High-Performance and Low-Cost Overhead Projector Sheet-Based Triboelectric Nanogenerator for Self-Powered Cholesteric Liquid Crystal, Electroluminescence, and Portable Electronic Devices
Low output power, intricate device designs, limitation on scalability, limited production capability, and higher fabrication cost are the major hurdles to use triboelectric nanogenerators (TENGs) as a power source in self-powered device applications. This work reports a high-performance, simple desi...
Saved in:
Published in: | ACS applied energy materials Vol. 5; no. 11; pp. 13702 - 13713 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
American Chemical Society
28-11-2022
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Low output power, intricate device designs, limitation on scalability, limited production capability, and higher fabrication cost are the major hurdles to use triboelectric nanogenerators (TENGs) as a power source in self-powered device applications. This work reports a high-performance, simple design, and inexpensive TENG using overhead projector (OHP) sheets and ZnO nanosheet array films. The fabricated TENG produced a maximum output voltage, current, and power density of ∼292 V, ∼55 μA, and ∼424.8 mW/m2 for each hand slapping force, respectively. The charged nature of one side of the OHP sheet is responsible for obtaining the high-power density reported in this communication. Further, the TENG has shown excellent stability over a period of 6 months and more than 10,000 test cycles. The stability of ZnO nanosheets is excellent even the after 10,000 test cycles. The TENG’s AC output is utilized to control the optical characteristics of the cholesteric liquid crystal (CLC) devices. CLC devices are demonstrated for mobile security, optical switch, webcam security, and self-powered smart windows or e-paper displays. Further, we have demonstrated self-powered electroluminescence and portable electronic devices. The current work has potential applications in portable, wearable, and self-powered electronic devices due to its high power density, simple design, minimal cost, and scalability. |
---|---|
AbstractList | Low output power, intricate device designs, limitation on scalability, limited production capability, and higher fabrication cost are the major hurdles to use triboelectric nanogenerators (TENGs) as a power source in self-powered device applications. This work reports a high-performance, simple design, and inexpensive TENG using overhead projector (OHP) sheets and ZnO nanosheet array films. The fabricated TENG produced a maximum output voltage, current, and power density of ∼292 V, ∼55 μA, and ∼424.8 mW/m2 for each hand slapping force, respectively. The charged nature of one side of the OHP sheet is responsible for obtaining the high-power density reported in this communication. Further, the TENG has shown excellent stability