Confinement Effect and Application in Catalytic Oxidation–Reduction Reaction of Confined Single-Atom Catalysts
Single-atom catalysts (SACs) exhibit remarkable 100% atomic economy, making them highly efficient in various fields, including production processes, energy systems, and environmental remediation. However, the migration and agglomeration of single atoms significantly diminish reactivity and increase...
Saved in:
Published in: | ACS catalysis Vol. 14; no. 17; pp. 12991 - 13014 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
American Chemical Society
06-09-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Single-atom catalysts (SACs) exhibit remarkable 100% atomic economy, making them highly efficient in various fields, including production processes, energy systems, and environmental remediation. However, the migration and agglomeration of single atoms significantly diminish reactivity and increase the operating cost of the catalyst. Due to the size effect, the space confinement effect, and the electron confinement effect, the single atoms are stabilized, and overall catalytic performance is also improved. The confinement effect can be enhanced by modifying the supporting materials with ordered and regular pore structures and improving the binding mode between the support and the single atom. In this Review, the confined functional structure will be explained for the synthesis of confined SACs. It elucidates mechanisms for the formation of the confinement effect and elaborates how the confinement effect improves catalytic performance. This Review is helpful for better understanding, controlling, and utilizing the confinement effect to design confined SACs with impressive catalytic performance. |
---|---|
AbstractList | Single-atom catalysts (SACs) exhibit remarkable 100% atomic economy, making them highly efficient in various fields, including production processes, energy systems, and environmental remediation. However, the migration and agglomeration of single atoms significantly diminish reactivity and increase the operating cost of the catalyst. Due to the size effect, the space confinement effect, and the electron confinement effect, the single atoms are stabilized, and overall catalytic performance is also improved. The confinement effect can be enhanced by modifying the supporting materials with ordered and regular pore structures and improving the binding mode between the support and the single atom. In this Review, the confined functional structure will be explained for the synthesis of confined SACs. It elucidates mechanisms for the formation of the confinement effect and elaborates how the confinement effect improves catalytic performance. This Review is helpful for better understanding, controlling, and utilizing the confinement effect to design confined SACs with impressive catalytic performance. |
Author | Li, Fengxiang Fan, Xiu Li, Donghao Shu, Yuanxiang Feng, Yimeng |
AuthorAffiliation | Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering Ministry of Education Key Laboratory of Songliao Aquatic Environment, College of Municipal and Environmental Engineering |
