Piezoelectric Stimulation Induces Osteogenesis in Mesenchymal Stem Cells Cultured on Electroactive Two-Dimensional Substrates

Physical cues have been shown to be effective in inducing osteogenic differentiation of mesenchymal stem cells (MSCs). Here, we propose piezoelectric stimulation as a potential osteogenic cue mimicking the electroactive properties of bone’s extracellular matrix. When combined with a magnetostrictive...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied polymer materials Vol. 6; no. 22; pp. 13710 - 13722
Main Authors: Guillot-Ferriols, Maria, Costa, Carlos M., Correia, Daniela M., Rodríguez-Hernández, José Carlos, Tsimbouri, Penelope M., Lanceros-Méndez, Senentxu, Dalby, Matthew J., Gómez Ribelles, José Luis, Gallego-Ferrer, Gloria
Format: Journal Article
Language:English
Published: American Chemical Society 22-11-2024
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Physical cues have been shown to be effective in inducing osteogenic differentiation of mesenchymal stem cells (MSCs). Here, we propose piezoelectric stimulation as a potential osteogenic cue mimicking the electroactive properties of bone’s extracellular matrix. When combined with a magnetostrictive component, piezoelectric polymers can be used for MSC stimulation by applying an external magnetic field. The deformation of the magnetostrictive component produces a deformation in the polymer matrix, generating a change in the surface charge that induces an electric field that can be transmitted to the cells. Cell adhesion, cytoskeleton changes, and metabolomics are the first evidence of MSC osteoblastogenesis and can be used to study initial MSC response to this kind of stimulation. In the current study, poly­(vinylidene) fluoride (PVDF) piezoelectric films with and without cobalt ferrite oxide (CFO) crystallized from the melt in the presence of the ionic liquid 1-butyl-3-methyl-imidazolium chloride ([Bmim]­[Cl]) were produced. [Bmim]­[Cl] allowed the production of the β-phase, the most electroactive phase, even without CFO. After ionic liquid removal, PVDF and PVDF-CFO films presented high percentages of the β-phase and similar crystalline content. Incorporating CFO nanoparticles was effective, allowing the electromechanical stimulation of MSCs by applying a magnetic field with a bioreactor. Before stimulation, the initial response of MSCs was characterized in static conditions, showing that the produced films were biocompatible and noncytotoxic, allowing MSC adhesion and proliferation in the short term. Stimulation experiments revealed that MSCs electromechanically stimulated for 3 days in PVDF-CFO supports showed longer focal adhesions and decreased vimentin cytoskeletal density, both signals of early osteogenic differentiation. Furthermore, they rearranged their energy metabolism toward an osteogenic phenotype after 7 days of culture under the same stimulation. The results prove that MSCs respond to electromechanical stimulation by osteogenic differentiation.
AbstractList Physical cues have been shown to be effective in inducing osteogenic differentiation of mesenchymal stem cells (MSCs). Here, we propose piezoelectric stimulation as a potential osteogenic cue mimicking the electroactive properties of bone’s extracellular matrix. When combined with a magnetostrictive component, piezoelectric polymers can be used for MSC stimulation by applying an external magnetic field. The deformation of the magnetostrictive component produces a deformation in the polymer matrix, generating a change in the surface charge that induces an electric field that can be transmitted to the cells. Cell adhesion, cytoskeleton changes, and metabolomics are the first evidence of MSC osteoblastogenesis and can be used to study initial MSC response to this kind of stimulation. In the current study, poly­(vinylidene) fluoride (PVDF) piezoelectric films with and without cobalt ferrite oxide (CFO) crystallized from the melt in the presence of the ionic liquid 1-butyl-3-methyl-imidazolium chloride ([Bmim]­[Cl]) were produced. [Bmim]­[Cl] allowed the production of the β-phase, the most electroactive phase, even without CFO. After ionic liquid removal, PVDF and PVDF-CFO films presented high percentages of the β-phase and similar crystalline content. Incorporating CFO nanoparticles was effective, allowing the electromechanical stimulation of MSCs by applying a magnetic field with a bioreactor. Before stimulation, the initial response of MSCs was characterized in static conditions, showing that the produced films were biocompatible and noncytotoxic, allowing MSC adhesion and proliferation in the short term. Stimulation experiments revealed that MSCs electromechanically stimulated for 3 days in PVDF-CFO supports showed longer focal adhesions and decreased vimentin cytoskeletal density, both signals of early osteogenic differentiation. Furthermore, they rearranged their energy metabolism toward an osteogenic phenotype after 7 days of culture under the same stimulation. The results prove that MSCs respond to electromechanical stimulation by osteogenic differentiation.
