Unique Applications of para-Hydrogen Matrix Isolation to Spectroscopy and Astrochemistry

Cryogenic solid para-hydrogen (p-H2) exhibits pronounced quantum effects, enabling unique experiments that are typically not possible in noble-gas matrices. The diminished cage effect facilitates the production of free radicals via in situ photolysis or photoinduced reactions. Electron bombardment d...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry letters Vol. 15; no. 45; pp. 11361 - 11373
Main Authors: Weber, Isabelle, Joshi, Prasad Ramesh, Anderson, David T., Lee, Yuan-Pern
Format: Journal Article
Language:English
Published: American Chemical Society 14-11-2024
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Cryogenic solid para-hydrogen (p-H2) exhibits pronounced quantum effects, enabling unique experiments that are typically not possible in noble-gas matrices. The diminished cage effect facilitates the production of free radicals via in situ photolysis or photoinduced reactions. Electron bombardment during deposition readily produces protonated and hydrogenated species, such as polycyclic aromatic hydrocarbons, that are important in astrochemistry. In addition, quantum diffusion delocalizes hydrogen atoms in solid p-H2, allowing efficient H atom reactions with astrochemical species and introducing new concepts in astrochemical models. Some H atom reactions display anomalous temperature behaviors, highlighting the rich chemistry in p-H2. The investigation on quantum diffusion of heavier atoms and molecules is also important for our understanding of the chemistry in interstellar ice. Additionally, matrix shifts of electronic transitions of polycyclic aromatic hydrocarbons in p-H2 are less divergent than those in solid Ne such that systematic measurements in p-H2 might help in the assignment of diffuse interstellar bands.
AbstractList Cryogenic solid para-hydrogen (p-H2) exhibits pronounced quantum effects, enabling unique experiments that are typically not possible in noble-gas matrices. The diminished cage effect facilitates the production of free radicals via in situ photolysis or photoinduced reactions. Electron bombardment during deposition readily produces protonated and hydrogenated species, such as polycyclic aromatic hydrocarbons, that are important in astrochemistry. In addition, quantum diffusion delocalizes hydrogen atoms in solid p-H2, allowing efficient H atom reactions with astrochemical species and introducing new concepts in astrochemical models. Some H atom reactions display anomalous temperature behaviors, highlighting the rich chemistry in p-H2. The investigation on quantum diffusion of heavier atoms and molecules is also important for our understanding of the chemistry in interstellar ice. Additionally, matrix shifts of electronic transitions of polycyclic aromatic hydrocarbons in p-H2 are less divergent than those in solid Ne such that systematic measurements in p-H2 might help in the assignment of diffuse interstellar bands.Cryogenic solid para-hydrogen (p-H2) exhibits pronounced quantum effects, enabling unique experiments that are typically not possible in noble-gas matrices. The diminished cage effect facilitates the production of free radicals via in situ photolysis or photoinduced reactions. Electron bombardment during deposition readily produces protonated and hydrogenated species, such as polycyclic aromatic hydrocarbons, that are important in astrochemistry. In addition, quantum diffusion delocalizes hydrogen atoms in solid p-H2, allowing efficient H atom reactions with astrochemical species and introducing new concepts in astrochemical models. Some H atom reactions display anomalous temperature behaviors, highlighting the rich chemistry in p-H2. The investigation on quantum diffusion of heavier atoms and molecules is also important for our understanding of the chemistry in interstellar ice. Additionally, matrix shifts of electronic transitions of polycyclic aromatic hydrocarbons in p-H2 are less divergent than those in solid Ne such that systematic measurements in p-H2 might help in the assignment of diffuse interstellar bands.
Cryogenic solid para -hydrogen ( p -H 2 ) exhibits pronounced quantum effects, enabling unique experiments that are typically not possible in noble-gas matrices. The diminished cage effect facilitates the production of free radicals via in situ photolysis or photoinduced reactions. Electron bombardment during deposition readily produces protonated and hydrogenated species, such as polycyclic aromatic hydrocarbons, that are important in astrochemistry. In addition, quantum diffusion delocalizes hydrogen atoms in solid p -H 2 , allowing efficient H atom reactions with astrochemical species and introducing new concepts in astrochemical models. Some H atom reactions display anomalous temperature behaviors, highlighting the rich chemistry in p -H 2 . The investigation on quantum diffusion of heavier atoms and molecules is also important for our understanding of the chemistry in interstellar ice. Additionally, matrix shifts of electronic transitions of polycyclic aromatic hydrocarbons in p -H 2 are less divergent than those in solid Ne such that systematic measurements in p -H 2 might help in the assignment of diffuse interstellar bands.
