. Here, we present SnS-TaS2 nanoscale superlattices with tunable layer architecture. Layered amorphous precursors are prepared as thin films programmed to mimic the targeted superlattice; subsequent low temperature annealing activates self-assembly into crystalline nanocomposites. We investigate structure and composition of superlattices comprised of monolayers of TaS2 and 3–7 monolayers of SnS per repeating unit. Furthermore, a graded precursor preparation approach is introduced, allowing stabilization of superlattices with multiple stacking sequences in a single preparation. Controlled synthesis of the architecture of nanoscale superlattices is a critical path toward tuning their exotic properties and enabling integration with electronic, optical, or quantum devices. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 NREL/JA-5900-76763 USDOE Laboratory Directed Research and Development (LDRD) Program AC36-08GO28308 USDOE Office of Science (SC), Workforce Development for Teachers and Scientists (WDTS) |
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/acs.nanolett.0c02115 |