Piezoelectric Stimulation Induces Osteogenesis in Mesenchymal Stem Cells Cultured on Electroactive Two-Dimensional Substrates
Physical cues have been shown to be effective in inducing osteogenic differentiation of mesenchymal stem cells (MSCs). Here, we propose piezoelectric stimulation as a potential osteogenic cue mimicking the electroactive properties of bone’s extracellular matrix. When combined with a magnetostrictive...
Saved in:
Published in: | ACS applied polymer materials Vol. 6; no. 22; pp. 13710 - 13722 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
American Chemical Society
22-11-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Physical cues have been shown to be effective in inducing osteogenic differentiation of mesenchymal stem cells (MSCs). Here, we propose piezoelectric stimulation as a potential osteogenic cue mimicking the electroactive properties of bone’s extracellular matrix. When combined with a magnetostrictive component, piezoelectric polymers can be used for MSC stimulation by applying an external magnetic field. The deformation of the magnetostrictive component produces a deformation in the polymer matrix, generating a change in the surface charge that induces an electric field that can be transmitted to the cells. Cell adhesion, cytoskeleton changes, and metabolomics are the first evidence of MSC osteoblastogenesis and can be used to study initial MSC response to this kind of stimulation. In the current study, poly(vinylidene) fluoride (PVDF) piezoelectric films with and without cobalt ferrite oxide (CFO) crystallized from the melt in the presence of the ionic liquid 1-butyl-3-methyl-imidazolium chloride ([Bmim][Cl]) were produced. [Bmim][Cl] allowed the production of the β-phase, the most electroactive phase, even without CFO. After ionic liquid removal, PVDF and PVDF-CFO films presented high percentages of the β-phase and similar crystalline content. Incorporating CFO nanoparticles was effective, allowing the electromechanical stimulation of MSCs by applying a magnetic field with a bioreactor. Before stimulation, the initial response of MSCs was characterized in static conditions, showing that the produced films were biocompatible and noncytotoxic, allowing MSC adhesion and proliferation in the short term. Stimulation experiments revealed that MSCs electromechanically stimulated for 3 days in PVDF-CFO supports showed longer focal adhesions and decreased vimentin cytoskeletal density, both signals of early osteogenic differentiation. Furthermore, they rearranged their energy metabolism toward an osteogenic phenotype after 7 days of culture under the same stimulation. The results prove that MSCs respond to electromechanical stimulation by osteogenic differentiation. |
---|---|
AbstractList | Physical cues have been shown to be effective in inducing osteogenic differentiation of mesenchymal stem cells (MSCs). Here, we propose piezoelectric stimulation as a potential osteogenic cue mimicking the electroactive properties of bone’s extracellular matrix. When combined with a magnetostrictive component, piezoelectric polymers can be used for MSC stimulation by applying an external magnetic field. The deformation of the magnetostrictive component produces a deformation in the polymer matrix, generating a change in the surface charge that induces an electric field that can be transmitted to the cells. Cell adhesion, cytoskeleton changes, and metabolomics are the first evidence of MSC osteoblastogenesis and can be used to study