High-Performance and Low-Cost Overhead Projector Sheet-Based Triboelectric Nanogenerator for Self-Powered Cholesteric Liquid Crystal, Electroluminescence, and Portable Electronic Devices

Low output power, intricate device designs, limitation on scalability, limited production capability, and higher fabrication cost are the major hurdles to use triboelectric nanogenerators (TENGs) as a power source in self-powered device applications. This work reports a high-performance, simple desi...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied energy materials Vol. 5; no. 11; pp. 13702 - 13713
Main Authors: Potu, Supraja, M, Navaneeth, Rajaboina, Rakesh Kumar, Gollapelli, Buchaiah, Vallamkondu, Jayalakshmi, Mishra, Siju, Divi, Haranath, Babu, Anjaly, K, Uday Kumar, Kodali, Prakash
Format: Journal Article
Language:English
Published: American Chemical Society 28-11-2022
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Low output power, intricate device designs, limitation on scalability, limited production capability, and higher fabrication cost are the major hurdles to use triboelectric nanogenerators (TENGs) as a power source in self-powered device applications. This work reports a high-performance, simple design, and inexpensive TENG using overhead projector (OHP) sheets and ZnO nanosheet array films. The fabricated TENG produced a maximum output voltage, current, and power density of ∼292 V, ∼55 μA, and ∼424.8 mW/m2 for each hand slapping force, respectively. The charged nature of one side of the OHP sheet is responsible for obtaining the high-power density reported in this communication. Further, the TENG has shown excellent stability over a period of 6 months and more than 10,000 test cycles. The stability of ZnO nanosheets is excellent even the after 10,000 test cycles. The TENG’s AC output is utilized to control the optical characteristics of the cholesteric liquid crystal (CLC) devices. CLC devices are demonstrated for mobile security, optical switch, webcam security, and self-powered smart windows or e-paper displays. Further, we have demonstrated self-powered electroluminescence and portable electronic devices. The current work has potential applications in portable, wearable, and self-powered electronic devices due to its high power density, simple design, minimal cost, and scalability.
AbstractList Low output power, intricate device designs, limitation on scalability, limited production capability, and higher fabrication cost are the major hurdles to use triboelectric nanogenerators (TENGs) as a power source in self-powered device applications. This work reports a high-performance, simple design, and inexpensive TENG using overhead projector (OHP) sheets and ZnO nanosheet array films. The fabricated TENG produced a maximum output voltage, current, and power density of ∼292 V, ∼55 μA, and ∼424.8 mW/m2 for each hand slapping force, respectively. The charged nature of one side of the OHP sheet is responsible for obtaining the high-power density reported in this communication. Further, the TENG has shown excellent stability over a period of 6 months and more than 10,000 test cycles. The stability of ZnO nanosheets is excellent even the after 10,000 test cycles. The TENG’s AC output is utilized to control the optical characteristics of the cholesteric liquid crystal (CLC) devices. CLC devices are demonstrated for mobile security, optical switch, webcam security, and self-powered smart windows or e-paper displays. Further, we have demonstrated self-powered electroluminescence and portable electronic devices. The current work has potential applications in portable, wearable, and self-powered electronic devices due to its high power density, simple design, minimal cost, and scalability.