over a period of 6 months and more than 10,000 test cycles. The stability of ZnO nanosheets is excellent even the after 10,000 test cycles. The TENG’s AC output is utilized to control the optical characteristics of the cholesteric liquid crystal (CLC) devices. CLC devices are demonstrated for mobile security, optical switch, webcam security, and self-powered smart windows or e-paper displays. Further, we have demonstrated self-powered electroluminescence and portable electronic devices. The current work has potential applications in portable, wearable, and self-powered electronic devices due to its high power density, simple design, minimal cost, and scalability. |
Author | Kodali, Prakash Divi, Haranath Vallamkondu, Jayalakshmi M, Navaneeth Babu, Anjaly Gollapelli, Buchaiah K, Uday Kumar Mishra, Siju Potu, Supraja Rajaboina, Rakesh Kumar |
AuthorAffiliation | Department of Physics, Energy Materials and Devices Lab Department of Physics, Liquid Crystals Research Lab Department of Electronics and Communication Engineering, Flexible Electronics Lab |
AuthorAffiliation_xml | – name: Department of Physics, Liquid Crystals Research Lab – name: Department of Physics, Energy Materials and Devices Lab – name: Department of Electronics and Communication Engineering, Flexible Electronics Lab |
Author_xml | – sequence: 1 givenname: Supraja orcidid: 0000-0001-5612-4035 surname: Potu fullname: Potu, Supraja organization: Department of Physics, Energy Materials and Devices Lab – sequence: 2 givenname: Navaneeth orcidid: 0000-0002-2001-9038 surname: M fullname: M, Navaneeth organization: Department of Physics, Energy Materials and Devices Lab – sequence: 3 givenname: Rakesh Kumar orcidid: 0000-0003-4023-9051 surname: Rajaboina fullname: Rajaboina, Rakesh Kumar email: rakeshr@nitw.ac.in organization: Department of Physics, Energy Materials and Devices Lab – sequence: 4 givenname: Buchaiah orcidid: 0000-0001-6987-9429 surname: Gollapelli fullname: Gollapelli, Buchaiah organization: Department of Physics, Liquid Crystals Research Lab – sequence: 5 givenname: Jayalakshmi orcidid: 0000-0002-5259-6286 surname: Vallamkondu fullname: Vallamkondu, Jayalakshmi organization: Department of Physics, Liquid Crystals Research Lab – sequence: 6 givenname: Siju orcidid: 0000-0003-3774-4196 surname: Mishra fullname: Mishra, Siju organization: Department of Physics, Energy Materials and Devices Lab – sequence: 7 givenname: Haranath orcidid: 0000-0002-7936-6165 surname: Divi fullname: Divi, Haranath organization: Department of Physics, Energy Materials and Devices Lab – sequence: 8 givenname: Anjaly orcidid: 0000-0001-9569-7442 surname: Babu fullname: Babu, Anjaly organization: Department of Physics, Energy Materials and Devices Lab – sequence: 9 givenname: Uday Kumar orcidid: 0000-0003-1297-4104 surname: K fullname: K, Uday Kumar organization: Department of Physics, Energy Materials and Devices Lab – sequence: 10 givenname: Prakash orcidid: 0000-0001-9009-7325 surname: Kodali fullname: Kodali, Prakash organization: Department of Electronics and Communication Engineering, Flexible Electronics Lab |