initial MSC response to this kind of stimulation. In the current study, poly(vinylidene) fluoride (PVDF) piezoelectric films with and without cobalt ferrite oxide (CFO) crystallized from the melt in the presence of the ionic liquid 1-butyl-3-methyl-imidazolium chloride ([Bmim][Cl]) were produced. [Bmim][Cl] allowed the production of the β-phase, the most electroactive phase, even without CFO. After ionic liquid removal, PVDF and PVDF-CFO films presented high percentages of the β-phase and similar crystalline content. Incorporating CFO nanoparticles was effective, allowing the electromechanical stimulation of MSCs by applying a magnetic field with a bioreactor. Before stimulation, the initial response of MSCs was characterized in static conditions, showing that the produced films were biocompatible and noncytotoxic, allowing MSC adhesion and proliferation in the short term. Stimulation experiments revealed that MSCs electromechanically stimulated for 3 days in PVDF-CFO supports showed longer focal adhesions and decreased vimentin cytoskeletal density, both signals of early osteogenic differentiation. Furthermore, they rearranged their energy metabolism toward an osteogenic phenotype after 7 days of culture under the same stimulation. The results prove that MSCs respond to electromechanical stimulation by osteogenic differentiation. Physical cues have been shown to be effective in inducing osteogenic differentiation of mesenchymal stem cells (MSCs). Here, we propose piezoelectric stimulation as a potential osteogenic cue mimicking the electroactive properties of bone’s extracellular matrix. When combined with a magnetostrictive component, piezoelectric polymers can be used for MSC stimulation by applying an external magnetic field. The deformation of the magnetostrictive component produces a deformation in the polymer matrix, generating a change in the surface charge that induces an electric field that can be transmitted to the cells. Cell adhesion, cytoskeleton changes, and metabolomics are the first evidence of MSC osteoblastogenesis and can be used to study initial MSC response to this kind of stimulation. In the current study, poly(vinylidene) fluoride (PVDF) piezoelectric films with and without cobalt ferrite oxide (CFO) crystallized from the melt in the presence of the ionic liquid 1-butyl-3-methyl-imidazolium chloride ([Bmim][Cl]) were produced. [Bmim][Cl] allowed the production of the β-phase, the most electroactive phase, even without CFO. After ionic liquid removal, PVDF and PVDF-CFO films presented high percentages of the β-phase and similar crystalline content. Incorporating CFO nanoparticles was effective, allowing the electromechanical stimulation of MSCs by applying a magnetic field with a bioreactor. Before stimulation, the initial response of MSCs was characterized in static conditions, showing that the produced films were biocompatible and noncytotoxic, allowing MSC adhesion and proliferation in the short term. Stimulation experiments revealed that MSCs electromechanically stimulated for 3 days in PVDF-CFO supports showed longer focal adhesions and decreased vimentin cytoskeletal density, both signals of early osteogenic differentiation. Furthermore, they rearranged their energy metabolism toward an osteogenic phenotype after 7 days of culture under the same stimulation. The results prove that MSCs respond to electromechanical stimulation by osteogenic differentiation. |
