Unique Applications of para-Hydrogen Matrix Isolation to Spectroscopy and Astrochemistry
Cryogenic solid para-hydrogen (p-H2) exhibits pronounced quantum effects, enabling unique experiments that are typically not possible in noble-gas matrices. The diminished cage effect facilitates the production of free radicals via in situ photolysis or photoinduced reactions. Electron bombardment d...
Saved in:
Published in: | The journal of physical chemistry letters Vol. 15; no. 45; pp. 11361 - 11373 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
American Chemical Society
14-11-2024
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Cryogenic solid para-hydrogen (p-H2) exhibits pronounced quantum effects, enabling unique experiments that are typically not possible in noble-gas matrices. The diminished cage effect facilitates the production of free radicals via in situ photolysis or photoinduced reactions. Electron bombardment during deposition readily produces protonated and hydrogenated species, such as polycyclic aromatic hydrocarbons, that are important in astrochemistry. In addition, quantum diffusion delocalizes hydrogen atoms in solid p-H2, allowing efficient H atom reactions with astrochemical species and introducing new concepts in astrochemical models. Some H atom reactions display anomalous temperature behaviors, highlighting the rich chemistry in p-H2. The investigation on quantum diffusion of heavier atoms and molecules is also important for our understanding of the chemistry in interstellar ice. Additionally, matrix shifts of electronic transitions of polycyclic aromatic hydrocarbons in p-H2 are less divergent than those in solid Ne such that systematic measurements in p-H2 might help in the assignment of diffuse interstellar bands. |
---|---|
AbstractList | Cryogenic solid para-hydrogen (p-H2) exhibits pronounced quantum effects, enabling unique experiments that are typically not possible in noble-gas matrices. The diminished cage effect facilitates the production of free radicals via in situ photolysis or photoinduced reactions. Electron bombardment during deposition readily produces protonated and hydrogenated species, such as polycyclic aromatic hydrocarbons, that are important in astrochemistry. In addition, quantum diffusion delocalizes hydrogen atoms in solid p-H2, allowing efficient H atom reactions with astrochemical species and introducing new concepts in astrochemical models. Some H atom reactions display anomalous temperature behaviors, highlighting the rich chemistry in p-H2. The investigation on quantum diffusion of heavier atoms and molecules is also important for our understanding of the chemistry in interstellar ice. Additionally, matrix shifts of electronic transitions of polycyclic aromatic hydrocarbons in p-H2 are less divergent than those in solid Ne such that systematic measurements in p-H2 might help in the assignment of diffuse interstellar bands.Cryogenic solid para-hydrogen (p-H2) exhibits pronounced quantum effects, enabling unique experiments that are typically not possible in noble-gas matrices. The diminished cage effect facilitates the production of free