Identification of immunogenic proteins of the bacterium Acinetobacter baumannii using a proteomic approach
Purpose Acinetobacter baumannii is an important opportunistic pathogen that causes pneumoniae, urinary tract infections, and/or septicemia in immunocompromised patients. This pathogen is frequently associated with nosocomial outbreaks worldwide and has become particularly problematic because of its...
Saved in:
Published in: | Proteomics. Clinical applications Vol. 8; no. 11-12; pp. 916 - 923 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Germany
Blackwell Publishing Ltd
01-12-2014
Wiley Subscription Services, Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Purpose
Acinetobacter baumannii is an important opportunistic pathogen that causes pneumoniae, urinary tract infections, and/or septicemia in immunocompromised patients. This pathogen is frequently associated with nosocomial outbreaks worldwide and has become particularly problematic because of its prevalence and resistance patterns to several antibiotics. In the present study, we used an immunoproteome‐based approach to identify immunogenic proteins located on the surface of A. baumannii for the development of a possible immunotherapy against this devastating bacterial infection.
Experimental design
Sera from patients with A. baumannii infections (n = 50) and from a control group of healthy individuals (n = 3) were analyzed for reactivity against A. baumannii outer membrane proteins (OMPs) using Western blot analysis. To identify potential immunogenic proteins in A. baumannii, OMPs were separated by 2DE, and reactive sera from infected patients were randomly selected and divided into two different pools, each containing 15 sera. Finally, MALDI‐TOF/TOF mass spectrometric analysis was employed to identify the corresponding proteins.
Results
This analysis identified six immunoreactive proteins: OmpA, Omp34kDa, OprC, OprB‐like, OXA‐23, and ferric siderophore receptor protein. Notably, these proteins are highly abundant on the bacterial surface and involved in virulence, antibiotic resistance, and growth.
Conclusions and clinical relevance
Our results support the notion that the proteins identified in the present immunoproteome study could serve as antigen candidates for the development of vaccines and passive immunotherapies against A. baumannii infections. |
---|---|
Bibliography: | ark:/67375/WNG-FQ1605L5-J Conselho Nacional de Desenvolvimento Científico e Tecnológico ArticleID:PRCA1553 Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro istex:15B960C8B5187A2299B6DE29A6A38338B4DF443E See the article online to view Fig. 1 in colour. Colour Online ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1862-8346 1862-8354 |
DOI: | 10.1002/prca.201300133 |