Author Kodali, Prakash
Divi, Haranath
Vallamkondu, Jayalakshmi
M, Navaneeth
Babu, Anjaly
Gollapelli, Buchaiah
K, Uday Kumar
Mishra, Siju
Potu, Supraja
Rajaboina, Rakesh Kumar
AuthorAffiliation Department of Physics, Energy Materials and Devices Lab
Department of Physics, Liquid Crystals Research Lab
Department of Electronics and Communication Engineering, Flexible Electronics Lab
AuthorAffiliation_xml – name: Department of Physics, Liquid Crystals Research Lab
– name: Department of Physics, Energy Materials and Devices Lab
– name: Department of Electronics and Communication Engineering, Flexible Electronics Lab
Author_xml – sequence: 1
  givenname: Supraja
  orcidid: 0000-0001-5612-4035
  surname: Potu
  fullname: Potu, Supraja
  organization: Department of Physics, Energy Materials and Devices Lab
– sequence: 2
  givenname: Navaneeth
  orcidid: 0000-0002-2001-9038
  surname: M
  fullname: M, Navaneeth
  organization: Department of Physics, Energy Materials and Devices Lab
– sequence: 3
  givenname: Rakesh Kumar
  orcidid: 0000-0003-4023-9051
  surname: Rajaboina
  fullname: Rajaboina, Rakesh Kumar
  email: rakeshr@nitw.ac.in
  organization: Department of Physics, Energy Materials and Devices Lab
– sequence: 4
  givenname: Buchaiah
  orcidid: 0000-0001-6987-9429
  surname: Gollapelli
  fullname: Gollapelli, Buchaiah
  organization: Department of Physics, Liquid Crystals Research Lab
– sequence: 5
  givenname: Jayalakshmi
  orcidid: 0000-0002-5259-6286
  surname: Vallamkondu
  fullname: Vallamkondu, Jayalakshmi
  organization: Department of Physics, Liquid Crystals Research Lab
– sequence: 6
  givenname: Siju
  orcidid: 0000-0003-3774-4196
  surname: Mishra
  fullname: Mishra, Siju
  organization: Department of Physics, Energy Materials and Devices Lab
– sequence: 7
  givenname: Haranath
  orcidid: 0000-0002-7936-6165
  surname: Divi
  fullname: Divi, Haranath
  organization: Department of Physics, Energy Materials and Devices Lab
– sequence: 8
  givenname: Anjaly
  orcidid: 0000-0001-9569-7442
  surname: Babu
  fullname: Babu, Anjaly
  organization: Department of Physics, Energy Materials and Devices Lab
– sequence: 9
  givenname: Uday Kumar
  orcidid: 0000-0003-1297-4104
  surname: K
  fullname: K, Uday Kumar
  organization: Department of Physics, Energy Materials and Devices Lab
– sequence: 10
  givenname: Prakash
  orcidid: 0000-0001-9009-7325
  surname: Kodali
  fullname: Kodali, Prakash
  organization: Department of Electronics and Communication Engineering, Flexible Electronics Lab
BookMark eNp1kFFPwjAUhRuDiYi8-txnw7Dt1o0-6kQxIbJEfF5Kd8dGtlbbAeGv-evcABNffLo3937n5ORco542GhC6pWRMCaP3UjkJ9ZgpwnwuLlCf8SjwiAhZ789-hYbObQghVNCQCdFH37NyXXgJ2NzYWmoFWOoMz83ei41r8GIHtgCZ4cSaDajGWPxeADTeo3SQ4aUtVwaq9mFLhd-kNmvQYGXH5R0LVe4lZg-2hePCVOAa6NB5-bUt25M9uEZWIzw9ephqW5canII2yOiYJDG2kasKfgndip9gVypwN-gyl5WD4XkO0MfzdBnPvPni5TV-mHuSkaDxfMizEBSHjAkmoiCXLCQTmESKkECKPCNM-CsWUcFBRpxCxCdcKV9wngmfRf4AjU--yhrnLOTppy1raQ8pJWlXfnoqPz2X3wruToL2nm7M1uo23n_wD8OHjJY
