Generalized Spin in the Variance-Based Wave Function Optimization Method within the Doubly Occupied Configuration Interaction Framework
In this work, we implement a generalized spin formulation of the doubly occupied configuration interaction methodology using the energy variance of the N-electron Hamiltonian. We perform the optimization of the N-electron wave functions and calculate their corresponding energies, using a unified var...
Saved in:
Published in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Vol. 128; no. 34; pp. 7277 - 7283 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
American Chemical Society
29-08-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this work, we implement a generalized spin formulation of the doubly occupied configuration interaction methodology using the energy variance of the N-electron Hamiltonian. We perform the optimization of the N-electron wave functions and calculate their corresponding energies, using a unified variational treatment for ground and excited states based on the energy variance, which allows us to describe the entire energy spectra on an equal footing. We analyze the effects produced by the breakdown of the Ŝ2 and Ŝ z symmetries in the spectra of model hydrogenic clusters in terms of energies and spin-related quantities, arising from the restricted, unrestricted, and generalized spin methods. The results are compared with other related methods as well as full configuration interaction. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1089-5639 1520-5215 1520-5215 |
DOI: | 10.1021/acs.jpca.4c02742 |