Author | Guillot-Ferriols, Maria Correia, Daniela M. Tsimbouri, Penelope M. Costa, Carlos M. Rodríguez-Hernández, José Carlos Gómez Ribelles, José Luis Gallego-Ferrer, Gloria Lanceros-Méndez, Senentxu Dalby, Matthew J. |
AuthorAffiliation | Center for the Cellular Microenvironment, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences Biomedical Research Networking Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN) Universidade Do Minho BCMaterials, Basque Center for Materials, Applications and Nanostructures Basque Foundation for Science IKERBASQUE UPV/EHU Physics Centre of Minho and Porto Universities (CF-UM-UP) and Laboratory of Physics for Materials and Emergent Technologies, LapMET Center for Biomaterials and Tissue Engineering (CBIT) Universitat Politècnica de València Center of Chemistry Institute of Science and Innovation for Bio-Sustainability (IB-S) |
AuthorAffiliation_xml | – name: Universidade Do Minho – name: BCMaterials, Basque Center for Materials, Applications and Nanostructures – name: Institute of Science and Innovation for Bio-Sustainability (IB-S) – name: IKERBASQUE – name: Universitat Politècnica de València – name: Center for Biomaterials and Tissue Engineering (CBIT) – name: Biomedical Research Networking Center on Bioengineering – name: Center for the Cellular Microenvironment, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences – name: UPV/EHU – name: Basque Foundation for Science – name: Biomaterials and Nanomedicine (CIBER-BBN) – name: Center of Chemistry – name: Physics Centre of Minho and Porto Universities (CF-UM-UP) and Laboratory of Physics for Materials and Emergent Technologies, LapMET |
Author_xml | – sequence: 1 givenname: Maria surname: Guillot-Ferriols fullname: Guillot-Ferriols, Maria organization: Biomaterials and Nanomedicine (CIBER-BBN) – sequence: 2 givenname: Carlos M. orcidid: 0000-0001-9266-3669 surname: Costa fullname: Costa, Carlos M. organization: Institute of Science and Innovation for Bio-Sustainability (IB-S) – sequence: 3 givenname: Daniela M. orcidid: 0000-0002-3118-4717 surname: Correia fullname: Correia, Daniela M. organization: Universidade Do Minho – sequence: 4 givenname: José Carlos surname: Rodríguez-Hernández fullname: Rodríguez-Hernández, José Carlos organization: Universitat Politècnica de València – sequence: 5 givenname: Penelope M. orcidid: 0000-0001-5124-7458 surname: Tsimbouri fullname: Tsimbouri, Penelope M. organization: Center for the Cellular Microenvironment, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences – sequence: 6 givenname: Senentxu surname: Lanceros-Méndez fullname: Lanceros-Méndez, Senentxu organization: IKERBASQUE – sequence: 7 givenname: Matthew J. orcidid: 0000-0002-0528-3359 surname: Dalby fullname: Dalby, Matthew J. organization: Center for the Cellular Microenvironment, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences – sequence: 8 givenname: José Luis orcidid: 0000-0001-9099-0885 surname: Gómez Ribelles fullname: Gómez Ribelles, José Luis email: jlgomez@ter.upv.es organization: Biomaterials and Nanomedicine (CIBER-BBN) – sequence: 9 givenname: Gloria orcidid: 0000-0002-2428-0903 surname: Gallego-Ferrer fullname: Gallego-Ferrer, Gloria email: ggallego@ter.upv.es organization: Biomaterials and Nanomedicine (CIBER-BBN) |
BookMark | eNp1kc9LwzAUx4NMcM5dPecsdOZH260nkTl1MFFwnkOavm4ZbTKSdjLB_93MDtGDpxde3ufzeHzPUc9YAwhdUjKihNFrqbzc1qNYERZPkhPUZykfRyklSe_X-wwNvd8QEggWs4T10eeLhg8LFajGaYVfG123lWy0NXhuilaBx8--AbsCA157rA1-Ag9Grfe1rMI81HgKVeXxtK2a1kGBAzr79lmpGr0DvHy30Z2uwfigPUBt7hsnG_AX6LSUlYfhsQ7Q2_1sOX2MFs8P8-ntIpKMpDRiWRozxoFnnKeSJhmhRZrlnIyTSZqWY0oIz5TiRaJIqQCKHMoJi4HRkuUkAT5AN5132-Y1FApM2F-JrdO1dHthpRZ_f4xei5XdCXpYRpI4GEadQTnrvYPyB6ZEHBIQXQLimEAArjog9MXGti5c7v8b_gIzFI4b |