Physical cues have been shown to be effective in inducing osteogenic differentiation of mesenchymal stem cells (MSCs). Here, we propose piezoelectric stimulation as a potential osteogenic cue mimicking the electroactive properties of bone’s extracellular matrix. When combined with a magnetostrictive component, piezoelectric polymers can be used for MSC stimulation by applying an external magnetic field. The deformation of the magnetostrictive component produces a deformation in the polymer matrix, generating a change in the surface charge that induces an electric field that can be transmitted to the cells. Cell adhesion, cytoskeleton changes, and metabolomics are the first evidence of MSC osteoblastogenesis and can be used to study initial MSC response to this kind of stimulation. In the current study, poly(vinylidene) fluoride (PVDF) piezoelectric films with and without cobalt ferrite oxide (CFO) crystallized from the melt in the presence of the ionic liquid 1-butyl-3-methyl-imidazolium chloride ([Bmim][Cl]) were produced. [Bmim][Cl] allowed the production of the β-phase, the most electroactive phase, even without CFO. After ionic liquid removal, PVDF and PVDF-CFO films presented high percentages of the β-phase and similar crystalline content. Incorporating CFO nanoparticles was effective, allowing the electromechanical stimulation of MSCs by applying a magnetic field with a bioreactor. Before stimulation, the initial response of MSCs was characterized in static conditions, showing that the produced films were biocompatible and noncytotoxic, allowing MSC adhesion and proliferation in the short term. Stimulation experiments revealed that MSCs electromechanically stimulated for 3 days in PVDF-CFO supports showed longer focal adhesions and decreased vimentin cytoskeletal density, both signals of early osteogenic differentiation. Furthermore, they rearranged their energy metabolism toward an osteogenic phenotype after 7 days of culture under the same stimulation. The results prove that MSCs respond to electromechanical stimulation by osteogenic differentiation.
Author Guillot-Ferriols, Maria
Correia, Daniela M.
Tsimbouri, Penelope M.
Costa, Carlos M.
Rodríguez-Hernández, José Carlos
Gómez Ribelles, José Luis
Gallego-Ferrer, Gloria
Lanceros-Méndez, Senentxu
Dalby, Matthew J.
AuthorAffiliation Center for the Cellular Microenvironment, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences
Biomedical Research Networking Center on Bioengineering
Biomaterials and Nanomedicine (CIBER-BBN)
Universidade Do Minho
BCMaterials, Basque Center for Materials, Applications and Nanostructures
Basque Foundation for Science
IKERBASQUE
UPV/EHU
Physics Centre of Minho and Porto Universities (CF-UM-UP) and Laboratory of Physics for Materials and Emergent Technologies, LapMET
Center for Biomaterials and Tissue Engineering (CBIT)
Universitat Politècnica de València
Center of Chemistry
Institute of Science and Innovation for Bio-Sustainability (IB-S)
AuthorAffiliation_xml – name: Universidade Do Minho
– name: BCMaterials, Basque Center for Materials, Applications and Nanostructures
– name: Institute of Science and Innovation for Bio-Sustainability (IB-S)
– name: IKERBASQUE
– name: Universitat Politècnica de València
– name: Center for Biomaterials and Tissue Engineering (CBIT)
– name: Biomedical Research Networking Center on Bioengineering
– name: Center for the Cellular Microenvironment, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences
– name: UPV/EHU
– name: Basque Foundation for Science
– name: Biomaterials and Nanomedicine (CIBER-BBN)
– name: Center of Chemistry
– name: Physics Centre of Minho and Porto Universities (CF-UM-UP) and Laboratory of Physics for Materials and Emergent Technologies, LapMET
Author_xml – sequence: 1
  givenname: Maria
  surname: Guillot-Ferriols
  fullname: Guillot-Ferriols, Maria
  organization: Biomaterials and Nanomedicine (CIBER-BBN)
– sequence: 2
  givenname: Carlos M.