Cryogenic solid para-hydrogen (p-H2) exhibits pronounced quantum effects, enabling unique experiments that are typically not possible in noble-gas matrices. The diminished cage effect facilitates the production of free radicals via in situ photolysis or photoinduced reactions. Electron bombardment during deposition readily produces protonated and hydrogenated species, such as polycyclic aromatic hydrocarbons, that are important in astrochemistry. In addition, quantum diffusion delocalizes hydrogen atoms in solid p-H2, allowing efficient H atom reactions with astrochemical species and introducing new concepts in astrochemical models. Some H atom reactions display anomalous temperature behaviors, highlighting the rich chemistry in p-H2. The investigation on quantum diffusion of heavier atoms and molecules is also important for our understanding of the chemistry in interstellar ice. Additionally, matrix shifts of electronic transitions of polycyclic aromatic hydrocarbons in p-H2 are less divergent than those in solid Ne such that systematic measurements in p-H2 might help in the assignment of diffuse interstellar bands.
Author Anderson, David T.
Weber, Isabelle
Joshi, Prasad Ramesh
Lee, Yuan-Pern
AuthorAffiliation Department of Chemistry
Center for Emergent Functional Matter Science
National Yang Ming Chiao Tung University
Department of Applied Chemistry and Institute of Molecular Science
AuthorAffiliation_xml – name: Department of Applied Chemistry and Institute of Molecular Science
– name: Department of Chemistry
– name: National Yang Ming Chiao Tung University
– name: Center for Emergent Functional Matter Science
Author_xml – sequence: 1
  givenname: Isabelle
  orcidid: 0000-0001-5142-4557
  surname: Weber
  fullname: Weber, Isabelle
  organization: Department of Applied Chemistry and Institute of Molecular Science
– sequence: 2
  givenname: Prasad Ramesh
  orcidid: 0000-0003-0896-4341
  surname: Joshi
  fullname: Joshi, Prasad Ramesh
  organization: Department of Applied Chemistry and Institute of Molecular Science
– sequence: 3
  givenname: David T.
  orcidid: 0000-0002-8959-7661
  surname: Anderson
  fullname: Anderson, David T.
  email: danderso@uwyo.edu
  organization: Department of Chemistry
– sequence: 4
  givenname: Yuan-Pern
  orcidid: 0000-0001-6418-7378
  surname: Lee
  fullname: Lee, Yuan-Pern
  email: yplee@nycu.edu.tw
  organization: National Yang Ming Chiao Tung University
BookMark eNp9UTtPwzAQtlARfcAvYPHIktaPxIknVFVAKxUxQCU2y3WcNlVqBztF5N_jthGChenudN9Dd98Q9Iw1GoBbjMYYETyRyo93tap004xjhUhK6QUYYB5nUYqzpPer74Oh9zuEGEdZegX6lCeIkowNwPvKlB8HDad1XZVKNqU1HtoC1tLJaN7mzm60gc-yceUXXHhbnSCwsfC11qpx1itbt1CaHE59GNVW78vQtNfgspCV1zddHYHV48PbbB4tX54Ws-kykgRxHKWUJBTlTHGkY4kZwijNMCE4jlmsSIERLxTJVUIlk4wneo1TnTCVckV1RjI6Avdn3fqw3utcadM4WYnalXvpWmFlKf5uTLkVG_spME7So1FQuOsUnA2v8I0IFyhdVdJoe_CCYhIzTmKOApSeoSoc7p0ufnwwEsdQRAhFdKGILpTAmpxZp6U9OBMe8i_jG7yClIk
Cites_doi 10.1021/acs.jpca.0c03987
10.1016/S0009-2614(03)00479-2
