An approach for the improved immobilization of penicillin G acylase onto macroporous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) as a potential industrial biocatalyst

The use of penicillin G acylase (PGA) covalently linked to insoluble carrier is expected to produce major advances in pharmaceutical processing industry and the enzyme stability enhancement is still a significant challenge. The objective of this study was to improve catalytic performance of the cova...

Full description

Saved in:
Bibliographic Details
Published in:Biotechnology progress Vol. 32; no. 1; pp. 43 - 53
Main Authors: Knezevic-Jugovic, Zorica D, uza, Milena G, Jakovetic, Sonja M, Stefanovic, Andrea B, Dzunuzovic, Enis S, Jeremic, Katarina B, Jovanovic, Slobodan M
Format: Journal Article
Language:English
Published: United States Blackwell Publishing Ltd 01-01-2016
Wiley Subscription Services, Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The use of penicillin G acylase (PGA) covalently linked to insoluble carrier is expected to produce major advances in pharmaceutical processing industry and the enzyme stability enhancement is still a significant challenge. The objective of this study was to improve catalytic performance of the covalently immobilized PGA on a potential industrial carrier, macroporous poly(glycidyl methacrylate‐co‐ethylene glycol dimethacrylate) [poly(GMA‐co‐EGDMA)], by optimizing the copolymerization process and the enzyme attachment procedure. This synthetic copolymer could be a very promising alternative for the development of low‐cost, easy‐to‐prepare, and stable biocatalyst compared to expensive commercially available epoxy carriers such as Eupergit or Sepabeads. The PGA immobilized on poly(GMA‐co‐EGDMA) in the shape of microbeads obtained by suspension copolymerization appeared to have higher activity yield compared to copolymerization in a cast. Optimal conditions for the immobilization of PGA on poly(GMA‐co‐EGDMA) microbeads were 1 mg/mL of PGA in 0.75 mol/L phosphate buffer pH 6.0 at 25°C for 24 h, leading to the active biocatalyst with the specific activity of 252.7 U/g dry beads. Chemical amination of the immobilized PGA could contribute to the enhanced stability of the biocatalyst by inducing secondary interactions between the enzyme and the carrier, ensuring multipoint attachment. The best balance between the activity yield (51.5%), enzyme loading (25.6 mg/g), and stability (stabilization factor 22.2) was achieved for the partially modified PGA. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:43–53, 2016
Bibliography:ark:/67375/WNG-QV2C39KG-D
Ministry of Education, Science and Technological Development of Serbia
istex:729D2516F3B91E8F575F977F66B6A1C621B12A40
ArticleID:BTPR2181
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:8756-7938
1520-6033
DOI:10.1002/btpr.2181