radicals via in situ photolysis or photoinduced reactions. Electron bombardment during deposition readily produces protonated and hydrogenated species, such as polycyclic aromatic hydrocarbons, that are important in astrochemistry. In addition, quantum diffusion delocalizes hydrogen atoms in solid p-H2, allowing efficient H atom reactions with astrochemical species and introducing new concepts in astrochemical models. Some H atom reactions display anomalous temperature behaviors, highlighting the rich chemistry in p-H2. The investigation on quantum diffusion of heavier atoms and molecules is also important for our understanding of the chemistry in interstellar ice. Additionally, matrix shifts of electronic transitions of polycyclic aromatic hydrocarbons in p-H2 are less divergent than those in solid Ne such that systematic measurements in p-H2 might help in the assignment of diffuse interstellar bands. Cryogenic solid para -hydrogen ( p -H 2 ) exhibits pronounced quantum effects, enabling unique experiments that are typically not possible in noble-gas matrices. The diminished cage effect facilitates the production of free radicals via in situ photolysis or photoinduced reactions. Electron bombardment during deposition readily produces protonated and hydrogenated species, such as polycyclic aromatic hydrocarbons, that are important in astrochemistry. In addition, quantum diffusion delocalizes hydrogen atoms in solid p -H 2 , allowing efficient H atom reactions with astrochemical species and introducing new concepts in astrochemical models. Some H atom reactions display anomalous temperature behaviors, highlighting the rich chemistry in p -H 2 . The investigation on quantum diffusion of heavier atoms and molecules is also important for our understanding of the chemistry in interstellar ice. Additionally, matrix shifts of electronic transitions of polycyclic aromatic hydrocarbons in p -H 2 are less divergent than those in solid Ne such that systematic measurements in p -H 2 might help in the assignment of diffuse interstellar bands. Cryogenic solid para-hydrogen (p-H2) exhibits pronounced quantum effects, enabling unique experiments that are typically not possible in noble-gas matrices. The diminished cage effect facilitates the production of free radicals via in situ photolysis or photoinduced reactions. Electron bombardment during deposition readily produces protonated and hydrogenated species, such as polycyclic aromatic hydrocarbons, that are important in astrochemistry. In addition, quantum diffusion delocalizes hydrogen atoms in solid p-H2, allowing efficient H atom reactions with astrochemical species and introducing new concepts in astrochemical models. Some H atom reactions display anomalous temperature behaviors, highlighting the rich chemistry in p-H2. The investigation on quantum diffusion of heavier atoms and molecules is also important for our understanding of the chemistry in interstellar ice. Additionally, matrix shifts of electronic transitions of polycyclic aromatic hydrocarbons in p-H2 are less divergent than those in solid Ne such that systematic measurements in p-H2 might help in the assignment of diffuse interstellar bands. |