  orcidid: 0000-0001-9266-3669
  surname: Costa
  fullname: Costa, Carlos M.
  organization: Institute of Science and Innovation for Bio-Sustainability (IB-S)
– sequence: 3
  givenname: Daniela M.
  orcidid: 0000-0002-3118-4717
  surname: Correia
  fullname: Correia, Daniela M.
  organization: Universidade Do Minho
– sequence: 4
  givenname: José Carlos
  surname: Rodríguez-Hernández
  fullname: Rodríguez-Hernández, José Carlos
  organization: Universitat Politècnica de València
– sequence: 5
  givenname: Penelope M.
  orcidid: 0000-0001-5124-7458
  surname: Tsimbouri
  fullname: Tsimbouri, Penelope M.
  organization: Center for the Cellular Microenvironment, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences
– sequence: 6
  givenname: Senentxu
  surname: Lanceros-Méndez
  fullname: Lanceros-Méndez, Senentxu
  organization: IKERBASQUE
– sequence: 7
  givenname: Matthew J.
  orcidid: 0000-0002-0528-3359
  surname: Dalby
  fullname: Dalby, Matthew J.
  organization: Center for the Cellular Microenvironment, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences
– sequence: 8
  givenname: José Luis
  orcidid: 0000-0001-9099-0885
  surname: Gómez Ribelles
  fullname: Gómez Ribelles, José Luis
  email: jlgomez@ter.upv.es
  organization: Biomaterials and Nanomedicine (CIBER-BBN)
– sequence: 9
  givenname: Gloria
  orcidid: 0000-0002-2428-0903
  surname: Gallego-Ferrer
  fullname: Gallego-Ferrer, Gloria
  email: ggallego@ter.upv.es
  organization: Biomaterials and Nanomedicine (CIBER-BBN)
BookMark eNp1kc9LwzAUx4NMcM5dPecsdOZH260nkTl1MFFwnkOavm4ZbTKSdjLB_93MDtGDpxde3ufzeHzPUc9YAwhdUjKihNFrqbzc1qNYERZPkhPUZykfRyklSe_X-wwNvd8QEggWs4T10eeLhg8LFajGaYVfG123lWy0NXhuilaBx8--AbsCA157rA1-Ag9Grfe1rMI81HgKVeXxtK2a1kGBAzr79lmpGr0DvHy30Z2uwfigPUBt7hsnG_AX6LSUlYfhsQ7Q2_1sOX2MFs8P8-ntIpKMpDRiWRozxoFnnKeSJhmhRZrlnIyTSZqWY0oIz5TiRaJIqQCKHMoJi4HRkuUkAT5AN5132-Y1FApM2F-JrdO1dHthpRZ_f4xei5XdCXpYRpI4GEadQTnrvYPyB6ZEHBIQXQLimEAArjog9MXGti5c7v8b_gIzFI4b
Cites_doi 10.1016/j.progpolymsci.2013.07.006
10.34133/bmef.0009
10.1080/14653240600855905
10.1021/nn900472n
10.1021/jp210493t
10.1021/acsami.0c10957
10.1021/acsapm.2c00380
10.1002/jcb.21058
10.1089/ten.tec.2011.0470
10.1016/j.eurpolymj.2021.110269
10.1080/00222340902837527
10.1021/la2008864
10.1016/j.bone.2014.07.033
10.1089/ten.tea.2009.0058
10.1016/j.biomaterials.2009.05.049
10.1039/c2ce06654h
10.1073/pnas.0903269107
10.3390/s20123340
10.1074/jbc.M109.052373
10.1038/nrrheum.2014.164
10.1126/sciadv.abb7921