BookMark | eNp1kFFPwjAUhRuDiYi8-txnw7Dt1o0-6kQxIbJEfF5Kd8dGtlbbAeGv-evcABNffLo3937n5ORco542GhC6pWRMCaP3UjkJ9ZgpwnwuLlCf8SjwiAhZ789-hYbObQghVNCQCdFH37NyXXgJ2NzYWmoFWOoMz83ei41r8GIHtgCZ4cSaDajGWPxeADTeo3SQ4aUtVwaq9mFLhd-kNmvQYGXH5R0LVe4lZg-2hePCVOAa6NB5-bUt25M9uEZWIzw9ephqW5canII2yOiYJDG2kasKfgndip9gVypwN-gyl5WD4XkO0MfzdBnPvPni5TV-mHuSkaDxfMizEBSHjAkmoiCXLCQTmESKkECKPCNM-CsWUcFBRpxCxCdcKV9wngmfRf4AjU--yhrnLOTppy1raQ8pJWlXfnoqPz2X3wruToL2nm7M1uo23n_wD8OHjJY |
CitedBy_id | crossref_primary_10_1002_adfm_202313506 crossref_primary_10_1021_acsaelm_3c01728 crossref_primary_10_1021_acsami_3c04848 crossref_primary_10_1016_j_cej_2022_141215 crossref_primary_10_1039_D3SE01180A crossref_primary_10_1021_acssuschemeng_3c05198 crossref_primary_10_1080_02678292_2024_2364789 crossref_primary_10_1016_j_cej_2023_148044 crossref_primary_10_1021_acssuschemeng_3c03136 crossref_primary_10_1002_ente_202400796 crossref_primary_10_1021_acsanm_3c03430 crossref_primary_10_1039_D3EE03520D |
Cites_doi | 10.1016/j.nanoen.2017.05.039 10.1016/j.carbon.2014.11.041 10.1021/nn401256w 10.1002/adom.201800335 10.1088/1361-6528/aa52b7 10.1016/j.sna.2022.113368 10.1016/j.nanoen.2021.105976 10.1021/acsnano.0c00107 10.1016/j.nanoen.2017.12.048 10.1016/j.nanoen.2020.105256 10.1021/nl4001053 10.1002/adfm.201502318 10.1021/acsami.0c17512 10.1088/2631-8695/ac184b 10.1016/j.matlet.2021.130290 10.1016/j.nanoen.2018.11.062 10.1016/j.scib.2020.10.002 10.1016/j.nanoen.2012.01.004 10.1109/PARC52418.2022.9726684 10.1016/j.nanoen.2020.104818 10.1021/ACSNANO.5B00706 10.1364/prj.394044 10.1021/acsnano.5b01340 10.1021/nl303573d 10.1016/j.nanoen.2016.08.024 10.1016/j.apsusc.2018.09.249 10.1007/s11431-020-1604-9 10.1002/adfm.201501331 10.1021/acsami.8b16023 10.1149/2162-8777/aba7fa 10.1002/aenm.201802906 10.1063/1.3072362 10.1039/c5ra02098k 10.1039/c9ta09990e 10.1021/nl503402c 10.1002/eom2.12062 10.1002/aenm.201600505 10.1038/s41467-020-15926-1 10.1021/acsomega.9b01963 10.1038/s41467-022-29083-0 10.1002/mame.202100147 10.1016/j.apsusc.2018.03.125 10.1021/acs.chemmater.5b01507 10.1007/s40544-018-0217-7 10.1016/j.nanoen.2018.12.054 10.1021/acsami.5b09907 10.3390/chemosensors9020027 10.1088/1361-6528/aa5f34 10.1039/C7RA01507K 10.1016/j.nanoen.2011.12.006 10.1021/acsnano.0c05901 10.1016/j.cej.2020.125526 10.1088/0957-4484/23/43/435704 10.1002/adma.201402491 10.1016/j.nanoen.2018.01.013 10.1021/acsenergylett.1c01619 10.1039/c4nr05512h 10.1021/acs.chemrev.1c00761 10.1557/mrc.2019.64 10.1039/c3ee42571a 10.1016/S0025-5408(02)01027-9 10.1021/nl300988z 10.1016/j.matchemphys.2020.123331 10.1016/j.nanoen.2018.06.055 10.1016/j.scib.2021.05.016 10.1021/acsaelm.0c00421 10.1021/acsami.5b04669 10.1038/s41467-021-25046-z 10.1021/am5018072 |