Author | Anderson, David T. Weber, Isabelle Joshi, Prasad Ramesh Lee, Yuan-Pern |
AuthorAffiliation | Department of Chemistry Center for Emergent Functional Matter Science National Yang Ming Chiao Tung University Department of Applied Chemistry and Institute of Molecular Science |
AuthorAffiliation_xml | – name: Department of Applied Chemistry and Institute of Molecular Science – name: Department of Chemistry – name: National Yang Ming Chiao Tung University – name: Center for Emergent Functional Matter Science |
Author_xml | – sequence: 1 givenname: Isabelle orcidid: 0000-0001-5142-4557 surname: Weber fullname: Weber, Isabelle organization: Department of Applied Chemistry and Institute of Molecular Science – sequence: 2 givenname: Prasad Ramesh orcidid: 0000-0003-0896-4341 surname: Joshi fullname: Joshi, Prasad Ramesh organization: Department of Applied Chemistry and Institute of Molecular Science – sequence: 3 givenname: David T. orcidid: 0000-0002-8959-7661 surname: Anderson fullname: Anderson, David T. email: danderso@uwyo.edu organization: Department of Chemistry – sequence: 4 givenname: Yuan-Pern orcidid: 0000-0001-6418-7378 surname: Lee fullname: Lee, Yuan-Pern email: yplee@nycu.edu.tw organization: National Yang Ming Chiao Tung University |
BookMark | eNp9UTtPwzAQtlARfcAvYPHIktaPxIknVFVAKxUxQCU2y3WcNlVqBztF5N_jthGChenudN9Dd98Q9Iw1GoBbjMYYETyRyo93tap004xjhUhK6QUYYB5nUYqzpPer74Oh9zuEGEdZegX6lCeIkowNwPvKlB8HDad1XZVKNqU1HtoC1tLJaN7mzm60gc-yceUXXHhbnSCwsfC11qpx1itbt1CaHE59GNVW78vQtNfgspCV1zddHYHV48PbbB4tX54Ws-kykgRxHKWUJBTlTHGkY4kZwijNMCE4jlmsSIERLxTJVUIlk4wneo1TnTCVckV1RjI6Avdn3fqw3utcadM4WYnalXvpWmFlKf5uTLkVG_spME7So1FQuOsUnA2v8I0IFyhdVdJoe_CCYhIzTmKOApSeoSoc7p0ufnwwEsdQRAhFdKGILpTAmpxZp6U9OBMe8i_jG7yClIk |
Cites_doi | 10.1021/acs.jpca.0c03987 10.1016/S0009-2614(03)00479-2 10.1063/5.0177189 10.1063/1.4790860 10.1039/C7CP02621H 10.1039/C9CP06279C 10.1063/1.1587113 10.1021/acs.jpca.2c06169 10.1016/j.jms.2019.07.001 10.1016/j.jms.2014.11.008 10.1021/acs.jpclett.1c01306 10.1063/5.0028853 10.1246/bcsj.71.1 10.1063/1.3502105 10.1016/0009-2614(76)80752-X 10.1002/anie.201308971 10.1093/mnras/stad710 10.1201/9780429066276 10.1021/acs.jpclett.1c03104 10.1021/acs.jpca.2c01330 10.1051/0004-6361/202450649 10.1063/1.5133089 10.1021/jp502469p 10.1021/acs.jpca.3c00266 10.1038/s42004-022-00677-5 10.1103/PhysRevB.105.144102 10.1063/1.5054653 10.1103/PhysRev.104.846 10.1039/C7CP05064J 10.1063/1.441603 10.1002/anie.199106101 10.1021/acs.jpca.2c00306 10.3847/0004-637X/825/2/96 10.1051/eas/1146010 10.1021/acsearthspacechem.1c00043 10.1063/1.4826317 10.1002/bbpc.19770810431 10.1086/341412 10.1021/jacs.4c05896 10.1021/acs.jpca.0c00241 10.1021/jz400923k 10.1039/C7CP05680J 10.1021/jacs.3c00124 10.1063/1.4745075 10.1063/1.469763 10.1063/1.455180 10.1021/jp048366b 10.1021/jp992098d 10.1021/acs.jpca.4c02320 10.1016/j.progsurf.2008.10.001 10.1002/jccs.201000107 10.1021/jp407668z 10.1023/A:1021850103903 10.1039/c3cp55265a 10.1021/acs.jpca.7b07922 10.1021/acsearthspacechem.0c00316 10.1063/1.4808035 10.1039/c3cp54184c 10.1021/acs.jpclett.2c03262 10.1016/j.cplett.2016.10.045 