10.1021/acsapm.9b00566
10.1007/s11356-015-4945-1
10.1038/s41421-024-00689-6
10.1186/1471-2121-7-14
10.1186/s41232-018-0059-8
10.1002/adfm.201909736
10.1002/jbm.a.35234
10.1007/s11356-016-7978-1
10.1002/(SICI)1097-4636(199611)32:3<481::AID-JBM23>3.0.CO;2-I
10.1039/C5RA04409J
10.1016/j.bioadv.2022.212918
10.1007/s00339-010-6003-7
10.1096/fj.202000378RR
10.1021/acs.cgd.0c00042
10.1016/j.msec.2020.111281
10.1021/nn304046m
10.1039/c2ra21841k
10.1038/srep35512
10.1016/j.bbrc.2013.02.005
10.1016/j.colsurfb.2015.12.055
10.1038/nature04957
10.1021/acsami.9b14001
10.1016/S1534-5807(04)00075-9
10.1016/j.nanoen.2024.109569
10.1039/C7RA01267E
10.1002/jbm.a.31082
10.1007/978-94-009-7343-5
10.1002/polb.1994.090320509
10.1021/nn400202j
10.1016/S0945-053X(97)90008-1
10.1038/nmat3980
10.1155/2013/395274
10.1038/s41467-023-36293-7
10.3389/fphys.2018.00824
10.1088/1748-6041/7/3/035004
10.1186/s12860-015-0056-6
10.1002/adfm.201202780
10.1021/acsabm.0c00315
10.1002/jcb.24673
10.1016/j.biomaterials.2017.09.024
10.1111/cpr.12002
10.1038/nprot.2017.157
ContentType Journal Article
Copyright 2024 The Authors. Published by American Chemical Society
2024 The Authors. Published by American Chemical Society 2024 The Authors
Copyright_xml – notice: 2024 The Authors. Published by American Chemical Society
– notice: 2024 The Authors. Published by American Chemical Society 2024 The Authors
DBID AAYXX
CITATION
5PM
DOI 10.1021/acsapm.4c02485
DatabaseName CrossRef
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2637-6105
EndPage 13722
ExternalDocumentID 10_1021_acsapm_4c02485
b301650443
GroupedDBID ABQRX
ABUCX
ACS
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
BAANH
CUPRZ
EBS
GGK
VF5
VG9
AAYXX
CITATION
5PM
ID FETCH-LOGICAL-a2061-2964223e39336a15901d69b3075866f710039cc3d5c0fceedbef824e21f2b05e3
IEDL.DBID ACS
ISSN 2637-6105
IngestDate Wed Nov 27 05:24:36 EST 2024
Wed Nov 27 13:03:26 EST 2024
Mon Nov 25 03:11:25 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords ionic liquid
electromechanical stimulation
osteogenesis
mesenchymal stem cells
poly(vinylidene) fluoride
Language English
License Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a2061-2964223e39336a15901d69b3075866f710039cc3d5c0fceedbef824e21f2b05e3
ORCID 0000-0001-5124-7458
0000-0002-2428-0903
0000-0002-0528-3359
0000-0001-9266-3669
0000-0002-3118-4717
0000-0001-9099-0885
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC11590054
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11590054