CitedBy_id crossref_primary_10_1002_adfm_202313506
crossref_primary_10_1021_acsaelm_3c01728
crossref_primary_10_1021_acsami_3c04848
crossref_primary_10_1016_j_cej_2022_141215
crossref_primary_10_1039_D3SE01180A
crossref_primary_10_1021_acssuschemeng_3c05198
crossref_primary_10_1080_02678292_2024_2364789
crossref_primary_10_1016_j_cej_2023_148044
crossref_primary_10_1021_acssuschemeng_3c03136
crossref_primary_10_1002_ente_202400796
crossref_primary_10_1021_acsanm_3c03430
crossref_primary_10_1039_D3EE03520D
Cites_doi 10.1016/j.nanoen.2017.05.039
10.1016/j.carbon.2014.11.041
10.1021/nn401256w
10.1002/adom.201800335
10.1088/1361-6528/aa52b7
10.1016/j.sna.2022.113368
10.1016/j.nanoen.2021.105976
10.1021/acsnano.0c00107
10.1016/j.nanoen.2017.12.048
10.1016/j.nanoen.2020.105256
10.1021/nl4001053
10.1002/adfm.201502318
10.1021/acsami.0c17512
10.1088/2631-8695/ac184b
10.1016/j.matlet.2021.130290
10.1016/j.nanoen.2018.11.062
10.1016/j.scib.2020.10.002
10.1016/j.nanoen.2012.01.004
10.1109/PARC52418.2022.9726684
10.1016/j.nanoen.2020.104818
10.1021/ACSNANO.5B00706
10.1364/prj.394044
10.1021/acsnano.5b01340
10.1021/nl303573d
10.1016/j.nanoen.2016.08.024
10.1016/j.apsusc.2018.09.249
10.1007/s11431-020-1604-9
10.1002/adfm.201501331
10.1021/acsami.8b16023
10.1149/2162-8777/aba7fa
10.1002/aenm.201802906
10.1063/1.3072362
10.1039/c5ra02098k
10.1039/c9ta09990e
10.1021/nl503402c
10.1002/eom2.12062
10.1002/aenm.201600505
10.1038/s41467-020-15926-1
10.1021/acsomega.9b01963
10.1038/s41467-022-29083-0
10.1002/mame.202100147
10.1016/j.apsusc.2018.03.125
10.1021/acs.chemmater.5b01507
10.1007/s40544-018-0217-7
10.1016/j.nanoen.2018.12.054
10.1021/acsami.5b09907
10.3390/chemosensors9020027
10.1088/1361-6528/aa5f34
10.1039/C7RA01507K
10.1016/j.nanoen.2011.12.006
10.1021/acsnano.0c05901
10.1016/j.cej.2020.125526
10.1088/0957-4484/23/43/435704
10.1002/adma.201402491
10.1016/j.nanoen.2018.01.013
10.1021/acsenergylett.1c01619
10.1039/c4nr05512h
10.1021/acs.chemrev.1c00761
10.1557/mrc.2019.64
10.1039/c3ee42571a
10.1016/S0025-5408(02)01027-9
10.1021/nl300988z
10.1016/j.matchemphys.2020.123331
10.1016/j.nanoen.2018.06.055
10.1016/j.scib.2021.05.016
10.1021/acsaelm.0c00421
10.1021/acsami.5b04669
10.1038/s41467-021-25046-z
10.1021/am5018072
ContentType Journal Article
Copyright 2022 American Chemical Society
Copyright_xml – notice: 2022 American Chemical Society
DBID AAYXX
CITATION
DOI 10.1021/acsaem.2c02359
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2574-0962
EndPage 13713
ExternalDocumentID 10_1021_acsaem_2c02359
b700002104
GroupedDBID ABFRP