Cites_doi | 10.1016/j.progpolymsci.2013.07.006 10.34133/bmef.0009 10.1080/14653240600855905 10.1021/nn900472n 10.1021/jp210493t 10.1021/acsami.0c10957 10.1021/acsapm.2c00380 10.1002/jcb.21058 10.1089/ten.tec.2011.0470 10.1016/j.eurpolymj.2021.110269 10.1080/00222340902837527 10.1021/la2008864 10.1016/j.bone.2014.07.033 10.1089/ten.tea.2009.0058 10.1016/j.biomaterials.2009.05.049 10.1039/c2ce06654h 10.1073/pnas.0903269107 10.3390/s20123340 10.1074/jbc.M109.052373 10.1038/nrrheum.2014.164 10.1126/sciadv.abb7921 10.1021/acsapm.9b00566 10.1007/s11356-015-4945-1 10.1038/s41421-024-00689-6 10.1186/1471-2121-7-14 10.1186/s41232-018-0059-8 10.1002/adfm.201909736 10.1002/jbm.a.35234 10.1007/s11356-016-7978-1 10.1002/(SICI)1097-4636(199611)32:3<481::AID-JBM23>3.0.CO;2-I 10.1039/C5RA04409J 10.1016/j.bioadv.2022.212918 10.1007/s00339-010-6003-7 10.1096/fj.202000378RR 10.1021/acs.cgd.0c00042 10.1016/j.msec.2020.111281 10.1021/nn304046m 10.1039/c2ra21841k 10.1038/srep35512 10.1016/j.bbrc.2013.02.005 10.1016/j.colsurfb.2015.12.055 10.1038/nature04957 10.1021/acsami.9b14001 10.1016/S1534-5807(04)00075-9 10.1016/j.nanoen.2024.109569 10.1039/C7RA01267E 10.1002/jbm.a.31082 10.1007/978-94-009-7343-5 10.1002/polb.1994.090320509 10.1021/nn400202j 10.1016/S0945-053X(97)90008-1 10.1038/nmat3980 10.1155/2013/395274 10.1038/s41467-023-36293-7 10.3389/fphys.2018.00824 10.1088/1748-6041/7/3/035004 10.1186/s12860-015-0056-6 10.1002/adfm.201202780 10.1021/acsabm.0c00315 10.1002/jcb.24673 10.1016/j.biomaterials.2017.09.024 10.1111/cpr.12002 10.1038/nprot.2017.157 |
ContentType | Journal Article |
Copyright | 2024 The Authors. Published by American Chemical Society 2024 The Authors. Published by American Chemical Society 2024 The Authors |
Copyright_xml | – notice: 2024 The Authors. Published by American Chemical Society – notice: 2024 The Authors. Published by American Chemical Society 2024 The Authors |
DBID | AAYXX CITATION 5PM |
DOI | 10.1021/acsapm.4c02485 |
DatabaseName | CrossRef PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2637-6105 |
EndPage | 13722 |
ExternalDocumentID | 10_1021_acsapm_4c02485 b301650443 |
GroupedDBID | ABQRX ABUCX ACS AHGAQ ALMA_UNASSIGNED_HOLDINGS BAANH CUPRZ EBS GGK VF5 VG9 AAYXX CITATION 5PM |
ID | FETCH-LOGICAL-a2061-2964223e39336a15901d69b3075866f710039cc3d5c0fceedbef824e21f2b05e3 |
IEDL.DBID | ACS |
ISSN | 2637-6105 |
IngestDate | Wed Nov 27 05:24:36 EST 2024 Wed Nov 27 13:03:26 EST 2024 Mon Nov 25 03:11:25 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Keywords | ionic liquid electromechanical stimulation osteogenesis mesenchymal stem cells poly(vinylidene) fluoride |
Language | English |
License | Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a2061-2964223e39336a15901d69b3075866f710039cc3d5c0fceedbef824e21f2b05e3 |
ORCID | 0000-0001-5124-7458 0000-0002-2428-0903 0000-0002-0528-3359 0000-0001-9266-3669 0000-0002-3118-4717 0000-0001-9099-0885 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC11590054 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11590054 crossref_primary_10_1021_acsapm_4c02485 acs_journals_10_1021_acsapm_4c02485 |
PublicationCentury | 2000 |
PublicationDate | 2024-11-22 |
PublicationDateYYYYMMDD | 2024-11-22 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-22 day: 22 |
PublicationDecade | 2020 |
PublicationTitle | ACS applied polymer materials |