AuthorAffiliation_xml | – name: Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering – name: Ministry of Education Key Laboratory of Songliao Aquatic Environment, College of Municipal and Environmental Engineering |
Author_xml | – sequence: 1 givenname: Xiu surname: Fan fullname: Fan, Xiu organization: Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering – sequence: 2 givenname: Donghao surname: Li fullname: Li, Donghao organization: Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering – sequence: 3 givenname: Yuanxiang surname: Shu fullname: Shu, Yuanxiang organization: Ministry of Education Key Laboratory of Songliao Aquatic Environment, College of Municipal and Environmental Engineering – sequence: 4 givenname: Yimeng surname: Feng fullname: Feng, Yimeng organization: Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering – sequence: 5 givenname: Fengxiang orcidid: 0000-0001-9477-7870 surname: Li fullname: Li, Fengxiang email: lifx@nankai.edu.cn organization: Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering |
BookMark | eNp1kE1qwzAQhUVJoWmafZc6QJ1aliXHy2DSHwgE0nZtFGlUFGzJWAo0u96hN-xJqiQudNPZaEbz3of0rtHIOgsI3ZJ0RtKM3AvppQiimeUyjoReoHFGGEtYTtnoT3-Fpt7v0lg54_MiHaOuclYbCy3YgJdagwxYWIUXXdeYyDTOYmNxdaQfgpF4_WHU6fr782sDai9Pkg2Ic-M0HogKvxj73kCyCK4dAD74G3SpReNhOpwT9PawfK2ektX68blarBJBOA0J16rcljwvWF7mci4FnwPPaEbJVmaKMgXABCiiCMuUoLzYklIIFv9VkqihdILSM1f2zvsedN31phX9oSZpfQyt_g2tHkKLlruzJW7qndv3Nj7wf_kPAl10kw |
Cites_doi | 10.1002/cey2.194 10.1021/acs.chemrev.0c00864 10.1038/s41565-020-0652-2 10.1038/s42004-020-0306-1 10.1021/acsnano.0c00659 10.1021/jacsau.1c00384 10.1002/anie.202203022 10.1038/s41467-023-38126-z 10.1002/anie.202219306 10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5 10.1038/s41560-017-0078-8 10.1021/acsami.2c19985 10.1002/adfm.201802169 10.1038/s41467-021-24513-x 10.1126/sciadv.abn5091 10.1021/acsestengg.2c00187 10.1002/anie.202309893 10.1002/smll.202005334 10.1016/S1748-0132(07)70113-5 10.1039/C6TA10896B 10.1038/s41467-020-16715-6 10.1007/s10311-021-01355-z 10.1021/ja808292c 10.1021/ar200138n 10.1016/j.ijhydene.2023.09.298 10.1002/adma.202105482 10.1021/ja062329b 10.1021/jacs.8b05992 10.1038/nchem.1095 10.1039/D1RA08891B 10.1002/aenm.202103097 10.1002/advs.202301656 10.1021/acscatal.1c04832 10.1002/adma.202107721 10.1038/s41467-018-06387-8 10.1016/j.jclepro.2023.136468 10.1038/s41467-021-27640-7 10.1038/s41929-021-00650-w 10.1073/pnas.2311585120 10.1021/jacs.2c10801 10.1016/j.apcatb.2019.117878 10.1021/acsestengg.2c00236 10.1016/S1872-2067(21)63879-2 10.1016/j.carbon.2018.11.021 10.1016/j.jechem.2023.12.046 10.1039/D0CS01032D 10.1039/D0CC02593C 10.1002/smll.202301849 10.1016/j.jechem.2018.08.006 10.1021/cr500304f 10.1038/srep05441 10.1016/S1872-2067(18)63047-5 10.1126/sciadv.abb6833 10.1002/adma.202004319 10.1002/adma.202103882 10.1016/j.carbon.2020.06.006 10.1021/jacs.9b06482 10.1016/j.cej.2020.124382 10.1002/smll.202207240 10.1021/acsnano.0c04544 10.1038/nenergy.2016.130 10.1021/jacs.1c10814 10.1038/s44160-023-00258-x 10.1002/cctc.202100325 10.1016/j.cis.2021.102568 10.1021/acsnano.1c08898 10.1038/nature06552 10.1021/jacs.8b03121 10.1002/anie.201903802 10.1021/jacs.9b06628 10.1021/acs.jpcc.8b03383 10.1021/acscatal.9b01643 10.1039/c2cp41392b 10.1002/adma.202209654 