crossref_primary_10_1021_acsapm_4c02485
acs_journals_10_1021_acsapm_4c02485
PublicationCentury 2000
PublicationDate 2024-11-22
PublicationDateYYYYMMDD 2024-11-22
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-22
  day: 22
PublicationDecade 2020
PublicationTitle ACS applied polymer materials
PublicationTitleAlternate ACS Appl. Polym. Mater
PublicationYear 2024
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref62/cit62
ref41/cit41
Aboelazm E. A. A. (ref43/cit43) 2018; 3
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref21/cit21
  doi: 10.1016/j.progpolymsci.2013.07.006
– ident: ref26/cit26
  doi: 10.34133/bmef.0009
– ident: ref1/cit1
  doi: 10.1080/14653240600855905
– ident: ref10/cit10
  doi: 10.1021/nn900472n
– ident: ref45/cit45
  doi: 10.1021/jp210493t
– ident: ref61/cit61
  doi: 10.1021/acsami.0c10957
– ident: ref48/cit48
  doi: 10.1021/acsapm.2c00380
– ident: ref20/cit20
  doi: 10.1002/jcb.21058
– ident: ref7/cit7
  doi: 10.1089/ten.tec.2011.0470
– ident: ref27/cit27
  doi: 10.1016/j.eurpolymj.2021.110269
– ident: ref40/cit40
  doi: 10.1080/00222340902837527
– ident: ref46/cit46
  doi: 10.1021/la2008864
– volume: 3
  start-page: 67
  issue: 4
  year: 2018
  ident: ref43/cit43
  publication-title: Chem. Adv. Mater.
  contributor:
    fullname: Aboelazm E. A. A.
– ident: ref3/cit3
  doi: 10.1016/j.bone.2014.07.033
– ident: ref5/cit5
  doi: 10.1089/ten.tea.2009.0058
– ident: ref19/cit19
  doi: 10.1016/j.biomaterials.2009.05.049
– ident: ref39/cit39
  doi: 10.1039/c2ce06654h
– ident: ref49/cit49
  doi: 10.1073/pnas.0903269107
– ident: ref32/cit32
  doi: 10.3390/s20123340
– ident: ref55/cit55
  doi: 10.1074/jbc.M109.052373
– ident: ref2/cit2
  doi: 10.1038/nrrheum.2014.164
– ident: ref8/cit8
  doi: 10.1126/sciadv.abb7921
– ident: ref24/cit24
  doi: 10.1021/acsapm.9b00566
– ident: ref36/cit36
  doi: 10.1007/s11356-015-4945-1
– ident: ref57/cit57
  doi: 10.1038/s41421-024-00689-6
– ident: ref29/cit29
  doi: 10.1186/1471-2121-7-14
– ident: ref17/cit17
  doi: 10.1186/s41232-018-0059-8
– ident: ref22/cit22
  doi: 10.1002/adfm.201909736
– ident: ref13/cit13
  doi: 10.1002/jbm.a.35234
– ident: ref42/cit42
  doi: 10.1007/s11356-016-7978-1
– ident: ref4/cit4
  doi: 10.1002/(SICI)1097-4636(199611)32:3<481::AID-JBM23>3.0.CO;2-I
– ident: ref28/cit28
  doi: 10.1039/C5RA04409J
– ident: ref59/cit59
  doi: 10.1016/j.bioadv.2022.212918
– ident: ref35/cit35
  doi: 10.1007/s00339-010-6003-7
– ident: ref56/cit56
  doi: 10.1096/fj.202000378RR