PublicationTitleAlternate | ACS Appl. Polym. Mater |
PublicationYear | 2024 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref62/cit62 ref41/cit41 Aboelazm E. A. A. (ref43/cit43) 2018; 3 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref21/cit21 doi: 10.1016/j.progpolymsci.2013.07.006 – ident: ref26/cit26 doi: 10.34133/bmef.0009 – ident: ref1/cit1 doi: 10.1080/14653240600855905 – ident: ref10/cit10 doi: 10.1021/nn900472n – ident: ref45/cit45 doi: 10.1021/jp210493t – ident: ref61/cit61 doi: 10.1021/acsami.0c10957 – ident: ref48/cit48 doi: 10.1021/acsapm.2c00380 – ident: ref20/cit20 doi: 10.1002/jcb.21058 – ident: ref7/cit7 doi: 10.1089/ten.tec.2011.0470 – ident: ref27/cit27 doi: 10.1016/j.eurpolymj.2021.110269 – ident: ref40/cit40 doi: 10.1080/00222340902837527 – ident: ref46/cit46 doi: 10.1021/la2008864 – volume: 3 start-page: 67 issue: 4 year: 2018 ident: ref43/cit43 publication-title: Chem. Adv. Mater. contributor: fullname: Aboelazm E. A. A. – ident: ref3/cit3 doi: 10.1016/j.bone.2014.07.033 – ident: ref5/cit5 doi: 10.1089/ten.tea.2009.0058 – ident: ref19/cit19 doi: 10.1016/j.biomaterials.2009.05.049 – ident: ref39/cit39 doi: 10.1039/c2ce06654h – ident: ref49/cit49 doi: 10.1073/pnas.0903269107 – ident: ref32/cit32 doi: 10.3390/s20123340 – ident: ref55/cit55 doi: 10.1074/jbc.M109.052373 – ident: ref2/cit2 doi: 10.1038/nrrheum.2014.164 – ident: ref8/cit8 doi: 10.1126/sciadv.abb7921 – ident: ref24/cit24 doi: 10.1021/acsapm.9b00566 – ident: ref36/cit36 doi: 10.1007/s11356-015-4945-1 – ident: ref57/cit57 doi: 10.1038/s41421-024-00689-6 – ident: ref29/cit29 doi: 10.1186/1471-2121-7-14 – ident: ref17/cit17 doi: 10.1186/s41232-018-0059-8 – ident: ref22/cit22 doi: 10.1002/adfm.201909736 – ident: ref13/cit13 doi: 10.1002/jbm.a.35234 – ident: ref42/cit42 doi: 10.1007/s11356-016-7978-1 – ident: ref4/cit4 doi: 10.1002/(SICI)1097-4636(199611)32:3<481::AID-JBM23>3.0.CO;2-I – ident: ref28/cit28 doi: 10.1039/C5RA04409J – ident: ref59/cit59 doi: 10.1016/j.bioadv.2022.212918 – ident: ref35/cit35 doi: 10.1007/s00339-010-6003-7 – ident: ref56/cit56 doi: 10.1096/fj.202000378RR – ident: ref23/cit23 doi: 10.1021/acs.cgd.0c00042 – ident: ref47/cit47 doi: 10.1016/j.msec.2020.111281 – ident: ref53/cit53 doi: 10.1021/nn304046m – ident: ref12/cit12 doi: 10.1039/c2ra21841k – ident: ref11/cit11 doi: 10.1038/srep35512 – ident: ref62/cit62 doi: 10.1016/j.bbrc.2013.02.005 – ident: ref64/cit64 doi: 10.1016/j.colsurfb.2015.12.055 – ident: ref51/cit51 doi: 10.1038/nature04957 – ident: ref15/cit15 doi: 10.1021/acsami.9b14001 – ident: ref50/cit50 doi: 10.1016/S1534-5807(04)00075-9 – ident: ref63/cit63 doi: 10.1016/j.nanoen.2024.109569 – ident: ref37/cit37 doi: 10.1039/C7RA01267E – ident: ref6/cit6 doi: 10.1002/jbm.a.31082 – ident: ref44/cit44 doi: 10.1007/978-94-009-7343-5 – ident: ref38/cit38 doi: 10.1002/polb.1994.090320509 – ident: ref41/cit41 doi: 10.1021/nn400202j – ident: ref60/cit60 doi: 10.1016/S0945-053X(97)90008-1 – ident: ref54/cit54 doi: 10.1038/nmat3980 – ident: ref34/cit34 doi: 10.1155/2013/395274 – ident: ref58/cit58 doi: 10.1038/s41467-023-36293-7 – ident: ref18/cit18 doi: 10.3389/fphys.2018.00824 – ident: ref31/cit31 doi: 10.1088/1748-6041/7/3/035004 – ident: ref9/cit9 doi: 10.1186/s12860-015-0056-6 – ident: ref16/cit16 doi: 10.1002/adfm.201202780 – ident: ref33/cit33 doi: 10.1021/acsabm.0c00315 – ident: ref52/cit52 doi: 10.1002/jcb.24673 – ident: ref14/cit14 doi: 10.1016/j.biomaterials.2017.09.024 – ident: ref30/cit30 doi: 10.1111/cpr.12002 – ident: ref25/cit25 doi: 10.1038/nprot.2017.157 |