10.1021/jacs.1c12642 10.1039/D1SC05983A 10.1038/s41586-022-05251-6 10.1016/j.chempr.2018.05.006 10.1016/j.cej.2020.126395 10.1007/s10562-019-02709-7 10.1021/jacs.0c07206 10.1063/5.0048962 10.1038/s41467-023-39048-6 10.1039/c2sc21761a 10.1016/j.jclepro.2023.136125 10.1039/C8EE02939C 10.1016/j.cej.2022.140031 10.1126/science.1253150 10.1021/acs.nanolett.2c04444 10.1038/ncomms9668 10.1021/acscatal.9b04621 10.1016/j.apcatb.2023.123244 10.1039/C9CS00713J 10.1016/j.cej.2022.140512 10.1002/adma.202300505 10.1016/j.nanoen.2019.104409 10.1016/j.mtener.2018.10.014 10.1016/j.chempr.2017.12.005 10.1038/s41467-023-36926-x 10.1016/j.rser.2018.12.027 10.1016/j.apcatb.2018.02.041 10.1021/ja908040g 10.1038/s41929-017-0021-1 10.1039/D1CY00478F 10.1002/adma.202209646 10.1021/jacs.8b13579 10.1126/sciadv.add1267 10.1016/j.apcatb.2023.123218 10.1038/s41467-022-29074-1 10.1002/anie.202003623 10.1016/j.apsusc.2017.10.120 10.1002/anie.202209629 10.1002/anie.202109488 10.1021/jacs.3c03432 10.1021/acscatal.0c02325 10.1016/j.cej.2022.135126 10.1002/adfm.202300895 10.1039/C9SC03172C 10.1016/j.joule.2021.05.018 10.1126/science.aaw1108 10.1016/j.ccr.2023.215189 10.1016/j.apcatb.2022.121643 10.1038/s41929-022-00764-9 10.1021/acs.chemrev.6b00596 10.1038/s41467-018-07850-2 10.1021/acs.est.1c08937 10.1021/jacs.8b07476 10.1002/cctc.202001024 10.1039/D1TA04439G 10.1016/j.checat.2022.100492 10.1021/acs.chemrev.0c00594 10.1021/acsami.3c03982 10.1021/acs.chemrev.0c00576 10.1002/anie.201309248 10.1016/j.watres.2023.119719 10.1002/anie.201916649 10.1002/adma.202110455 10.1038/s41467-021-25562-y 10.1002/anie.201909834 10.1126/sciadv.aat6413 10.1126/science.abe5757 10.1039/D2NR07066A 10.1039/C6CS00094K 10.1002/aenm.201902307 10.1038/s41467-019-12460-7 10.1038/nchem.589 10.1021/acs.chemrev.9b00230 10.1126/sciadv.ade3557 10.1021/acsami.0c09371 10.1016/j.apsusc.2006.12.121 10.1021/acsanm.3c03016 10.1021/acscatal.9b05224 10.1038/s41570-018-0010-1 10.1021/acs.est.1c06400 10.1073/pnas.1006652108 10.1021/acsaem.0c01466 10.1021/acsestengg.1c00007 10.1038/s41467-021-22948-w 10.1038/s41929-019-0354-z 10.1021/acs.est.7b05563 10.1021/acscatal.8b01021 10.1002/anie.202303267 10.1002/anie.202205923 10.1002/adfm.202001097 10.1021/jacs.8b07294 10.1021/accountsmr.1c00009 10.1016/j.cej.2022.139229 10.1002/adfm.202009770 10.1002/adma.201601960 10.1038/s41567-021-01444-4 10.1073/pnas.2219043120 10.1016/j.apcatb.2023.123643 10.1038/s41467-023-37268-4 10.1021/acscatal.2c05992 10.1002/anie.201900013 10.1021/acscatal.9b04217 10.1021/acsestengg.0c00136 10.1016/S0079-6816(98)00034-3 10.1038/s41467-019-14216-9 10.1002/anie.202305639 10.1073/pnas.1701280114 10.1021/acsnano.2c12817 10.1021/ar300361m 10.1016/j.chempr.2019.12.008 10.1016/j.jcis.2023.05.011 |
ContentType | Journal Article |
Copyright | 2024 American Chemical Society |
Copyright_xml | – notice: 2024 American Chemical Society |
DBID | AAYXX CITATION |
DOI | 10.1021/acscatal.4c02113 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2155-5435 |
EndPage | 13014 |
ExternalDocumentID | 10_1021_acscatal_4c02113 a081584180 |
GroupedDBID | .K2 55A 7~N AABXI AAHBH ABJNI ABMVS ABQRX ABUCX ACGFO ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CUPRZ EBS ED~ GGK GNL IH9 JG~ RNS ROL UI2 VF5 VG9 W1F AAYXX CITATION |