ABQRX
ABUCX
ACGFS
ACS
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
EBS
GGK
VF5
VG9
W1F
AAYXX
BAANH
CITATION
CUPRZ
ID FETCH-LOGICAL-a204t-3efd6ec5ed292974fa2608e87c004a9fd0293b27195ea751e7585cc3955d93273
IEDL.DBID ACS
ISSN 2574-0962
IngestDate Fri Aug 23 01:57:02 EDT 2024
Wed Nov 30 04:21:57 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords ZnO nanosheets array
triboelectric nanogenerator
self-powered devices
cholesteric liquid crystal
mechanical energy harvesting
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a204t-3efd6ec5ed292974fa2608e87c004a9fd0293b27195ea751e7585cc3955d93273
ORCID 0000-0002-2001-9038
0000-0001-9009-7325
0000-0003-3774-4196
0000-0002-5259-6286
0000-0002-7936-6165
0000-0001-9569-7442
0000-0003-1297-4104
0000-0001-5612-4035
0000-0003-4023-9051
0000-0001-6987-9429
PageCount 12
ParticipantIDs crossref_primary_10_1021_acsaem_2c02359
acs_journals_10_1021_acsaem_2c02359
PublicationCentury 2000
PublicationDate 20221128
2022-11-28
PublicationDateYYYYMMDD 2022-11-28
PublicationDate_xml – month: 11
  year: 2022
  text: 20221128
  day: 28
PublicationDecade 2020
PublicationTitle ACS applied energy materials
PublicationTitleAlternate ACS Appl. Energy Mater
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref6/cit6
  doi: 10.1016/j.nanoen.2017.05.039
– ident: ref10/cit10
  doi: 10.1016/j.carbon.2014.11.041
– ident: ref20/cit20
  doi: 10.1021/nn401256w
– ident: ref65/cit65
  doi: 10.1002/adom.201800335
– ident: ref28/cit28
  doi: 10.1088/1361-6528/aa52b7
– ident: ref42/cit42
  doi: 10.1016/j.sna.2022.113368
– ident: ref32/cit32
  doi: 10.1016/j.nanoen.2021.105976
– ident: ref34/cit34
  doi: 10.1021/acsnano.0c00107
– ident: ref63/cit63
  doi: 10.1016/j.nanoen.2017.12.048
– ident: ref40/cit40
  doi: 10.1016/j.nanoen.2020.105256
– ident: ref57/cit57
  doi: 10.1021/nl4001053
– ident: ref26/cit26
  doi: 10.1002/adfm.201502318
– ident: ref62/cit62
  doi: 10.1021/acsami.0c17512
– ident: ref52/cit52
  doi: 10.1088/2631-8695/ac184b
– ident: ref44/cit44
  doi: 10.1016/j.matlet.2021.130290
– ident: ref55/cit55
  doi: 10.1016/j.nanoen.2018.11.062
– ident: ref3/cit3
  doi: 10.1016/j.scib.2020.10.002
– ident: ref9/cit9
  doi: 10.1016/j.nanoen.2012.01.004
– ident: ref45/cit45
  doi: 10.1109/PARC52418.2022.9726684
– ident: ref38/cit38
  doi: 10.1016/j.nanoen.2020.104818
– ident: ref4/cit4
  doi: 10.1021/ACSNANO.5B00706
– ident: ref8/cit8
  doi: 10.1364/prj.394044
– ident: ref22/cit22
  doi: 10.1021/acsnano.5b01340
– ident: ref64/cit64
  doi: 10.1021/nl303573d
– ident: ref18/cit18
  doi: 10.1016/j.nanoen.2016.08.024
– ident: ref47/cit47
  doi: 10.1016/j.apsusc.2018.09.249
– ident: ref11/cit11
  doi: 10.1007/s11431-020-1604-9
– ident: ref30/cit30
  doi: 10.1002/adfm.201501331
– ident: ref5/cit5