10.1039/C8CP05849K 10.1021/jp502470j 10.1021/jacs.9b04491 10.1051/0004-6361/201117494 10.1021/acs.jpclett.8b02943 10.1002/nadc.19790270512 10.1063/1.482076 10.1021/acs.jpclett.4c02494 10.1063/1.4996951 10.1021/acsearthspacechem.8b00089 10.1021/acs.jpca.7b11223 10.1063/1.1426410 10.1080/0144235X.2015.1046679 10.1016/j.molstruc.2020.128986 10.1002/jccs.202200210 10.1146/annurev.pc.44.100193.001503 10.1021/jacs.2c03714 10.1007/978-3-662-05900-5 10.2183/pjab.99.008 10.1039/b806276e 10.1021/acs.jpca.2c02906 10.1063/5.0024495 10.1063/1.455338 10.1080/01442350600802766 10.1021/acs.jpca.1c00577 10.1021/acs.accounts.8b00304 10.1080/01442350500444107 10.1021/jp992985g 10.1021/jp408336n 10.1021/acs.jpca.3c02170 10.1039/C2CP43143B 10.1103/PhysRevB.68.052301 10.1021/cr400156b 10.1039/D3CP00246B |
ContentType | Journal Article |
Copyright | 2024 The Authors. Published by American Chemical Society 2024 The Authors. Published by American Chemical Society 2024 The Authors |
Copyright_xml | – notice: 2024 The Authors. Published by American Chemical Society – notice: 2024 The Authors. Published by American Chemical Society 2024 The Authors |
DBID | AAYXX CITATION 7X8 5PM |
DOI | 10.1021/acs.jpclett.4c02733 |
DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1948-7185 |
EndPage | 11373 |
ExternalDocumentID | 10_1021_acs_jpclett_4c02733 a988420556 |
GroupedDBID | 53G 55A 5VS 7~N AABXI ABJNI ABMVS ABQRX ABUCX ACGFO ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CUPRZ DU5 EBS ED~ GGK GNL IH9 JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-a2091-732530d6c90e4a160107812214464c2f109fc2dc53a6a695eb17e56c79c3e8283 |
IEDL.DBID | ACS |
ISSN | 1948-7185 |
IngestDate | Wed Nov 20 05:27:07 EST 2024 Thu Nov 21 03:06:43 EST 2024 Wed Nov 20 13:14:46 EST 2024 Fri Nov 15 03:19:54 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 45 |
Language | English |
License | Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a2091-732530d6c90e4a160107812214464c2f109fc2dc53a6a695eb17e56c79c3e8283 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-5142-4557 0000-0001-6418-7378 0000-0003-0896-4341 0000-0002-8959-7661 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC11571221 |
PMID | 39503286 |
PQID | 3124692490 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11571221 proquest_miscellaneous_3124692490 crossref_primary_10_1021_acs_jpclett_4c02733 acs_journals_10_1021_acs_jpclett_4c02733 |
PublicationCentury | 2000 |
PublicationDate | 20241114 |
PublicationDateYYYYMMDD | 2024-11-14 |
PublicationDate_xml | – month: 11 year: 2024 text: 20241114 day: 14 |
PublicationDecade | 2020 |
PublicationTitle | The journal of physical chemistry letters |
PublicationTitleAlternate | J. Phys. Chem. Lett |