ID | FETCH-LOGICAL-a163t-6fd9b96475494c8ca68e623231bc2d35dee5aed1d152da367b19aa50459131b33 |
IEDL.DBID | ACS |
ISSN | 2155-5435 |
IngestDate | Wed Sep 11 13:30:04 EDT 2024 Mon Sep 09 05:43:35 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Keywords | catalytic performance confined single-atom catalysts electron confinement effect size effect space confinement effect |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a163t-6fd9b96475494c8ca68e623231bc2d35dee5aed1d152da367b19aa50459131b33 |
ORCID | 0000-0001-9477-7870 |
PageCount | 24 |
ParticipantIDs | crossref_primary_10_1021_acscatal_4c02113 acs_journals_10_1021_acscatal_4c02113 |
PublicationCentury | 2000 |
PublicationDate | 2024-09-06 |
PublicationDateYYYYMMDD | 2024-09-06 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-06 day: 06 |
PublicationDecade | 2020 |
PublicationTitle | ACS catalysis |
PublicationTitleAlternate | ACS Catal |
PublicationYear | 2024 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref45/cit45 ref99/cit99 ref3/cit3 ref81/cit81 ref16/cit16 ref52/cit52 ref184/cit184 ref114/cit114 ref185/cit185 ref23/cit23 ref115/cit115 ref116/cit116 ref110/cit110 ref181/cit181 ref111/cit111 ref182/cit182 ref2/cit2 ref112/cit112 ref77/cit77 ref113/cit113 ref183/cit183 ref71/cit71 ref117/cit117 ref20/cit20 ref48/cit48 ref118/cit118 ref74/cit74 ref119/cit119 ref10/cit10 ref35/cit35 ref89/cit89 ref19/cit19 ref93/cit93 ref42/cit42 ref96/cit96 ref107/cit107 ref120/cit120 ref178/cit178 ref109/cit109 ref13/cit13 ref122/cit122 ref105/cit105 ref61/cit61 ref176/cit176 ref67/cit67 ref38/cit38 ref128/cit128 ref90/cit90 ref124/cit124 ref64/cit64 ref126/cit126 ref54/cit54 ref6/cit6 ref18/cit18 ref136/cit136 ref137/cit137 ref65/cit65 ref171/cit171 ref97/cit97 ref101/cit101 ref11/cit11 ref102/cit102 ref29/cit29 ref174/cit174 ref76/cit76 ref86/cit86 ref170/cit170 ref32/cit32 ref39/cit39 ref168/cit168 ref5/cit5 ref43/cit43 ref80/cit80 ref133/cit133 ref28/cit28 ref132/cit132 ref91/cit91 ref148/cit148 ref55/cit55 ref144/cit144 ref12/cit12 ref167/cit167 ref163/cit163 ref66/cit66 ref179/cit179 ref22/cit22 ref121/cit121 ref175/cit175 ref33/cit33 ref87/cit87 ref106/cit106 ref140/cit140 ref129/cit129 ref44/cit44 ref70/cit70 ref98/cit98 ref125/cit125 ref9/cit9 ref152/cit152 ref153/cit153 ref154/cit154 ref27/cit27 ref150/cit150 ref63/cit63 ref151/cit151 ref56/cit56 ref159/cit159 ref92/cit92 ref155/cit155 ref156/cit156 ref157/cit157 ref158/cit158 ref8/cit8 ref31/cit31 ref59/cit59 ref85/cit85 ref34/cit34 ref37/cit37 ref60/cit60 ref88/cit88 ref17/cit17 ref82/cit82 ref147/cit147 ref160/cit160 ref143/cit143 ref53/cit53 ref145/cit145 ref21/cit21 ref166/cit166 ref149/cit149 ref162/cit162 ref46/cit46 ref164/cit164 ref49/cit49 ref75/cit75 ref24/cit24 ref141/cit141 ref50/cit50 ref78/cit78 ref36/cit36 ref83/cit83 ref138/cit138 ref79/cit79 ref139/cit139 ref100/cit100 ref172/cit172 ref25/cit25 ref173/cit173 ref103/cit103 ref72/cit72 ref14/cit14 ref57/cit57 ref169/cit169 ref51/cit51 ref134/cit134 ref135/cit135 ref40/cit40 ref68/cit68 ref94/cit94 ref130/cit130 ref131/cit131 ref146/cit146 ref26/cit26 ref161/cit161 ref142/cit142 ref73/cit73 ref69/cit69 ref165/cit165 ref15/cit15 ref180/cit180 ref62/cit62 ref41/cit41 ref58/cit58 ref95/cit95 ref108/cit108 ref104/cit104 ref177/cit177 ref4/cit4 ref30/cit30 ref47/cit47 ref84/cit84 ref127/cit127 ref1/cit1 ref123/cit123 ref7/cit7 |