  doi: 10.1021/acsami.8b16023
– ident: ref41/cit41
  doi: 10.1149/2162-8777/aba7fa
– ident: ref1/cit1
  doi: 10.1002/aenm.201802906
– ident: ref56/cit56
  doi: 10.1063/1.3072362
– ident: ref37/cit37
  doi: 10.1039/c5ra02098k
– ident: ref25/cit25
  doi: 10.1039/c9ta09990e
– ident: ref58/cit58
  doi: 10.1021/nl503402c
– ident: ref17/cit17
  doi: 10.1002/eom2.12062
– ident: ref54/cit54
  doi: 10.1002/aenm.201600505
– ident: ref14/cit14
  doi: 10.1038/s41467-020-15926-1
– ident: ref60/cit60
  doi: 10.1021/acsomega.9b01963
– ident: ref61/cit61
  doi: 10.1038/s41467-022-29083-0
– ident: ref59/cit59
  doi: 10.1002/mame.202100147
– ident: ref48/cit48
  doi: 10.1016/j.apsusc.2018.03.125
– ident: ref21/cit21
  doi: 10.1021/acs.chemmater.5b01507
– ident: ref12/cit12
  doi: 10.1007/s40544-018-0217-7
– ident: ref31/cit31
  doi: 10.1016/j.nanoen.2018.12.054
– ident: ref27/cit27
  doi: 10.1021/acsami.5b09907
– ident: ref51/cit51
  doi: 10.3390/chemosensors9020027
– ident: ref50/cit50
  doi: 10.1088/1361-6528/aa5f34
– ident: ref67/cit67
  doi: 10.1039/C7RA01507K
– ident: ref2/cit2
  doi: 10.1016/j.nanoen.2011.12.006
– ident: ref7/cit7
  doi: 10.1021/acsnano.0c05901
– ident: ref36/cit36
  doi: 10.1016/j.cej.2020.125526
– ident: ref69/cit69
  doi: 10.1088/0957-4484/23/43/435704
– ident: ref24/cit24
  doi: 10.1002/adma.201402491
– ident: ref49/cit49
  doi: 10.1016/j.nanoen.2018.01.013
– ident: ref33/cit33
  doi: 10.1021/acsenergylett.1c01619
– ident: ref29/cit29
  doi: 10.1039/c4nr05512h
– ident: ref66/cit66
  doi: 10.1021/acs.chemrev.1c00761
– ident: ref23/cit23
  doi: 10.1557/mrc.2019.64
– ident: ref13/cit13
  doi: 10.1039/c3ee42571a
– ident: ref68/cit68
  doi: 10.1016/S0025-5408(02)01027-9
– ident: ref19/cit19
  doi: 10.1021/nl300988z
– ident: ref16/cit16
  doi: 10.1016/j.matchemphys.2020.123331
– ident: ref46/cit46
  doi: 10.1016/j.nanoen.2018.06.055
– ident: ref35/cit35
  doi: 10.1016/j.scib.2021.05.016
– ident: ref43/cit43
  doi: 10.1021/acsaelm.0c00421
– ident: ref53/cit53
  doi: 10.1021/acsami.5b04669
– ident: ref15/cit15
  doi: 10.1038/s41467-021-25046-z
– ident: ref39/cit39
  doi: 10.1021/am5018072
SSID ssj0001916299
Score 2.3364816
Snippet Low output power, intricate device designs, limitation on scalability, limited production capability, and higher fabrication cost are the major hurdles to use...
SourceID crossref
acs
SourceType Aggregation Database
Publisher
StartPage 13702
Title High-Performance and Low-Cost Overhead Projector Sheet-Based Triboelectric Nanogenerator for Self-Powered Cholesteric Liquid Crystal, Electroluminescence, and Portable Electronic Devices
URI http://dx.doi.org/10.1021/acsaem.2c02359