PublicationYear | 2024 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref45/cit45 ref99/cit99 ref81/cit81 ref16/cit16 ref52/cit52 ref23/cit23 ref2/cit2 ref77/cit77 ref71/cit71 ref20/cit20 ref48/cit48 ref74/cit74 ref10/cit10 ref35/cit35 ref89/cit89 ref19/cit19 ref93/cit93 ref42/cit42 ref96/cit96 Andrews L. (ref3/cit3) 1989 ref13/cit13 ref61/cit61 ref67/cit67 ref38/cit38 ref90/cit90 ref64/cit64 Hallam H. E. (ref1/cit1) 1973 ref54/cit54 ref6/cit6 ref18/cit18 ref65/cit65 ref97/cit97 ref11/cit11 ref29/cit29 ref76/cit76 ref86/cit86 ref32/cit32 ref39/cit39 ref5/cit5 ref43/cit43 ref28/cit28 ref91/cit91 ref55/cit55 ref12/cit12 ref66/cit66 ref22/cit22 ref33/cit33 ref87/cit87 ref44/cit44 ref70/cit70 ref98/cit98 ref9/cit9 ref27/cit27 Tsuge M. (ref14/cit14) 2020 ref63/cit63 ref56/cit56 ref92/cit92 ref8/cit8 ref31/cit31 ref59/cit59 ref85/cit85 ref34/cit34 ref37/cit37 Kagan Y. (ref80/cit80) 1992 ref60/cit60 ref88/cit88 ref17/cit17 ref82/cit82 ref53/cit53 ref21/cit21 ref46/cit46 ref49/cit49 ref75/cit75 ref24/cit24 ref50/cit50 ref78/cit78 ref36/cit36 ref83/cit83 ref79/cit79 ref25/cit25 ref72/cit72 ref57/cit57 ref51/cit51 ref40/cit40 ref68/cit68 ref94/cit94 ref26/cit26 ref73/cit73 ref69/cit69 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref95/cit95 ref4/cit4 ref30/cit30 ref47/cit47 ref84/cit84 ref7/cit7 |
References_xml | – ident: ref19/cit19 doi: 10.1021/acs.jpca.0c03987 – ident: ref88/cit88 doi: 10.1016/S0009-2614(03)00479-2 – ident: ref57/cit57 doi: 10.1063/5.0177189 – ident: ref26/cit26 doi: 10.1063/1.4790860 – ident: ref51/cit51 doi: 10.1039/C7CP02621H – ident: ref59/cit59 doi: 10.1039/C9CP06279C – ident: ref87/cit87 doi: 10.1063/1.1587113 – ident: ref95/cit95 doi: 10.1021/acs.jpca.2c06169 – ident: ref18/cit18 doi: 10.1016/j.jms.2019.07.001 – ident: ref17/cit17 doi: 10.1016/j.jms.2014.11.008 – ident: ref61/cit61 doi: 10.1021/acs.jpclett.1c01306 – volume-title: Vibrational Spectroscopy of Trapped Species year: 1973 ident: ref1/cit1 contributor: fullname: Hallam H. E. – ident: ref41/cit41 doi: 10.1063/5.0028853 – ident: ref7/cit7 doi: 10.1246/bcsj.71.1 – ident: ref16/cit16 doi: 10.1063/1.3502105 – ident: ref92/cit92 doi: 10.1016/0009-2614(76)80752-X – ident: ref34/cit34 doi: 10.1002/anie.201308971 – ident: ref54/cit54 doi: 10.1093/mnras/stad710 – ident: ref5/cit5 doi: 10.1201/9780429066276 – ident: ref22/cit22 doi: 10.1021/acs.jpclett.1c03104 – volume-title: Chemistry and Physics of Matrix-Isolated Species year: 1989 ident: ref3/cit3 contributor: fullname: Andrews L. – ident: ref37/cit37 doi: 10.1021/acs.jpca.2c01330 – ident: ref65/cit65 doi: 10.1051/0004-6361/202450649 – ident: ref58/cit58 doi: 10.1063/1.5133089 – ident: ref71/cit71 doi: 10.1021/jp502469p – ident: ref84/cit84 doi: 10.1021/acs.jpca.3c00266 – ident: ref62/cit62 doi: 10.1038/s42004-022-00677-5 – ident: ref90/cit90 doi: 10.1103/PhysRevB.105.144102 – ident: ref48/cit48 doi: 10.1063/1.5054653 – ident: ref77/cit77 doi: 10.1103/PhysRev.104.846 – ident: ref72/cit72 doi: 10.1039/C7CP05064J – ident: ref98/cit98 doi: 10.1063/1.441603 – ident: ref4/cit4 doi: 10.1002/anie.199106101 – ident: ref53/cit53 doi: 10.1021/acs.jpca.2c00306 – ident: ref35/cit35 doi: 10.3847/0004-637X/825/2/96 – ident: ref31/cit31 doi: 10.1051/eas/1146010 – ident: ref52/cit52 doi: 10.1021/acsearthspacechem.1c00043 – ident: ref68/cit68 doi: 10.1063/1.4826317 – ident: ref2/cit2 doi: 10.1002/bbpc.19770810431 – ident: ref43/cit43 doi: 10.1086/341412 – ident: ref66/cit66 doi: 10.1021/jacs.4c05896 – ident: ref29/cit29 doi: 10.1021/acs.jpca.0c00241 – ident: ref33/cit33 doi: 10.1021/jz400923k – ident: ref64/cit64 doi: 10.1063/5.0177189 – ident: ref12/cit12 doi: 10.1039/C7CP05680J – ident: ref23/cit23 doi: 10.1021/jacs.3c00124 – ident: ref47/cit47 doi: 10.1063/1.4745075 – ident: ref15/cit15 doi: 10.1063/1.469763 – ident: ref93/cit93 doi: 10.1063/1.455180 – ident: ref69/cit69 doi: 10.1021/jp048366b – ident: ref76/cit76 doi: 10.1021/jp992098d – ident: ref97/cit97 doi: 10.1021/acs.jpca.4c02320 – ident: ref44/cit44 doi: 10.1016/j.progsurf.2008.10.001 – ident: ref10/cit10 doi: 10.1002/jccs.201000107 – ident: ref49/cit49 doi: 10.1021/jp407668z – ident: ref83/cit83 doi: 10.1023/A:1021850103903 – ident: ref73/cit73 doi: 10.1039/c3cp55265a – ident: ref24/cit24 doi: 10.1021/acs.jpca.7b07922 – volume-title: Quantum Tunneling in Condensed Media year: 1992 ident: ref80/cit80 contributor: fullname: Kagan Y. – ident: ref60/cit60 doi: 10.1021/acsearthspacechem.0c00316 – ident: ref78/cit78 doi: 10.1063/1.4808035 – ident: ref11/cit11 doi: 10.1039/c3cp54184c – ident: ref27/cit27 doi: 10.1021/acs.jpclett.2c03262 – ident: ref91/cit91 doi: 10.1016/j.cplett.2016.10.045 – ident: ref30/cit30 doi: 10.1039/C8CP05849K – ident: ref70/cit70 doi: 10.1021/jp502470j – ident: ref55/cit55 doi: 10.1021/jacs.9b04491 – ident: ref45/cit45 doi: 10.1051/0004-6361/201117494 – ident: ref79/cit79 doi: 10.1021/acs.jpclett.8b02943 – ident: ref85/cit85 doi: 10.1002/nadc.19790270512 – ident: ref75/cit75 doi: 10.1063/1.482076 – ident: ref99/cit99 doi: 10.1021/acs.jpclett.4c02494 – ident: ref56/cit56 doi: 10.1063/1.4996951 – ident: ref36/cit36 doi: 10.1021/acsearthspacechem.8b00089 – ident: ref82/cit82 doi: 10.1021/acs.jpca.7b11223 – ident: ref89/cit89 doi: 10.1063/1.1426410 – ident: ref46/cit46 doi: 10.1080/0144235X.2015.1046679 – ident: ref21/cit21 doi: 10.1016/j.molstruc.2020.128986 – ident: ref13/cit13 doi: 10.1002/jccs.202200210 – ident: ref6/cit6 doi: 10.1146/annurev.pc.44.100193.001503 – ident: ref63/cit63 doi: 10.1021/jacs.2c03714 – ident: ref40/cit40 doi: 10.1007/978-3-662-05900-5 – ident: ref42/cit42 doi: 10.2183/pjab.99.008 – volume-title: Molecular and Laser Spectroscopy year: 2020 ident: ref14/cit14 contributor: fullname: Tsuge M. – ident: ref81/cit81 doi: 10.1039/b806276e – ident: ref96/cit96 doi: 10.1021/acs.jpca.2c02906 – ident: ref50/cit50 doi: 10.1063/5.0024495 – ident: ref94/cit94 doi: 10.1063/1.455338 – ident: ref9/cit9 doi: 10.1080/01442350600802766 – ident: ref25/cit25 doi: 10.1021/acs.jpca.1c00577 – ident: ref74/cit74 doi: 10.1021/acs.accounts.8b00304 – ident: ref8/cit8 doi: 10.1080/01442350500444107 – ident: ref86/cit86 doi: 10.1021/jp992985g – ident: ref28/cit28 doi: 10.1021/jp408336n – ident: ref20/cit20 doi: 10.1021/acs.jpca.3c02170 – ident: ref32/cit32 doi: 10.1039/C2CP43143B – ident: ref39/cit39 doi: 10.1103/PhysRevB.68.052301 – ident: ref67/cit67 doi: 10.1021/cr400156b – ident: ref38/cit38 doi: 10.1039/D3CP00246B |
SSID | ssj0069087 |
Score | 2.489722 |
SecondaryResourceType | review_article |
Snippet | Cryogenic solid para-hydrogen (p-H2) exhibits pronounced quantum effects, enabling unique experiments that are typically not possible in noble-gas matrices.... Cryogenic solid para -hydrogen ( p -H 2 ) exhibits pronounced quantum effects, enabling unique experiments that are typically not possible in noble-gas... |