References_xml | – ident: ref3/cit3 doi: 10.1002/cey2.194 – ident: ref12/cit12 doi: 10.1021/acs.chemrev.0c00864 – ident: ref66/cit66 doi: 10.1038/s41565-020-0652-2 – ident: ref144/cit144 doi: 10.1038/s42004-020-0306-1 – ident: ref136/cit136 doi: 10.1021/acsnano.0c00659 – ident: ref14/cit14 doi: 10.1021/jacsau.1c00384 – ident: ref148/cit148 doi: 10.1002/anie.202203022 – ident: ref133/cit133 doi: 10.1038/s41467-023-38126-z – ident: ref155/cit155 doi: 10.1002/anie.202219306 – ident: ref33/cit33 doi: 10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5 – ident: ref108/cit108 doi: 10.1038/s41560-017-0078-8 – ident: ref119/cit119 doi: 10.1021/acsami.2c19985 – ident: ref171/cit171 doi: 10.1002/adfm.201802169 – ident: ref21/cit21 doi: 10.1038/s41467-021-24513-x – ident: ref34/cit34 doi: 10.1126/sciadv.abn5091 – ident: ref172/cit172 doi: 10.1021/acsestengg.2c00187 – ident: ref158/cit158 doi: 10.1002/anie.202309893 – ident: ref67/cit67 doi: 10.1002/smll.202005334 – ident: ref73/cit73 doi: 10.1016/S1748-0132(07)70113-5 – ident: ref68/cit68 doi: 10.1039/C6TA10896B – ident: ref135/cit135 doi: 10.1038/s41467-020-16715-6 – ident: ref13/cit13 doi: 10.1007/s10311-021-01355-z – ident: ref98/cit98 doi: 10.1021/ja808292c – ident: ref99/cit99 doi: 10.1021/ar200138n – ident: ref165/cit165 doi: 10.1016/j.ijhydene.2023.09.298 – ident: ref93/cit93 doi: 10.1002/adma.202105482 – ident: ref100/cit100 doi: 10.1021/ja062329b – ident: ref179/cit179 doi: 10.1021/jacs.8b05992 – ident: ref11/cit11 doi: 10.1038/nchem.1095 – ident: ref117/cit117 doi: 10.1039/D1RA08891B – ident: ref22/cit22 doi: 10.1002/aenm.202103097 – ident: ref164/cit164 doi: 10.1002/advs.202301656 – ident: ref128/cit128 doi: 10.1021/acscatal.1c04832 – ident: ref152/cit152 doi: 10.1002/adma.202107721 – ident: ref40/cit40 doi: 10.1038/s41467-018-06387-8 – ident: ref6/cit6 doi: 10.1016/j.jclepro.2023.136468 – ident: ref28/cit28 doi: 10.1038/s41467-021-27640-7 – ident: ref79/cit79 doi: 10.1038/s41929-021-00650-w – ident: ref53/cit53 doi: 10.1073/pnas.2311585120 – ident: ref140/cit140 doi: 10.1021/jacs.2c10801 – ident: ref183/cit183 doi: 10.1016/j.apcatb.2019.117878 – ident: ref175/cit175 doi: 10.1021/acsestengg.2c00236 – ident: ref2/cit2 doi: 10.1016/S1872-2067(21)63879-2 – ident: ref121/cit121 doi: 10.1016/j.carbon.2018.11.021 – ident: ref132/cit132 doi: 10.1016/j.jechem.2023.12.046 – ident: ref173/cit173 doi: 10.1039/D0CS01032D – ident: ref92/cit92 doi: 10.1039/D0CC02593C – ident: ref65/cit65 doi: 10.1002/smll.202301849 – ident: ref57/cit57 doi: 10.1016/j.jechem.2018.08.006 – ident: ref87/cit87 doi: 10.1021/cr500304f – ident: ref94/cit94 doi: 10.1038/srep05441 – ident: ref10/cit10 doi: 10.1016/S1872-2067(18)63047-5 – ident: ref16/cit16 doi: 10.1126/sciadv.abb6833 – ident: ref123/cit123 doi: 10.1002/adma.202004319 – ident: ref151/cit151 doi: 10.1002/adma.202103882 – ident: ref159/cit159 doi: 10.1016/j.carbon.2020.06.006 – ident: ref116/cit116 doi: 10.1021/jacs.9b06482 – ident: ref177/cit177 