10.1063/5.0177189
10.1063/1.4790860
10.1039/C7CP02621H
10.1039/C9CP06279C
10.1063/1.1587113
10.1021/acs.jpca.2c06169
10.1016/j.jms.2019.07.001
10.1016/j.jms.2014.11.008
10.1021/acs.jpclett.1c01306
10.1063/5.0028853
10.1246/bcsj.71.1
10.1063/1.3502105
10.1016/0009-2614(76)80752-X
10.1002/anie.201308971
10.1093/mnras/stad710
10.1201/9780429066276
10.1021/acs.jpclett.1c03104
10.1021/acs.jpca.2c01330
10.1051/0004-6361/202450649
10.1063/1.5133089
10.1021/jp502469p
10.1021/acs.jpca.3c00266
10.1038/s42004-022-00677-5
10.1103/PhysRevB.105.144102
10.1063/1.5054653
10.1103/PhysRev.104.846
10.1039/C7CP05064J
10.1063/1.441603
10.1002/anie.199106101
10.1021/acs.jpca.2c00306
10.3847/0004-637X/825/2/96
10.1051/eas/1146010
10.1021/acsearthspacechem.1c00043
10.1063/1.4826317
10.1002/bbpc.19770810431
10.1086/341412
10.1021/jacs.4c05896
10.1021/acs.jpca.0c00241
10.1021/jz400923k
10.1039/C7CP05680J
10.1021/jacs.3c00124
10.1063/1.4745075
10.1063/1.469763
10.1063/1.455180
10.1021/jp048366b
10.1021/jp992098d
10.1021/acs.jpca.4c02320
10.1016/j.progsurf.2008.10.001
10.1002/jccs.201000107
10.1021/jp407668z
10.1023/A:1021850103903
10.1039/c3cp55265a
10.1021/acs.jpca.7b07922
10.1021/acsearthspacechem.0c00316
10.1063/1.4808035
10.1039/c3cp54184c
10.1021/acs.jpclett.2c03262
10.1016/j.cplett.2016.10.045
10.1039/C8CP05849K
10.1021/jp502470j
10.1021/jacs.9b04491
10.1051/0004-6361/201117494
10.1021/acs.jpclett.8b02943
10.1002/nadc.19790270512
10.1063/1.482076
10.1021/acs.jpclett.4c02494
10.1063/1.4996951
10.1021/acsearthspacechem.8b00089
10.1021/acs.jpca.7b11223
10.1063/1.1426410
10.1080/0144235X.2015.1046679
10.1016/j.molstruc.2020.128986
10.1002/jccs.202200210
10.1146/annurev.pc.44.100193.001503
10.1021/jacs.2c03714
10.1007/978-3-662-05900-5
10.2183/pjab.99.008
10.1039/b806276e
10.1021/acs.jpca.2c02906
10.1063/5.0024495
10.1063/1.455338
10.1080/01442350600802766
10.1021/acs.jpca.1c00577
10.1021/acs.accounts.8b00304
10.1080/01442350500444107
10.1021/jp992985g
10.1021/jp408336n
10.1021/acs.jpca.3c02170
10.1039/C2CP43143B
10.1103/PhysRevB.68.052301
10.1021/cr400156b
10.1039/D3CP00246B
ContentType Journal Article
Copyright 2024 The Authors. Published by American Chemical Society
2024 The Authors. Published by American Chemical Society 2024 The Authors
Copyright_xml – notice: 2024 The Authors. Published by American Chemical Society
– notice: 2024 The Authors. Published by American Chemical Society 2024 The Authors
DBID AAYXX
CITATION
7X8
5PM
DOI 10.1021/acs.jpclett.4c02733
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1948-7185
EndPage 11373
ExternalDocumentID 10_1021_acs_jpclett_4c02733
a988420556
GroupedDBID 53G
55A
5VS
7~N
AABXI
ABJNI
ABMVS
ABQRX
ABUCX
ACGFO
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CUPRZ
DU5
EBS
ED~
GGK
GNL
IH9
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-a2091-732530d6c90e4a160107812214464c2f109fc2dc53a6a695eb17e56c79c3e8283
IEDL.DBID ACS
ISSN 1948-7185
IngestDate Wed Nov 20 05:27:07 EST 2024
Thu Nov 21 03:06:43 EST 2024