– ident: ref23/cit23
  doi: 10.1021/acs.cgd.0c00042
– ident: ref47/cit47
  doi: 10.1016/j.msec.2020.111281
– ident: ref53/cit53
  doi: 10.1021/nn304046m
– ident: ref12/cit12
  doi: 10.1039/c2ra21841k
– ident: ref11/cit11
  doi: 10.1038/srep35512
– ident: ref62/cit62
  doi: 10.1016/j.bbrc.2013.02.005
– ident: ref64/cit64
  doi: 10.1016/j.colsurfb.2015.12.055
– ident: ref51/cit51
  doi: 10.1038/nature04957
– ident: ref15/cit15
  doi: 10.1021/acsami.9b14001
– ident: ref50/cit50
  doi: 10.1016/S1534-5807(04)00075-9
– ident: ref63/cit63
  doi: 10.1016/j.nanoen.2024.109569
– ident: ref37/cit37
  doi: 10.1039/C7RA01267E
– ident: ref6/cit6
  doi: 10.1002/jbm.a.31082
– ident: ref44/cit44
  doi: 10.1007/978-94-009-7343-5
– ident: ref38/cit38
  doi: 10.1002/polb.1994.090320509
– ident: ref41/cit41
  doi: 10.1021/nn400202j
– ident: ref60/cit60
  doi: 10.1016/S0945-053X(97)90008-1
– ident: ref54/cit54
  doi: 10.1038/nmat3980
– ident: ref34/cit34
  doi: 10.1155/2013/395274
– ident: ref58/cit58
  doi: 10.1038/s41467-023-36293-7
– ident: ref18/cit18
  doi: 10.3389/fphys.2018.00824
– ident: ref31/cit31
  doi: 10.1088/1748-6041/7/3/035004
– ident: ref9/cit9
  doi: 10.1186/s12860-015-0056-6
– ident: ref16/cit16
  doi: 10.1002/adfm.201202780
– ident: ref33/cit33
  doi: 10.1021/acsabm.0c00315
– ident: ref52/cit52
  doi: 10.1002/jcb.24673
– ident: ref14/cit14
  doi: 10.1016/j.biomaterials.2017.09.024
– ident: ref30/cit30
  doi: 10.1111/cpr.12002
– ident: ref25/cit25
  doi: 10.1038/nprot.2017.157
SSID ssj0002124252
Score 2.325943
Snippet Physical cues have been shown to be effective in inducing osteogenic differentiation of mesenchymal stem cells (MSCs). Here, we propose piezoelectric...
Physical cues have been shown to be effective in inducing osteogenic differentiation of mesenchymal stem cells (MSCs). Here, we propose piezoelectric...
SourceID pubmedcentral
crossref
acs
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 13710
Title Piezoelectric Stimulation Induces Osteogenesis in Mesenchymal Stem Cells Cultured on Electroactive Two-Dimensional Substrates
URI http://dx.doi.org/10.1021/acsapm.4c02485
https://pubmed.ncbi.nlm.nih.gov/PMC11590054
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5sPejFt1hfLCjoJZrdvI-StvTiA1LBW0h2pzbQJMW0iIL_3Z0kLQYpFHIIZLNsZnZnZncy30fINTBdRsKUGvcsPK0C0DxXuhoIzxTAADjgRnEQOE9vbreHMDm3KzL4nN1Hooim6Z0pSvStFtnkjgoTMAjyg-VpijLAavJhyoDbZd2bbi0QGv91gX5IFA0_1Pwf8o-D6e-uP7Q9slMHkfSh0vo-2YDsgGz5C-62Q_LzksB3XlHcJIIGsyStaboocnUo20CflXrzd7R0SUGTjD5iGZIYf6Wq42AGKfVhMiloBbkJkqpXexVlTlSaSDr8zLUucgNUuB4UTVAJdVsckdd-b-gPtJpoQYu48ucapl5VmACGZxh2xLAcVdperJa_5dr2CAGADE8IQ1pCH6FXjWHkchM4G_FYt8A4Ju0sz-CE0Fg4ViwjT13MjJkexwiAJi3ugC2dyOmQKyW1sF4oRVjmwDkLK1GGtSg75GahnHBaoW6sbOk2dLdsjrDZzSdZMi7hsxl-oIpUT9cayhnZ5uoGyw85Pyft2cccLkirkPPLcgr-AhOV220