ContentType | Journal Article |
Copyright | 2022 American Chemical Society |
Copyright_xml | – notice: 2022 American Chemical Society |
DBID | AAYXX CITATION |
DOI | 10.1021/acsaem.2c02359 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2574-0962 |
EndPage | 13713 |
ExternalDocumentID | 10_1021_acsaem_2c02359 b700002104 |
GroupedDBID | ABFRP ABQRX ABUCX ACGFS ACS AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS EBS GGK VF5 VG9 W1F AAYXX BAANH CITATION CUPRZ |
ID | FETCH-LOGICAL-a204t-3efd6ec5ed292974fa2608e87c004a9fd0293b27195ea751e7585cc3955d93273 |
IEDL.DBID | ACS |
ISSN | 2574-0962 |
IngestDate | Fri Aug 23 01:57:02 EDT 2024 Wed Nov 30 04:21:57 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | ZnO nanosheets array triboelectric nanogenerator self-powered devices cholesteric liquid crystal mechanical energy harvesting |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a204t-3efd6ec5ed292974fa2608e87c004a9fd0293b27195ea751e7585cc3955d93273 |
ORCID | 0000-0002-2001-9038 0000-0001-9009-7325 0000-0003-3774-4196 0000-0002-5259-6286 0000-0002-7936-6165 0000-0001-9569-7442 0000-0003-1297-4104 0000-0001-5612-4035 0000-0003-4023-9051 0000-0001-6987-9429 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1021_acsaem_2c02359 acs_journals_10_1021_acsaem_2c02359 |
PublicationCentury | 2000 |
PublicationDate | 20221128 2022-11-28 |
PublicationDateYYYYMMDD | 2022-11-28 |
PublicationDate_xml | – month: 11 year: 2022 text: 20221128 day: 28 |
PublicationDecade | 2020 |
PublicationTitle | ACS applied energy materials |
PublicationTitleAlternate | ACS Appl. Energy Mater |
PublicationYear | 2022 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref6/cit6 doi: 10.1016/j.nanoen.2017.05.039 – ident: ref10/cit10 doi: 10.1016/j.carbon.2014.11.041 – ident: ref20/cit20 doi: 10.1021/nn401256w – ident: ref65/cit65 doi: 10.1002/adom.201800335 – ident: ref28/cit28 doi: 10.1088/1361-6528/aa52b7 – ident: ref42/cit42 doi: 10.1016/j.sna.2022.113368 – ident: ref32/cit32 doi: 10.1016/j.nanoen.2021.105976 – ident: ref34/cit34 doi: 10.1021/acsnano.0c00107 – ident: ref63/cit63 doi: 10.1016/j.nanoen.2017.12.048 – ident: ref40/cit40 doi: 10.1016/j.nanoen.2020.105256 – ident: ref57/cit57 doi: 10.1021/nl4001053 – ident: ref26/cit26 doi: 10.1002/adfm.201502318 – ident: ref62/cit62 doi: 10.1021/acsami.0c17512 – ident: ref52/cit52 doi: 10.1088/2631-8695/ac184b – ident: ref44/cit44 doi: 10.1016/j.matlet.2021.130290 – ident: ref55/cit55 doi: 10.1016/j.nanoen.2018.11.062 – ident: ref3/cit3 doi: 10.1016/j.scib.2020.10.002 – ident: ref9/cit9 doi: 10.1016/j.nanoen.2012.01.004 – ident: ref45/cit45 doi: 10.1109/PARC52418.2022.9726684 – ident: ref38/cit38 doi: 10.1016/j.nanoen.2020.104818 – ident: ref4/cit4 doi: 10.1021/ACSNANO.5B00706 – ident: ref8/cit8 doi: 10.1364/prj.394044 – ident: ref22/cit22 doi: 10.1021/acsnano.5b01340 – ident: ref64/cit64 doi: 10.1021/nl303573d – ident: ref18/cit18 doi: 10.1016/j.nanoen.2016.08.024 – ident: ref47/cit47 doi: 10.1016/j.apsusc.2018.09.249 – ident: ref11/cit11 doi: 10.1007/s11431-020-1604-9 – ident: ref30/cit30 doi: 10.1002/adfm.201501331 – ident: ref5/cit5 doi: 10.1021/acsami.8b16023 – ident: ref41/cit41 doi: 10.1149/2162-8777/aba7fa – ident: ref1/cit1 doi: 10.1002/aenm.201802906 – ident: ref56/cit56 doi: 10.1063/1.3072362 – ident: ref37/cit37 doi: 10.1039/c5ra02098k – ident: ref25/cit25 doi: 10.1039/c9ta09990e – ident: ref58/cit58 doi: 10.1021/nl503402c – ident: ref17/cit17 doi: 10.1002/eom2.12062 – ident: ref54/cit54 doi: 10.1002/aenm.201600505 – ident: ref14/cit14 doi: 10.1038/s41467-020-15926-1 – ident: ref60/cit60 doi: 10.1021/acsomega.9b01963 – ident: ref61/cit61 doi: 10.1038/s41467-022-29083-0 – ident: ref59/cit59 doi: 10.1002/mame.202100147 – ident: ref48/cit48 doi: 10.1016/j.apsusc.2018.03.125 – ident: ref21/cit21 doi: 10.1021/acs.chemmater.5b01507 – ident: ref12/cit12 doi: 10.1007/s40544-018-0217-7 – ident: ref31/cit31 doi: 10.1016/j.nanoen.2018.12.054 – ident: ref27/cit27 doi: 10.1021/acsami.5b09907 – ident: ref51/cit51 doi: 10.3390/chemosensors9020027 – ident: ref50/cit50 doi: 10.1088/1361-6528/aa5f34 – ident: ref67/cit67 doi: 10.1039/C7RA01507K – ident: ref2/cit2 doi: 10.1016/j.nanoen.2011.12.006 – ident: ref7/cit7 doi: 10.1021/acsnano.0c05901 – ident: ref36/cit36 doi: 10.1016/j.cej.2020.125526 – ident: ref69/cit69 doi: 10.1088/0957-4484/23/43/435704 – ident: ref24/cit24 doi: 10.1002/adma.201402491 – ident: ref49/cit49 doi: 10.1016/j.nanoen.2018.01.013 – ident: ref33/cit33 doi: 10.1021/acsenergylett.1c01619 – ident: ref29/cit29 doi: 10.1039/c4nr05512h – ident: ref66/cit66 doi: 10.1021/acs.chemrev.1c00761 – ident: ref23/cit23 doi: 10.1557/mrc.2019.64 – ident: ref13/cit13 doi: 10.1039/c3ee42571a – ident: ref68/cit68 doi: 10.1016/S0025-5408(02)01027-9 – ident: ref19/cit19 doi: 10.1021/nl300988z – ident: ref16/cit16 doi: 10.1016/j.matchemphys.2020.123331 – ident: ref46/cit46 doi: 10.1016/j.nanoen.2018.06.055 – ident: ref35/cit35 doi: 10.1016/j.scib.2021.05.016 – ident: ref43/cit43 doi: 10.1021/acsaelm.0c00421 – ident: ref53/cit53 doi: 10.1021/acsami.5b04669 – ident: ref15/cit15 doi: 10.1038/s41467-021-25046-z – ident: ref39/cit39 doi: 10.1021/am5018072 |
SSID | ssj0001916299 |
Score | 2.3364816 |
Snippet | Low output power, intricate device designs, limitation on scalability, limited production capability, and higher fabrication cost are the major hurdles to use... |
SourceID | crossref acs |
SourceType | Aggregation Database Publisher |
StartPage | 13702 |
Title | High-Performance and Low-Cost Overhead Projector Sheet-Based Triboelectric Nanogenerator for Self-Powered Cholesteric Liquid Crystal, Electroluminescence, and Portable Electronic Devices |