Wed Nov 20 13:14:46 EST 2024
Fri Nov 15 03:19:54 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 45
Language English
License Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a2091-732530d6c90e4a160107812214464c2f109fc2dc53a6a695eb17e56c79c3e8283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0001-5142-4557
0000-0001-6418-7378
0000-0003-0896-4341
0000-0002-8959-7661
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC11571221
PMID 39503286
PQID 3124692490
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11571221
proquest_miscellaneous_3124692490
crossref_primary_10_1021_acs_jpclett_4c02733
acs_journals_10_1021_acs_jpclett_4c02733
PublicationCentury 2000
PublicationDate 20241114
PublicationDateYYYYMMDD 2024-11-14
PublicationDate_xml – month: 11
  year: 2024
  text: 20241114
  day: 14
PublicationDecade 2020
PublicationTitle The journal of physical chemistry letters
PublicationTitleAlternate J. Phys. Chem. Lett
PublicationYear 2024
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref45/cit45
ref99/cit99
ref81/cit81
ref16/cit16
ref52/cit52
ref23/cit23
ref2/cit2
ref77/cit77
ref71/cit71
ref20/cit20
ref48/cit48
ref74/cit74
ref10/cit10
ref35/cit35
ref89/cit89
ref19/cit19
ref93/cit93
ref42/cit42
ref96/cit96
Andrews L. (ref3/cit3) 1989
ref13/cit13
ref61/cit61
ref67/cit67
ref38/cit38
ref90/cit90
ref64/cit64
Hallam H. E. (ref1/cit1) 1973
ref54/cit54
ref6/cit6
ref18/cit18
ref65/cit65
ref97/cit97
ref11/cit11
ref29/cit29
ref76/cit76
ref86/cit86
ref32/cit32
ref39/cit39
ref5/cit5
ref43/cit43
ref28/cit28
ref91/cit91
ref55/cit55
ref12/cit12
ref66/cit66
ref22/cit22
ref33/cit33
ref87/cit87
ref44/cit44
ref70/cit70
ref98/cit98
ref9/cit9
ref27/cit27
Tsuge M. (ref14/cit14) 2020
ref63/cit63
ref56/cit56
ref92/cit92
ref8/cit8
ref31/cit31
ref59/cit59
ref85/cit85
ref34/cit34
ref37/cit37
Kagan Y. (ref80/cit80) 1992
ref60/cit60
ref88/cit88
ref17/cit17
ref82/cit82
ref53/cit53
ref21/cit21
ref46/cit46
ref49/cit49
ref75/cit75
ref24/cit24
ref50/cit50
ref78/cit78
ref36/cit36
ref83/cit83
ref79/cit79
ref25/cit25
ref72/cit72
ref57/cit57
ref51/cit51
ref40/cit40
ref68/cit68
ref94/cit94
ref26/cit26
ref73/cit73
ref69/cit69
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref95/cit95
ref4/cit4
ref30/cit30
ref47/cit47
ref84/cit84
ref7/cit7
References_xml – ident: ref19/cit19
  doi: 10.1021/acs.jpca.0c03987
– ident: ref88/cit88
  doi: 10.1016/S0009-2614(03)00479-2
– ident: ref57/cit57
  doi: 10.1063/5.0177189
– ident: ref26/cit26
  doi: 10.1063/1.4790860
– ident: ref51/cit51
  doi: 10.1039/C7CP02621H
– ident: ref59/cit59
  doi: 10.1039/C9CP06279C
– ident: ref87/cit87
  doi: 10.1063/1.1587113
– ident: ref95/cit95
  doi: 10.1021/acs.jpca.2c06169
– ident: ref18/cit18
  doi: 10.1016/j.jms.2019.07.001
– ident: ref17/cit17
  doi: 10.1016/j.jms.2014.11.008
– ident: ref61/cit61
  doi: 10.1021/acs.jpclett.1c01306
– volume-title: Vibrational Spectroscopy of Trapped Species
  year: 1973
  ident: ref1/cit1
  contributor:
    fullname: Hallam H. E.