doi: 10.1016/j.cej.2020.124382 – ident: ref62/cit62 doi: 10.1002/smll.202207240 – ident: ref95/cit95 doi: 10.1021/acsnano.0c04544 – ident: ref38/cit38 doi: 10.1038/nenergy.2016.130 – ident: ref125/cit125 doi: 10.1021/jacs.1c10814 – ident: ref24/cit24 doi: 10.1038/s44160-023-00258-x – ident: ref36/cit36 doi: 10.1002/cctc.202100325 – ident: ref56/cit56 doi: 10.1016/j.cis.2021.102568 – ident: ref138/cit138 doi: 10.1021/acsnano.1c08898 – ident: ref83/cit83 doi: 10.1038/nature06552 – ident: ref30/cit30 doi: 10.1021/jacs.8b03121 – ident: ref147/cit147 doi: 10.1002/anie.201903802 – ident: ref88/cit88 doi: 10.1021/jacs.9b06628 – ident: ref170/cit170 doi: 10.1021/acs.jpcc.8b03383 – ident: ref142/cit142 doi: 10.1021/acscatal.9b01643 – ident: ref114/cit114 doi: 10.1039/c2cp41392b – ident: ref126/cit126 doi: 10.1002/adma.202209654 – ident: ref1/cit1 doi: 10.1021/jacs.1c12642 – ident: ref19/cit19 doi: 10.1039/D1SC05983A – ident: ref131/cit131 doi: 10.1038/s41586-022-05251-6 – ident: ref145/cit145 doi: 10.1016/j.chempr.2018.05.006 – ident: ref174/cit174 doi: 10.1016/j.cej.2020.126395 – ident: ref81/cit81 doi: 10.1007/s10562-019-02709-7 – ident: ref109/cit109 doi: 10.1021/jacs.0c07206 – ident: ref143/cit143 doi: 10.1063/5.0048962 – ident: ref156/cit156 doi: 10.1038/s41467-023-39048-6 – ident: ref86/cit86 doi: 10.1039/c2sc21761a – ident: ref69/cit69 doi: 10.1016/j.jclepro.2023.136125 – ident: ref166/cit166 doi: 10.1039/C8EE02939C – ident: ref82/cit82 doi: 10.1016/j.cej.2022.140031 – ident: ref141/cit141 doi: 10.1126/science.1253150 – ident: ref150/cit150 doi: 10.1021/acs.nanolett.2c04444 – ident: ref45/cit45 doi: 10.1038/ncomms9668 – ident: ref139/cit139 doi: 10.1021/acscatal.9b04621 – ident: ref23/cit23 doi: 10.1016/j.apcatb.2023.123244 – ident: ref20/cit20 doi: 10.1039/C9CS00713J – ident: ref163/cit163 doi: 10.1016/j.cej.2022.140512 – ident: ref31/cit31 doi: 10.1002/adma.202300505 – ident: ref51/cit51 doi: 10.1016/j.nanoen.2019.104409 – ident: ref41/cit41 doi: 10.1016/j.mtener.2018.10.014 – ident: ref118/cit118 doi: 10.1016/j.chempr.2017.12.005 – ident: ref157/cit157 doi: 10.1038/s41467-023-36926-x – ident: ref4/cit4 doi: 10.1016/j.rser.2018.12.027 – ident: ref64/cit64 doi: 10.1016/j.apcatb.2018.02.041 – ident: ref76/cit76 doi: 10.1021/ja908040g – ident: ref85/cit85 doi: 10.1038/s41929-017-0021-1 – ident: ref182/cit182 doi: 10.1039/D1CY00478F – ident: ref134/cit134 doi: 10.1002/adma.202209646 – ident: ref37/cit37 doi: 10.1021/jacs.8b13579 – ident: ref154/cit154 doi: 10.1126/sciadv.add1267 – ident: ref180/cit180 doi: 10.1016/j.apcatb.2023.123218 – ident: ref153/cit153 doi: 10.1038/s41467-022-29074-1 – ident: ref42/cit42 doi: 10.1002/anie.202003623 – ident: ref78/cit78 doi: 10.1016/j.apsusc.2017.10.120 – ident: ref91/cit91 doi: 10.1002/anie.202209629 – ident: ref107/cit107 doi: 10.1002/anie.202109488 – ident: ref25/cit25 doi: 10.1021/jacs.3c03432 – ident: ref89/cit89 doi: 10.1021/acscatal.0c02325 – ident: ref102/cit102 doi: 10.1016/j.cej.2022.135126 – ident: ref160/cit160 doi: 10.1002/adfm.202300895 – ident: ref185/cit185 doi: 10.1039/C9SC03172C – ident: ref26/cit26 doi: 10.1016/j.joule.2021.05.018 – ident: ref96/cit96 doi: 10.1126/science.aaw1108 – ident: ref124/cit124 doi: 10.1016/j.ccr.2023.215189 – ident: ref52/cit52 doi: 10.1016/j.apcatb.2022.121643 – ident: ref120/cit120 doi: 10.1038/s41929-022-00764-9 – ident: ref54/cit54 doi: 10.1021/acs.chemrev.6b00596 – ident: ref5/cit5 doi: 10.1038/s41467-018-07850-2 – ident: ref35/cit35 doi: 10.1021/acs.est.1c08937 – ident: ref122/cit122 doi: 10.1021/jacs.8b07476 – ident: ref184/cit184 doi: 10.1002/cctc.202001024 – ident: ref32/cit32 doi: 10.1039/D1TA04439G – ident: ref127/cit127 doi: 10.1016/j.checat.2022.100492 – ident: ref167/cit167 doi: 10.1021/acs.chemrev.0c00594 – ident: ref7/cit7 doi: 10.1021/acsami.3c03982 – ident: ref15/cit15 doi: 10.1021/acs.chemrev.0c00576 – ident: ref105/cit105 doi: 10.1002/anie.201309248 – ident: ref80/cit80 doi: 10.1016/j.watres.2023.119719 – ident: ref50/cit50 doi: 10.1002/anie.201916649 – ident: ref60/cit60 doi: 10.1002/adma.202110455 – ident: ref113/cit113 doi: 10.1038/s41467-021-25562-y – ident: ref48/cit48 doi: 10.1002/anie.201909834 – ident: ref74/cit74 doi: 10.1126/sciadv.aat6413 – ident: ref115/cit115 doi: 10.1126/science.abe5757 – ident: ref46/cit46 doi: 10.1039/D2NR07066A – ident: ref77/cit77 doi: 10.1039/C6CS00094K – ident: ref18/cit18 doi: 10.1002/aenm.201902307 – ident: ref58/cit58 doi: 10.1038/s41467-019-12460-7 – ident: ref71/cit71 doi: 10.1038/nchem.589 – ident: ref70/cit70 doi: 10.1021/acs.chemrev.9b00230 – ident: ref90/cit90 doi: 10.1126/sciadv.ade3557 – ident: ref55/cit55 doi: 10.1021/acsami.0c09371 – ident: ref84/cit84 doi: 10.1016/j.apsusc.2006.12.121 – ident: ref47/cit47 doi: 10.1021/acsanm.3c03016 – ident: ref63/cit63 doi: 10.1021/acscatal.9b05224 – ident: ref9/cit9 doi: 10.1038/s41570-018-0010-1 – ident: ref112/cit112 doi: 10.1021/acs.est.1c06400 – ident: ref72/cit72 doi: 10.1073/pnas.1006652108 – ident: ref161/cit161 doi: 10.1021/acsaem.0c01466 – ident: ref103/cit103 doi: 10.1021/acsestengg.1c00007 – ident: ref130/cit130 doi: 10.1038/s41467-021-22948-w – ident: ref97/cit97 doi: 10.1038/s41929-019-0354-z – ident: ref176/cit176 doi: 10.1021/acs.est.7b05563 – ident: ref146/cit146 doi: 10.1021/acscatal.8b01021 – ident: ref181/cit181 doi: 10.1002/anie.202303267 – ident: ref149/cit149 doi: 10.1002/anie.202205923 – ident: ref39/cit39 doi: 10.1002/adfm.202001097 – ident: ref44/cit44 doi: 10.1021/jacs.8b07294 – ident: ref104/cit104 doi: 10.1021/accountsmr.1c00009 – ident: ref178/cit178 doi: 10.1016/j.cej.2022.139229 – ident: ref168/cit168 doi: 10.1002/adfm.202009770 – ident: ref169/cit169 doi: 10.1002/adma.201601960 – ident: ref101/cit101 doi: 10.1038/s41567-021-01444-4 – ident: ref129/cit129 doi: 10.1073/pnas.2219043120 – ident: ref111/cit111 doi: 10.1016/j.apcatb.2023.123643 – ident: ref61/cit61 doi: 10.1038/s41467-023-37268-4 – ident: ref106/cit106 doi: 10.1021/acscatal.2c05992 – ident: ref17/cit17 doi: 10.1002/anie.201900013 – ident: ref43/cit43 doi: 10.1021/acscatal.9b04217 – ident: ref8/cit8 doi: 10.1021/acsestengg.0c00136 – ident: ref75/cit75 doi: 10.1016/S0079-6816(98)00034-3 – ident: ref49/cit49 doi: 10.1038/s41467-019-14216-9 – ident: ref59/cit59 doi: 10.1002/anie.202305639 – ident: ref29/cit29 doi: 10.1073/pnas.1701280114 – ident: ref27/cit27 doi: 10.1021/acsnano.2c12817 – ident: ref110/cit110 doi: 10.1021/ar300361m – ident: ref137/cit137 doi: 10.1016/j.chempr.2019.12.008 – ident: ref162/cit162 doi: 10.1016/j.jcis.2023.05.011 |