SSID | ssj0002124252 |
Score | 2.325943 |
Snippet | Physical cues have been shown to be effective in inducing osteogenic differentiation of mesenchymal stem cells (MSCs). Here, we propose piezoelectric... Physical cues have been shown to be effective in inducing osteogenic differentiation of mesenchymal stem cells (MSCs). Here, we propose piezoelectric... |
SourceID | pubmedcentral crossref acs |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | 13710 |
Title | Piezoelectric Stimulation Induces Osteogenesis in Mesenchymal Stem Cells Cultured on Electroactive Two-Dimensional Substrates |
URI | http://dx.doi.org/10.1021/acsapm.4c02485 https://pubmed.ncbi.nlm.nih.gov/PMC11590054 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5sPejFt1hfLCjoJZrdvI-StvTiA1LBW0h2pzbQJMW0iIL_3Z0kLQYpFHIIZLNsZnZnZncy30fINTBdRsKUGvcsPK0C0DxXuhoIzxTAADjgRnEQOE9vbreHMDm3KzL4nN1Hooim6Z0pSvStFtnkjgoTMAjyg-VpijLAavJhyoDbZd2bbi0QGv91gX5IFA0_1Pwf8o-D6e-uP7Q9slMHkfSh0vo-2YDsgGz5C-62Q_LzksB3XlHcJIIGsyStaboocnUo20CflXrzd7R0SUGTjD5iGZIYf6Wq42AGKfVhMiloBbkJkqpXexVlTlSaSDr8zLUucgNUuB4UTVAJdVsckdd-b-gPtJpoQYu48ucapl5VmACGZxh2xLAcVdperJa_5dr2CAGADE8IQ1pCH6FXjWHkchM4G_FYt8A4Ju0sz-CE0Fg4ViwjT13MjJkexwiAJi3ugC2dyOmQKyW1sF4oRVjmwDkLK1GGtSg75GahnHBaoW6sbOk2dLdsjrDZzSdZMi7hsxl-oIpUT9cayhnZ5uoGyw85Pyft2cccLkirkPPLcgr-AhOV220 |
link.rule.ids | 230,315,782,786,887,2769,27085,27933,27934,56747,56797 |
linkProvider | American Chemical Society |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5sPejFt_h2QcFTbHbzPkpbqfiEVvAWkt2JDdi0mBZR8L87k6RqEUEhp81m2OxOZmZ3Mt_H2DEIU0fK1oYMHDqtAjACX_sGqMBWIAAk0Eax0_VuHvxWm2ByGtNaGBxEjpLyIon_hS4gGtgWjQantipAuGps3nExEqZYqNn9PFRBO4w6SJkD6Rblb6YzBWr8IYLckcpn3NHsb5Hf_Mz58r9HuMKWqpCSn5U6sMrmIFtjC80pk9s6e79L4W1YEt6kinfH6aAi7eLE3IGWgt_iYg8fye6lOU8zfk1FSar_OkDB3TEMeBOennJeAnCC5vhouyTQiQqDyXsvQ6NFTAElygcng1QA3-Yb7P683Wt2jIp2wYgkeneDErEYNIAVWJYbCSpO1W4QozFwfNdNCA7ICpSytKPMhHxsDIkvbZAikbHpgLXJ6tkwgy3GY-U5sY4CvIQdCzOOCQ5NO9IDV3uRt82OcNbC6rPJwyIjLkVYTmVYTeU2O5muUTgqMTh-7enPLOFndwLRnr2Tpf0CTFvQC2LcuvOnoRyyhU7v-iq8uri53GWLEhupMFHKPVYfP09gn9VyPTkotPID9j_j2g |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5ugvriXZzXgIJP1Sa9P45dmKhzsAm-lTY5dYW1G3ZDFPzv5rTdcIggQp_S9JDLyTlJTs_3EXIJTJeBMKXGPQtvqwA0z5WuBsIzBTAADnhQ7PSd7rPbbCFMjjHPhVGNyJSkLA_i46qeyKhEGGA3qjyYJNemyIG4KmTVsh0PT1z1Rn9xsaJssdJDjB5wO0-B0605WOMPEeiSRLbkkpZ_jfzma9pb_2rlNtkst5a0XujCDlmBdJesN-aMbnvksxfDx7ggvokF7U_jpCTvosjgoSwGfVSTPn5B-xdnNE7pAyYnieF7ogT3p5DQBoxGGS2AOEFS9WmrINIJcsNJB29jrYmMAQXaB0XDlAPgZvvkqd0aNDpaSb-gBVx5eQ0DsmrzAIZnGHbAMElV2l6ojILl2naEsECGJ4QhLaFH6GtDiFxuAmcRD3ULjANSTccpHBIaCscKZeCph5kh08MQYdGkxR2wpRM4NXKhRs0vl0_m55FxzvxiKP1yKGvkaj5P_qTA4vi1prs0jYvqCKa9_CaNhzmoNsMOqv3r0Z-ack7Wes22f3_bvTsmG1yVYX4i5yekOn2dwSmpZHJ2livmF1Kr5l0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Piezoelectric+Stimulation+Induces+Osteogenesis+in+Mesenchymal+Stem+Cells+Cultured+on+Electroactive+Two-Dimensional+Substrates&rft.jtitle=ACS+applied+polymer+materials&rft.au=Guillot-Ferriols%2C+Maria&rft.au=Costa%2C+Carlos+M.&rft.au=Correia%2C+Daniela+M.&rft.au=Rodr%C3%ADguez-Hern%C3%A1ndez%2C+Jos%C3%A9+Carlos&rft.date=2024-11-22&rft.pub=American+Chemical+Society&rft.eissn=2637-6105&rft.volume=6&rft.issue=22&rft.spage=13710&rft.epage=13722&rft_id=info:doi/10.1021%2Facsapm.4c02485&rft.externalDBID=PMC11590054 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2637-6105&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2637-6105&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2637-6105&client=summon |