– ident: ref41/cit41
  doi: 10.1063/5.0028853
– ident: ref7/cit7
  doi: 10.1246/bcsj.71.1
– ident: ref16/cit16
  doi: 10.1063/1.3502105
– ident: ref92/cit92
  doi: 10.1016/0009-2614(76)80752-X
– ident: ref34/cit34
  doi: 10.1002/anie.201308971
– ident: ref54/cit54
  doi: 10.1093/mnras/stad710
– ident: ref5/cit5
  doi: 10.1201/9780429066276
– ident: ref22/cit22
  doi: 10.1021/acs.jpclett.1c03104
– volume-title: Chemistry and Physics of Matrix-Isolated Species
  year: 1989
  ident: ref3/cit3
  contributor:
    fullname: Andrews L.
– ident: ref37/cit37
  doi: 10.1021/acs.jpca.2c01330
– ident: ref65/cit65
  doi: 10.1051/0004-6361/202450649
– ident: ref58/cit58
  doi: 10.1063/1.5133089
– ident: ref71/cit71
  doi: 10.1021/jp502469p
– ident: ref84/cit84
  doi: 10.1021/acs.jpca.3c00266
– ident: ref62/cit62
  doi: 10.1038/s42004-022-00677-5
– ident: ref90/cit90
  doi: 10.1103/PhysRevB.105.144102
– ident: ref48/cit48
  doi: 10.1063/1.5054653
– ident: ref77/cit77
  doi: 10.1103/PhysRev.104.846
– ident: ref72/cit72
  doi: 10.1039/C7CP05064J
– ident: ref98/cit98
  doi: 10.1063/1.441603
– ident: ref4/cit4
  doi: 10.1002/anie.199106101
– ident: ref53/cit53
  doi: 10.1021/acs.jpca.2c00306
– ident: ref35/cit35
  doi: 10.3847/0004-637X/825/2/96
– ident: ref31/cit31
  doi: 10.1051/eas/1146010
– ident: ref52/cit52
  doi: 10.1021/acsearthspacechem.1c00043
– ident: ref68/cit68
  doi: 10.1063/1.4826317
– ident: ref2/cit2
  doi: 10.1002/bbpc.19770810431
– ident: ref43/cit43
  doi: 10.1086/341412
– ident: ref66/cit66
  doi: 10.1021/jacs.4c05896
– ident: ref29/cit29
  doi: 10.1021/acs.jpca.0c00241
– ident: ref33/cit33
  doi: 10.1021/jz400923k
– ident: ref64/cit64
  doi: 10.1063/5.0177189
– ident: ref12/cit12
  doi: 10.1039/C7CP05680J
– ident: ref23/cit23
  doi: 10.1021/jacs.3c00124
– ident: ref47/cit47
  doi: 10.1063/1.4745075
– ident: ref15/cit15
  doi: 10.1063/1.469763
– ident: ref93/cit93
  doi: 10.1063/1.455180
– ident: ref69/cit69
  doi: 10.1021/jp048366b
– ident: ref76/cit76
  doi: 10.1021/jp992098d
– ident: ref97/cit97
  doi: 10.1021/acs.jpca.4c02320
– ident: ref44/cit44
  doi: 10.1016/j.progsurf.2008.10.001
– ident: ref10/cit10
  doi: 10.1002/jccs.201000107
– ident: ref49/cit49
  doi: 10.1021/jp407668z
– ident: ref83/cit83
  doi: 10.1023/A:1021850103903
– ident: ref73/cit73
  doi: 10.1039/c3cp55265a
– ident: ref24/cit24
  doi: 10.1021/acs.jpca.7b07922
– volume-title: Quantum Tunneling in Condensed Media
  year: 1992
  ident: ref80/cit80
  contributor:
    fullname: Kagan Y.