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Na9tAEF0a59Ic2qRNiNumLLTQHrKJtZK8q2PiD3wwicEt5Ca0s6PE4EqtJVP61_rrOiPZxFACuYqnZdmZnXn79UaIz-Bi1-cTxhxCpyJKCCrJek7ZPkBAQdM44MfJk7m5ubPDEcvkfH3iBF8HlxlUGf640MDKLMme2NeGaAKToMH8cTeFWI5uikWSC0aKeLneKjT-1wTnIah28tBOQhm_fn5XDsWrDWmUV62Vj8QLLN6Igx0pwbfiL1_YULPHZwAyK7yclr_VoKxqeUseS2HXy1m781Ku5PwBsVbXlMW8ZP2Qsq2IswBJEbe8b-SoGZczFpe5mnFBNQIPuKQu6ysQdLr4tV7Qp9UfYpnLczlqq-pQxOPr9MBh47zpSXNj1S1xiyjo5yE2YepYfB-Pvg0malOXQWW6F9UqxNz3EWL0msiVifKMFkUWrQGacVmS-x5xCKdNkMSYmThAXpMAhEkce6KLJjwRnaIs8FTIBFxEcBeB9UTcdOIx7oVgQ2vQkrN0xSca9HQzr6q0OTLXQdpaIt1Yoiu-bG2Z_mxFOp5AvntWe-_FS82vHIJAaftBdOrVGs_EXuXXHxu3-wdXetXC
link.rule.ids 315,782,786,2769,27085,27933,27934,56747,56797
linkProvider American Chemical Society
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA9-PKgPfovfBhR8Mbqm7Zo-6pxMnDqYgm-lSa46mK2uG-K_5l_nXbuxgQj6Gq4h9C53vyR3v2PsyGhfV-mFMTGuFh4GBBHGFS1U1RgHnWagDRUnN9rB3ZO6rBNNztmoFgYXkeNMefGIP2YXcM5wLIbXU2mIoCWcZrN-FZEwYaFae3ypgmBHFj0j0RI9gfBcjogaf0xB4cjkE-FoIq5cLf17RctscQgh-Xmp8xU2BekqW5ggFlxjX5S-IVrjogAep5Y3sw9Ry_I-v0f7RSdseau8h8l6vP0C0BcXGNMsJzaRrOyP0zEc_W_2XJBTk1xCstBNRIvaq6FwjRrsEtsCijY774MODvU-EXN2T3i97LGD_o-S6w05kZNiJUX-qu7CSCLFjy-hcFrr7PGq_lBriGGXBhHLitcXLiS2CsYHKxFqBV4S4xFJgQoM7r84TGwFEYWWgRP6EAe-A3RCMcYNfd8ieAzcDTaTZilsMh4a7aG49oyyCONkaMGvuEa5KgCFprPFDvGnR8NdlkfFA7p0olIT0VATW-x4pNLoraTs-EVy-0_zHbC5xsNtM2pe393ssHlJ9Q-OI6TaZTP93gD22HRuB_uFJX4Dso7eLw
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdNCmN96Np90LRdK-hgL9EWy3YkP3b5IGMhC2SDvRlLOm-B1G5jh7F_rX9d72yHBsZg9FWchfCd7n6S7n7H2DtrQtOnF8bU-kYEGBBElPSM0H1rPXSaylgqTp4s1OyHHo6IJsff1sLgIgqcqage8WlX37q0YRjwPuJ4AjcfpCWSlqjF9sO-iujEdT1YPF6sIOCRVd9ItMZAIESXW7LGv6agkGSLnZC0E1vGL560qiN22EBJfl3r_pjtQfaSHewQDL5i95TGIeaPxQE8yRyf5r_FIC9K_hXtGJ2x4_P6PiZf88UvgFJ8wtjmOLGK5HWfnKXl6IfznxVJNcmlJAurVMypzRoKD6jRLrEuoOh0ebdZ4tD6D2LPVZeP6l476Acpyd6SM-lWK6nyWM0KthIZfjyEynm9Zt_Ho2-DiWi6NYhE9oJS-JC6PtgQnETIpYI0waOSBq0s7sMkSl0PkYWRyotCSFToAZ1UrPWjMHQIIpX_hrWzPIMTxiNrAhQ3gdUO4ZyMHIQ932pfK9BoQh12hT89bnZbEVcP6dKLa03EjSY67P1WrfFtTd3xD8nT_5rvkj2bD8fx9PPsyxl7LqkMwvOE1OesXa438Ja1Cre5qIzxAe8u4LI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-Performance+and+Low-Cost+Overhead+Projector+Sheet-Based+Triboelectric+Nanogenerator+for+Self-Powered+Cholesteric+Liquid+Crystal%2C+Electroluminescence%2C+and+Portable+Electronic+Devices&rft.jtitle=ACS+applied+energy+materials&rft.au=Potu%2C+Supraja&rft.au=M%2C+Navaneeth&rft.au=Rajaboina%2C+Rakesh+Kumar&rft.au=Gollapelli%2C+Buchaiah&rft.date=2022-11-28&rft.issn=2574-0962&rft.eissn=2574-0962&rft.volume=5&rft.issue=11&rft.spage=13702&rft.epage=13713&rft_id=info:doi/10.1021%2Facsaem.2c02359&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsaem_2c02359
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2574-0962&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2574-0962&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2574-0962&client=summon