SourceID | pubmedcentral proquest crossref acs |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | 11361 |
Title | Unique Applications of para-Hydrogen Matrix Isolation to Spectroscopy and Astrochemistry |
URI | http://dx.doi.org/10.1021/acs.jpclett.4c02733 https://www.proquest.com/docview/3124692490 https://pubmed.ncbi.nlm.nih.gov/PMC11571221 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI7YOMCFN2K8FCQOHMho0zZpj9PYNA5wGZN2q7okFXBop7WT2L_H7gNWCRBc28hKbcf2V7efCbnGsO_asWFCKIu5gYYjpWeKCT-SUmmutMF3uqOxfJr69wOkyWE_dPC5fReprPs2Bx3meddVSL_itMgml1ArYCXUH9eBF3BeMQ8PYLnPIOR6NcnQ90IwHamsmY6-aszmF5JrKWe4-8_N7pGdqrakvdIZ9smGSQ7IVr8e6XZIppOCrpX21rrWNI0p8n-z0UovUnAn-ois_e_0AbyyWELzlOKY-hyJL9P5ikaJpj2QiMO2StFHZDIcPPdHrBqtwCIOFQKTDvccSwsVWMaNbERlElJ9wZ_mKh7bVhArrpXnRCISgQcRXRpPKBkoxwBIc45JO0kTc0Io5MBAcuFbsTtz_VjMgpmRlvKDGKC3iE2H3IBWwupoZGHR9eZ2WFwsVRVWquqQ29oY4bwk2_h9-VVtsBCeFjsdUWLSZRY6ULUIRJZWh_gNS37KRVrt5p3k9aWg10b6IVTF6d83fka2OXg9_qNou-eknS-W5oK0Mr28LFz0AzCq5tM |
link.rule.ids | 230,315,782,786,887,2769,27085,27933,27934,56747,56797 |
linkProvider | American Chemical Society |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGWDhjShPIzEwEMjDsZOxKlStKCyAxBaltiNgSKomlei_585toJUQQqyOdXLufbn4O4Bzcvvcy4wjhHIdHms0KT1QjohSKZX2lTb0Tbf7KB9eoptbgsnh9V0YPESJlErbxP9GF_Cuae19iKysqiuuCIUlWIaVUGA6TAlR-7H2v1ju2bF4WJ1HDnresMYa-pkIRSVVLkal71Rz8UfJucjT2fjfmTdhfZZpstZUNbZgyeTbsNquB7ztwMuzBW9lrbkeNisyRmjgTneiRwUqF7snDP8P1kMdtVtYVTAaWl8RDGYxnLA016yFFGn01pT0Ljx3bp_aXWc2aMFJfcwXHBn4YeBqoWLX8NSjGk1i4Ldoalz5mefGmfK1CoNUpCIO0b9LEwolYxUYLNmCPWjkRW72gWFEjKUvIjfjAx5lYhAPjHRVFGdYiIvMNOECuZLMDKVMbA_c9xK7OGVVMmNVEy5rmSTDKfTG79vParkl-LbU90hzU4zLJMAcRlCd6TYhWhDoF10C2V58kr-9WrBtAiMiVhz8_eCnsNp9uu8n_d7D3SGs-WgPdHvR40fQqEZjcwzLpR6fWK39BGHS70A |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB5qF5Jc-kgT6rZpt5BDD1Wj5672aPzApm0IpAbfhLwPkh4kYckQ__vOrKXWhlJKrqtlWM17NNpvAC7J7ceBNR7nyvdiqdGk9Ep5PM2FUDpU2tA33dmtuF6m4wnB5KTdXRg8RI2UatfEJ6uutG0RBoIrWv9ZITub5kusCIkl6sHThAtJZddwdNv5YCz53Gg8rNBTD71v0uEN_Z0IRSZVH0amP-nm4c-Se9Fn-vzx534Bz9qMkw13KvISnpjiFI5H3aC3V7BcOBBXNtzrZbPSMkIF92ZbvS5Rydh3wvJ_YHPUVbeFNSWj4fUNwWGW1ZblhWZDpEgjuHakz2AxnfwYzbx24IKXh5g3eCIKk8jXXEnfxHlAtZrABMChqsUqtIEvrQq1SqKc51wm6OeFSbgSUkUGS7foHPpFWZjXwDAyShHy1LfxKk4tX8mVEb5KpcWCnFszgE_Ilaw1mDpzvfAwyNzijlVZy6oBfO7kklU7CI5_b__YyS7Dt6X-R16YclNnEeYynOpNfwDpgVB_0yWw7cMnxf2dA90mUCJixZv_P_gHOLoZT7Nv8-uvb-EkRLOgS4xB_A76zXpjLqBX6817p7i_ABwB8cM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unique+Applications+of+para-Hydrogen+Matrix+Isolation+to+Spectroscopy+and+Astrochemistry&rft.jtitle=The+journal+of+physical+chemistry+letters&rft.au=Weber%2C+Isabelle&rft.au=Joshi%2C+Prasad+Ramesh&rft.au=Anderson%2C+David+T&rft.au=Lee%2C+Yuan-Pern&rft.date=2024-11-14&rft.issn=1948-7185&rft.eissn=1948-7185&rft.volume=15&rft.issue=45&rft.spage=11361&rft_id=info:doi/10.1021%2Facs.jpclett.4c02733&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1948-7185&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1948-7185&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1948-7185&client=summon |