SSID | ssj0000456870 |
Score | 2.4673736 |
Snippet | Single-atom catalysts (SACs) exhibit remarkable 100% atomic economy, making them highly efficient in various fields, including production processes, energy... |
SourceID | crossref acs |
SourceType | Aggregation Database Publisher |
StartPage | 12991 |
Title | Confinement Effect and Application in Catalytic Oxidation–Reduction Reaction of Confined Single-Atom Catalysts |
URI | http://dx.doi.org/10.1021/acscatal.4c02113 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60HvTiW6wvctCDh6jJbvZxLGtLTwqtgrclu0mgoNvS3YLe_A_-Q3-Jk-xWiyjocWH4CJMdvi8zyQzAaaYCI7lhlIUmpD7nBmPOt5VCkSkf5Zxytyr7w_DmIbruLrbJ-V7B5-xS5qXLZFz4OX7aAbUrPEShYGVQMvzMp1hpErnZcEhiggqUAU1V8icQy0V5ucBFC6TS2_jPcjZhvZGOpFPv9RYs6WIbVpP5xLYdmNjne6gabcKP1G2JiSwU6XwVqcmoIIkFfkEQcvs8qkcqvb--DWwPV2cy0PVjBzI2pEFUZIgU96hppxo_NQBlVe7Cfa97l_RpM1GBStRdFQ2MijP79hRPhX4e5TKINOof1HhZzpUnlNZCasUUsrqSXhBmLJZSoG9jhjaetwetYlzofSBXLOcZRrz0JUL5PItlKI0n8KQuPBMHbThDV6VNRJSpK3Zzls79lzb-a8P5fA_SSd1g41fbgz9iHsIaR-3hroIFR9CqpjN9DMulmp24n-YDxGG_Hg |
link.rule.ids | 315,782,786,2769,27085,27933,27934,56747,56797 |
linkProvider | American Chemical Society |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagDGXhjShPDzAwBLAT5zFWoVURpUhtkdgiJ7alSpBUJJVg4z_wD_klnJ2EdgAJMSY6fbLOPt3nO98dQqexcBWniljEU57lUKrA5hydKWSxcIDOCfOqsjfyBo_-dUe3ySF1LQwsIgek3CTx590FyCX8MwGNCyeBTz2ndoW5gKrZUDj6DqtohuKbEXHgy5jFgA1UycmfQLRLSvIFl7TgW7rr_1jVBlqriCRulzu_iZZkuoWaYT2_bRtNdTEfcEgd_sNlk2LMU4Hb85Q1nqQ41MBvAILvXyflgKXP94-h7uhqRIayLH3AmcIVosAjcHhP0moX2XMFkBf5DnrodsZhz6rmK1gcWFhhuUoEsa5EhTuik_gJd30JbAgYX5xQYTMhJeNSEAE-XnDb9WIScM5AxQEBGdveRY00S-UewlckoTHYP3c4QDk0DrjHlc3g3s5sFbgtdAaqiir7yCOT-qYkqvUXVfprofN6K6Jp2W7jV9n9P2KeoGZvfNeP-jeD2wO0SoGVmEdi7iFqFC8zeYSWczE7NufoC6hnx4s |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66gnrxLa7PHPTgoWrSpo9j6e6yoqyyq-CtpE0CC9pdbBf05n_wH_pLnKRZ3YOCeGwJH2Ga6Xwzk5lB6DgTvuJUEYcEKnA8ShXonKczhSwTHtA5YW5VdgdB7yFstXWbHDathYFNlIBUmiS-1uqxULbDADmH9yaocebl8Khn1S4wP4i0zxUng6_QimYpoRkTB_aMOQwYgU1Q_gSizVJezpilGfvSWf3nztbQiiWUOK5PwDqak8UGWkqmc9w20VgX9QGX1GFAXDcrxrwQOP5OXeNhgRMN_Aog-OZlWA9a-nh77-vOrmZJX9YlEHiksEUUeACG71E6cTV6sgBlVW6h-077Luk6ds6Cw4GNVY6vRJTpilTwFb08zLkfSmBFwPyynAqXCSkZl4IIsPWCu36QkYhzBmKOCKxx3W3UKEaF3EH4guQ0g_8A9zhAeTSLeMCVy8B_Z66K_CY6AVGlVk_K1KTAKUmn8kut_JrodPo50nHdduPXtbt_xDxCi7etTnp92bvaQ8sUyIm5K-bvo0b1PJEHaL4Uk0NzlD4BQOrKDg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Confinement+Effect+and+Application+in+Catalytic+Oxidation%E2%80%93Reduction+Reaction+of+Confined+Single-Atom+Catalysts&rft.jtitle=ACS+catalysis&rft.au=Fan%2C+Xiu&rft.au=Li%2C+Donghao&rft.au=Shu%2C+Yuanxiang&rft.au=Feng%2C+Yimeng&rft.date=2024-09-06&rft.issn=2155-5435&rft.eissn=2155-5435&rft.volume=14&rft.issue=17&rft.spage=12991&rft.epage=13014&rft_id=info:doi/10.1021%2Facscatal.4c02113&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acscatal_4c02113 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2155-5435&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2155-5435&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2155-5435&client=summon |