URI | http://dx.doi.org/10.1021/acsaem.2c02359 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Na9tAEF0a59Ic2qRNiNumLLTQHrKJtZK8q2PiD3wwicEt5Ca0s6PE4EqtJVP61_rrOiPZxFACuYqnZdmZnXn79UaIz-Bi1-cTxhxCpyJKCCrJek7ZPkBAQdM44MfJk7m5ubPDEcvkfH3iBF8HlxlUGf640MDKLMme2NeGaAKToMH8cTeFWI5uikWSC0aKeLneKjT-1wTnIah28tBOQhm_fn5XDsWrDWmUV62Vj8QLLN6Igx0pwbfiL1_YULPHZwAyK7yclr_VoKxqeUseS2HXy1m781Ku5PwBsVbXlMW8ZP2Qsq2IswBJEbe8b-SoGZczFpe5mnFBNQIPuKQu6ysQdLr4tV7Qp9UfYpnLczlqq-pQxOPr9MBh47zpSXNj1S1xiyjo5yE2YepYfB-Pvg0malOXQWW6F9UqxNz3EWL0msiVifKMFkUWrQGacVmS-x5xCKdNkMSYmThAXpMAhEkce6KLJjwRnaIs8FTIBFxEcBeB9UTcdOIx7oVgQ2vQkrN0xSca9HQzr6q0OTLXQdpaIt1Yoiu-bG2Z_mxFOp5AvntWe-_FS82vHIJAaftBdOrVGs_EXuXXHxu3-wdXetXC |
link.rule.ids | 315,782,786,2769,27085,27933,27934,56747,56797 |
linkProvider | American Chemical Society |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA9-PKgPfovfBhR8Mbqm7Zo-6pxMnDqYgm-lSa46mK2uG-K_5l_nXbuxgQj6Gq4h9C53vyR3v2PsyGhfV-mFMTGuFh4GBBHGFS1U1RgHnWagDRUnN9rB3ZO6rBNNztmoFgYXkeNMefGIP2YXcM5wLIbXU2mIoCWcZrN-FZEwYaFae3ypgmBHFj0j0RI9gfBcjogaf0xB4cjkE-FoIq5cLf17RctscQgh-Xmp8xU2BekqW5ggFlxjX5S-IVrjogAep5Y3sw9Ry_I-v0f7RSdseau8h8l6vP0C0BcXGNMsJzaRrOyP0zEc_W_2XJBTk1xCstBNRIvaq6FwjRrsEtsCijY774MODvU-EXN2T3i97LGD_o-S6w05kZNiJUX-qu7CSCLFjy-hcFrr7PGq_lBriGGXBhHLitcXLiS2CsYHKxFqBV4S4xFJgQoM7r84TGwFEYWWgRP6EAe-A3RCMcYNfd8ieAzcDTaTZilsMh4a7aG49oyyCONkaMGvuEa5KgCFprPFDvGnR8NdlkfFA7p0olIT0VATW-x4pNLoraTs-EVy-0_zHbC5xsNtM2pe393ssHlJ9Q-OI6TaZTP93gD22HRuB_uFJX4Dso7eLw |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdNCmN96Np90LRdK-hgL9EWy3YkP3b5IGMhC2SDvRlLOm-B1G5jh7F_rX9d72yHBsZg9FWchfCd7n6S7n7H2DtrQtOnF8bU-kYEGBBElPSM0H1rPXSaylgqTp4s1OyHHo6IJsff1sLgIgqcqage8WlX37q0YRjwPuJ4AjcfpCWSlqjF9sO-iujEdT1YPF6sIOCRVd9ItMZAIESXW7LGv6agkGSLnZC0E1vGL560qiN22EBJfl3r_pjtQfaSHewQDL5i95TGIeaPxQE8yRyf5r_FIC9K_hXtGJ2x4_P6PiZf88UvgFJ8wtjmOLGK5HWfnKXl6IfznxVJNcmlJAurVMypzRoKD6jRLrEuoOh0ebdZ4tD6D2LPVZeP6l476Acpyd6SM-lWK6nyWM0KthIZfjyEynm9Zt_Ho2-DiWi6NYhE9oJS-JC6PtgQnETIpYI0waOSBq0s7sMkSl0PkYWRyotCSFToAZ1UrPWjMHQIIpX_hrWzPIMTxiNrAhQ3gdUO4ZyMHIQ932pfK9BoQh12hT89bnZbEVcP6dKLa03EjSY67P1WrfFtTd3xD8nT_5rvkj2bD8fx9PPsyxl7LqkMwvOE1OesXa438Ja1Cre5qIzxAe8u4LI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-Performance+and+Low-Cost+Overhead+Projector+Sheet-Based+Triboelectric+Nanogenerator+for+Self-Powered+Cholesteric+Liquid+Crystal%2C+Electroluminescence%2C+and+Portable+Electronic+Devices&rft.jtitle=ACS+applied+energy+materials&rft.au=Potu%2C+Supraja&rft.au=M%2C+Navaneeth&rft.au=Rajaboina%2C+Rakesh+Kumar&rft.au=Gollapelli%2C+Buchaiah&rft.date=2022-11-28&rft.issn=2574-0962&rft.eissn=2574-0962&rft.volume=5&rft.issue=11&rft.spage=13702&rft.epage=13713&rft_id=info:doi/10.1021%2Facsaem.2c02359&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsaem_2c02359 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2574-0962&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2574-0962&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2574-0962&client=summon |