link.rule.ids 230,315,782,786,887,2769,27085,27933,27934,56747,56797
linkProvider American Chemical Society
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5sPejFt_h2QcFTbHbzPkpbqfiEVvAWkt2JDdi0mBZR8L87k6RqEUEhp81m2OxOZmZ3Mt_H2DEIU0fK1oYMHDqtAjACX_sGqMBWIAAk0Eax0_VuHvxWm2ByGtNaGBxEjpLyIon_hS4gGtgWjQantipAuGps3nExEqZYqNn9PFRBO4w6SJkD6Rblb6YzBWr8IYLckcpn3NHsb5Hf_Mz58r9HuMKWqpCSn5U6sMrmIFtjC80pk9s6e79L4W1YEt6kinfH6aAi7eLE3IGWgt_iYg8fye6lOU8zfk1FSar_OkDB3TEMeBOennJeAnCC5vhouyTQiQqDyXsvQ6NFTAElygcng1QA3-Yb7P683Wt2jIp2wYgkeneDErEYNIAVWJYbCSpO1W4QozFwfNdNCA7ICpSytKPMhHxsDIkvbZAikbHpgLXJ6tkwgy3GY-U5sY4CvIQdCzOOCQ5NO9IDV3uRt82OcNbC6rPJwyIjLkVYTmVYTeU2O5muUTgqMTh-7enPLOFndwLRnr2Tpf0CTFvQC2LcuvOnoRyyhU7v-iq8uri53GWLEhupMFHKPVYfP09gn9VyPTkotPID9j_j2g
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5ugvriXZzXgIJP1Sa9P45dmKhzsAm-lTY5dYW1G3ZDFPzv5rTdcIggQp_S9JDLyTlJTs_3EXIJTJeBMKXGPQtvqwA0z5WuBsIzBTAADnhQ7PSd7rPbbCFMjjHPhVGNyJSkLA_i46qeyKhEGGA3qjyYJNemyIG4KmTVsh0PT1z1Rn9xsaJssdJDjB5wO0-B0605WOMPEeiSRLbkkpZ_jfzma9pb_2rlNtkst5a0XujCDlmBdJesN-aMbnvksxfDx7ggvokF7U_jpCTvosjgoSwGfVSTPn5B-xdnNE7pAyYnieF7ogT3p5DQBoxGGS2AOEFS9WmrINIJcsNJB29jrYmMAQXaB0XDlAPgZvvkqd0aNDpaSb-gBVx5eQ0DsmrzAIZnGHbAMElV2l6ojILl2naEsECGJ4QhLaFH6GtDiFxuAmcRD3ULjANSTccpHBIaCscKZeCph5kh08MQYdGkxR2wpRM4NXKhRs0vl0_m55FxzvxiKP1yKGvkaj5P_qTA4vi1prs0jYvqCKa9_CaNhzmoNsMOqv3r0Z-ack7Wes22f3_bvTsmG1yVYX4i5yekOn2dwSmpZHJ2livmF1Kr5l0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Piezoelectric+Stimulation+Induces+Osteogenesis+in+Mesenchymal+Stem+Cells+Cultured+on+Electroactive+Two-Dimensional+Substrates&rft.jtitle=ACS+applied+polymer+materials&rft.au=Guillot-Ferriols%2C+Maria&rft.au=Costa%2C+Carlos+M.&rft.au=Correia%2C+Daniela+M.&rft.au=Rodr%C3%ADguez-Hern%C3%A1ndez%2C+Jos%C3%A9+Carlos&rft.date=2024-11-22&rft.pub=American+Chemical+Society&rft.eissn=2637-6105&rft.volume=6&rft.issue=22&rft.spage=13710&rft.epage=13722&rft_id=info:doi/10.1021%2Facsapm.4c02485&rft.externalDBID=PMC11590054
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2637-6105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2637-6105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2637-6105&client=summon