Haloperidol rescues the schizophrenia-like phenotype in adulthood after rotenone administration in neonatal rats

Neuropsychiatric disorders are multifactorial disturbances that encompass several hypotheses, including changes in neurodevelopment. It is known that brain development disturbances during early life can predict psychosis in adulthood. As we have previously demonstrated, rotenone, a mitochondrial com...

Full description

Saved in:
Bibliographic Details
Published in:Psychopharmacology Vol. 238; no. 9; pp. 2569 - 2585
Main Authors: Varga, Thiago Garcia, de Toledo Simões, Juan Guilherme, Siena, Amanda, Henrique, Elisandra, da Silva, Regina Cláudia Barbosa, dos Santos Bioni, Vinicius, Ramos, Aline Camargo, Rosenstock, Tatiana Rosado
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01-09-2021
Springer
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Neuropsychiatric disorders are multifactorial disturbances that encompass several hypotheses, including changes in neurodevelopment. It is known that brain development disturbances during early life can predict psychosis in adulthood. As we have previously demonstrated, rotenone, a mitochondrial complex I inhibitor, could induce psychiatric-like behavior in 60-day-old rats after intraperitoneal injections from the 5th to the 11th postnatal day. Because mitochondrial deregulation is related to psychiatric disorders and the establishment of animal models is a high-value preclinical tool, we investigated the responsiveness of the rotenone (Rot)-treated newborn rats to pharmacological agents used in clinical practice, haloperidol (Hal), and methylphenidate (MPD). Taken together, our data show that Rot-treated animals exhibit hyperlocomotion, decreased social interaction, and diminished contextual fear conditioning response at P60, consistent with positive, negative, and cognitive deficits of schizophrenia (SZ), respectively, that were reverted by Hal, but not MPD. Rot-treated rodents also display a prodromal-related phenotype at P35. Overall, our results seem to present a new SZ animal model as a consequence of mitochondrial inhibition during a critical neurodevelopmental period. Therefore, our study is crucial not only to elucidate the relevance of mitochondrial function in the etiology of SZ but also to fulfill the need for new and trustworthy experimentation models and, likewise, provide possibilities to new therapeutic avenues for this burdensome disorder. Graphical abstract
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0033-3158
1432-2072
DOI:10.1007/s00213-021-05880-1