Search Results - "del Moral, Albert Villanova"

  • Showing 1 - 10 results of 10
Refine Results
  1. 1

    Minimal lepton flavour structures lead to non-maximal 2-3 mixing by Frigerio, Michele, Villanova del Moral, Albert

    Published in The journal of high energy physics (01-07-2013)
    “…A bstract Present data prefer a large but non-maximal 2 − 3 mixing in the lepton sector. We argue that this value, in connection with sin θ 13  ≃ 0.15, is the…”
    Get full text
    Journal Article
  2. 2

    Minimal lepton flavour structures lead to non-maximal 2-3 mixing by Frigerio, Michele, del Moral, Albert Villanova

    Published 21-03-2013
    “…JHEP 1307 (2013) 146 Present data prefer a large but non-maximal 2-3 mixing in the lepton sector. We argue that this value, in connection with…”
    Get full text
    Journal Article
  3. 3

    Lepton flavour violating slepton decays to test type-I and II seesaw at the LHC by del Moral, Albert Villanova

    Published 30-09-2009
    “…AIP Conf.Proc.1200:892-895,2010 Searches at the LHC of lepton flavour violation (LFV) in slepton decays can indirectly test both type-I and II seesaw…”
    Get full text
    Journal Article
  4. 4

    Minimal Supersymmetric Inverse Seesaw: Neutrino masses, lepton flavour violation and LHC phenomenology by Hirsch, M, Kernreiter, T, Romao, J. C, del Moral, Albert Villanova

    Published 08-02-2010
    “…JHEP 1001:103,2010 We study neutrino masses in the framework of the supersymmetric inverse seesaw model. Different from the non-supersymmetric version a…”
    Get full text
    Journal Article
  5. 5

    Collider aspects of flavor physics at high Q by Lari, T., Pape, L., Porod, W., Aguilar-Saavedra, J. A., Allanach, B. C., Burdman, G., Castro, N., Klasen, M., Krasnikov, N., Krauss, F., Moortgat, F., Polesello, G., Tricomi, A., Ünel, G., del Aguila, F., Alwall, J., Andreev, Y., Sierra, D. Aristizabal, Bartl, A., Beccaria, M., Béjar, S., Benucci, L., Bityukov, S., Borjanović, I., Bozzi, G., Carvalho, J., Clerbaux, B., de Campos, F., Dennis, C., Djouadi, A., Éboli, O. J. P., Ellwanger, U., Fassouliotis, D., Ferreira, P. M., Frederix, R., Fuks, B., Giammanco, A., Gninenko, S., Gopalakrishna, S., Goto, T., Grzadkowski, B., Guasch, J., Hahn, T., Heinemeyer, S., Hektor, A., Herrmann, B., Hirsch, M. K., Hohenwarter-Sodek, K., Hou, G. W. S., Hurth, T., Ibarra, A., Kadastik, M., Kalinin, S., Karafasoulis, C., Ünel, M. Karagöz, Kernreiter, T., Kirsanov, M. M., Kou, E., Kourkoumelis, C., Kraml, S., Kyriakis, A., Lemaitre, V., Macorini, G., Magro, M. B., Majerotto, W., Maltoni, F., Matveev, V., Mehdiyev, R., Misiak, M., Moreau, G., Mühlleitner, M., Müntel, M., Özcan, E., Palla, F., Panizzi, L., Peñaranda, S., Pittau, R., Pukhov, A., Raidal, M., Raklev, A. R., Rebane, L., Renard, F. M., Roupas, Z., Santos, R., Schumann, S., Servant, G., Siegert, F., Skands, P., Slavich, P., Solà, J., Spira, M., Toropin, A., Valle, J. W. F., Veloso, F., Ventura, A., Vermisoglou, G., Verzegnassi, C., Villanova del Moral, A., Weiglein, G., Yılmaz, M.

    “…This chapter of the “Flavor in the era of LHC” workshop report discusses flavor-related issues in the production and decays of heavy states at the LHC at high…”
    Get full text
    Journal Article Web Resource
  6. 6

    Reconstructing neutrino properties from collider experiments in a Higgs triplet neutrino mass model by Aristizábal Sierra, D., Hirsch, M., Valle, J. W. F., Villanova del Moral, A.

    Published in Physical review. D, Particles and fields (01-08-2003)
    “…We extend the minimal supersymmetric standard model with bilinear R-parity violation to include a pair of Higgs triplet superfields. The neutral components of…”
    Get full text
    Journal Article Web Resource
  7. 7

    Distributed Deep Learning in Open Collaborations by Diskin, Michael, Bukhtiyarov, Alexey, Ryabinin, Max, Saulnier, Lucile, Lhoest, Quentin, Sinitsin, Anton, Popov, Dmitry, Pyrkin, Dmitry, Kashirin, Maxim, Borzunov, Alexander, del Moral, Albert Villanova, Mazur, Denis, Kobelev, Ilia, Jernite, Yacine, Wolf, Thomas, Pekhimenko, Gennady

    Published 18-06-2021
    “…Modern deep learning applications require increasingly more compute to train state-of-the-art models. To address this demand, large corporations and…”
    Get full text
    Journal Article
  8. 8
  9. 9
  10. 10