– ident: ref60/cit60
  doi: 10.1021/acsearthspacechem.0c00316
– ident: ref78/cit78
  doi: 10.1063/1.4808035
– ident: ref11/cit11
  doi: 10.1039/c3cp54184c
– ident: ref27/cit27
  doi: 10.1021/acs.jpclett.2c03262
– ident: ref91/cit91
  doi: 10.1016/j.cplett.2016.10.045
– ident: ref30/cit30
  doi: 10.1039/C8CP05849K
– ident: ref70/cit70
  doi: 10.1021/jp502470j
– ident: ref55/cit55
  doi: 10.1021/jacs.9b04491
– ident: ref45/cit45
  doi: 10.1051/0004-6361/201117494
– ident: ref79/cit79
  doi: 10.1021/acs.jpclett.8b02943
– ident: ref85/cit85
  doi: 10.1002/nadc.19790270512
– ident: ref75/cit75
  doi: 10.1063/1.482076
– ident: ref99/cit99
  doi: 10.1021/acs.jpclett.4c02494
– ident: ref56/cit56
  doi: 10.1063/1.4996951
– ident: ref36/cit36
  doi: 10.1021/acsearthspacechem.8b00089
– ident: ref82/cit82
  doi: 10.1021/acs.jpca.7b11223
– ident: ref89/cit89
  doi: 10.1063/1.1426410
– ident: ref46/cit46
  doi: 10.1080/0144235X.2015.1046679
– ident: ref21/cit21
  doi: 10.1016/j.molstruc.2020.128986
– ident: ref13/cit13
  doi: 10.1002/jccs.202200210
– ident: ref6/cit6
  doi: 10.1146/annurev.pc.44.100193.001503
– ident: ref63/cit63
  doi: 10.1021/jacs.2c03714
– ident: ref40/cit40
  doi: 10.1007/978-3-662-05900-5
– ident: ref42/cit42
  doi: 10.2183/pjab.99.008
– volume-title: Molecular and Laser Spectroscopy
  year: 2020
  ident: ref14/cit14
  contributor:
    fullname: Tsuge M.
– ident: ref81/cit81
  doi: 10.1039/b806276e
– ident: ref96/cit96
  doi: 10.1021/acs.jpca.2c02906
– ident: ref50/cit50
  doi: 10.1063/5.0024495
– ident: ref94/cit94
  doi: 10.1063/1.455338
– ident: ref9/cit9
  doi: 10.1080/01442350600802766
– ident: ref25/cit25
  doi: 10.1021/acs.jpca.1c00577
– ident: ref74/cit74
  doi: 10.1021/acs.accounts.8b00304
– ident: ref8/cit8
  doi: 10.1080/01442350500444107
– ident: ref86/cit86
  doi: 10.1021/jp992985g
– ident: ref28/cit28
  doi: 10.1021/jp408336n
– ident: ref20/cit20
  doi: 10.1021/acs.jpca.3c02170
– ident: ref32/cit32
  doi: 10.1039/C2CP43143B
– ident: ref39/cit39
  doi: 10.1103/PhysRevB.68.052301
– ident: ref67/cit67
  doi: 10.1021/cr400156b
– ident: ref38/cit38
  doi: 10.1039/D3CP00246B
SSID ssj0069087
Score 2.489722
SecondaryResourceType review_article
Snippet Cryogenic solid para-hydrogen (p-H2) exhibits pronounced quantum effects, enabling unique experiments that are typically not possible in noble-gas matrices....
Cryogenic solid para -hydrogen ( p -H 2 ) exhibits pronounced quantum effects, enabling unique experiments that are typically not possible in noble-gas...
SourceID pubmedcentral
proquest
crossref
acs
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 11361
Title Unique Applications of para-Hydrogen Matrix Isolation to Spectroscopy and Astrochemistry
URI http://dx.doi.org/10.1021/acs.jpclett.4c02733
https://www.proquest.com/docview/3124692490
https://pubmed.ncbi.nlm.nih.gov/PMC11571221
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI7YOMCFN2K8FCQOHMho0zZpj9PYNA5wGZN2q7okFXBop7WT2L_H7gNWCRBc28hKbcf2V7efCbnGsO_asWFCKIu5gYYjpWeKCT-SUmmutMF3uqOxfJr69wOkyWE_dPC5fReprPs2Bx3meddVSL_itMgml1ArYCXUH9eBF3BeMQ8PYLnPIOR6NcnQ90IwHamsmY6-aszmF5JrKWe4-8_N7pGdqrakvdIZ9smGSQ7IVr8e6XZIppOCrpX21rrWNI0p8n-z0UovUnAn-ois_e_0AbyyWELzlOKY-hyJL9P5ikaJpj2QiMO2StFHZDIcPPdHrBqtwCIOFQKTDvccSwsVWMaNbERlElJ9wZ_mKh7bVhArrpXnRCISgQcRXRpPKBkoxwBIc45JO0kTc0Io5MBAcuFbsTtz_VjMgpmRlvKDGKC3iE2H3IBWwupoZGHR9eZ2WFwsVRVWquqQ29oY4bwk2_h9-VVtsBCeFjsdUWLSZRY6ULUIRJZWh_gNS37KRVrt5p3k9aWg10b6IVTF6d83fka2OXg9_qNou-eknS-W5oK0Mr28LFz0AzCq5tM
link.rule.ids 230,315,782,786,887,2769,27085,27933,27934,56747,56797
linkProvider American Chemical Society
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGWDhjShPIzEwEMjDsZOxKlStKCyAxBaltiNgSKomlei_585toJUQQqyOdXLufbn4O4Bzcvvcy4wjhHIdHms0KT1QjohSKZX2lTb0Tbf7KB9eoptbgsnh9V0YPESJlErbxP9GF_Cuae19iKysqiuuCIUlWIaVUGA6TAlR-7H2v1ju2bF4WJ1HDnresMYa-pkIRSVVLkal71Rz8UfJucjT2fjfmTdhfZZpstZUNbZgyeTbsNquB7ztwMuzBW9lrbkeNisyRmjgTneiRwUqF7snDP8P1kMdtVtYVTAaWl8RDGYxnLA016yFFGn01pT0Ljx3bp_aXWc2aMFJfcwXHBn4YeBqoWLX8NSjGk1i4Ldoalz5mefGmfK1CoNUpCIO0b9LEwolYxUYLNmCPWjkRW72gWFEjKUvIjfjAx5lYhAPjHRVFGdYiIvMNOECuZLMDKVMbA_c9xK7OGVVMmNVEy5rmSTDKfTG79vParkl-LbU90hzU4zLJMAcRlCd6TYhWhDoF10C2V58kr-9WrBtAiMiVhz8_eCnsNp9uu8n_d7D3SGs-WgPdHvR40fQqEZjcwzLpR6fWK39BGHS70A
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB5qF5Jc-kgT6rZpt5BDD1Wj5672aPzApm0IpAbfhLwPkh4kYckQ__vOrKXWhlJKrqtlWM17NNpvAC7J7ceBNR7nyvdiqdGk9Ep5PM2FUDpU2tA33dmtuF6m4wnB5KTdXRg8RI2UatfEJ6uutG0RBoIrWv9ZITub5kusCIkl6sHThAtJZddwdNv5YCz53Gg8rNBTD71v0uEN_Z0IRSZVH0amP-nm4c-Se9Fn-vzx534Bz9qMkw13KvISnpjiFI5H3aC3V7BcOBBXNtzrZbPSMkIF92ZbvS5Rydh3wvJ_YHPUVbeFNSWj4fUNwWGW1ZblhWZDpEgjuHakz2AxnfwYzbx24IKXh5g3eCIKk8jXXEnfxHlAtZrABMChqsUqtIEvrQq1SqKc51wm6OeFSbgSUkUGS7foHPpFWZjXwDAyShHy1LfxKk4tX8mVEb5KpcWCnFszgE_Ilaw1mDpzvfAwyNzijlVZy6oBfO7kklU7CI5_b__YyS7Dt6X-R16YclNnEeYynOpNfwDpgVB_0yWw7cMnxf2dA90mUCJixZv_P_gHOLoZT7Nv8-uvb-EkRLOgS4xB_A76zXpjLqBX6817p7i_ABwB8cM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unique+Applications+of+para-Hydrogen+Matrix+Isolation+to+Spectroscopy+and+Astrochemistry&rft.jtitle=The+journal+of+physical+chemistry+letters&rft.au=Weber%2C+Isabelle&rft.au=Joshi%2C+Prasad+Ramesh&rft.au=Anderson%2C+David+T&rft.au=Lee%2C+Yuan-Pern&rft.date=2024-11-14&rft.issn=1948-7185&rft.eissn=1948-7185&rft.volume=15&rft.issue=45&rft.spage=11361&rft_id=info:doi/10.1021%2Facs.jpclett.4c02733&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1948-7185&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1948-7185&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1948-7185&client=summon