Combining multivariate statistics and the think-aloud protocol to assess Human-Computer Interaction barriers in symptom checkers

[Display omitted] •A cost-effective methodology to test symptom checkers’ interfaces is presented.•Multivariate statistics were used to detect areas influencing technology acceptance.•Think-aloud was executed to analyze these areas for understanding usability problems.•The method allows for optimizi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biomedical informatics Vol. 74; pp. 104 - 122
Main Authors: Marco-Ruiz, Luis, Bønes, Erlend, de la Asunción, Estela, Gabarron, Elia, Aviles-Solis, Juan Carlos, Lee, Eunji, Traver, Vicente, Sato, Keiichi, Bellika, Johan G.
Format: Journal Article
Language:English
Published: United States Elsevier Inc 01-10-2017
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:[Display omitted] •A cost-effective methodology to test symptom checkers’ interfaces is presented.•Multivariate statistics were used to detect areas influencing technology acceptance.•Think-aloud was executed to analyze these areas for understanding usability problems.•The method allows for optimizing the use of resources in complex usability studies. Symptom checkers are software tools that allow users to submit a set of symptoms and receive advice related to them in the form of a diagnosis list, health information or triage. The heterogeneity of their potential users and the number of different components in their user interfaces can make testing with end-users unaffordable. We designed and executed a two-phase method to test the respiratory diseases module of the symptom checker Erdusyk. Phase I consisted of an online test with a large sample of users (n=53). In Phase I, users evaluated the system remotely and completed a questionnaire based on the Technology Acceptance Model. Principal Component Analysis was used to correlate each section of the interface with the questionnaire responses, thus identifying which areas of the user interface presented significant contributions to the technology acceptance. In the second phase, the think-aloud procedure was executed with a small number of samples (n=15), focusing on the areas with significant contributions to analyze the reasons for such contributions. Our method was used effectively to optimize the testing of symptom checker user interfaces. The method allowed kept the cost of testing at reasonable levels by restricting the use of the think-aloud procedure while still assuring a high amount of coverage. The main barriers detected in Erdusyk were related to problems understanding time repetition patterns, the selection of levels in scales to record intensities, navigation, the quantification of some symptom attributes, and the characteristics of the symptoms.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Journal of Biomedical Informatics
ISSN:1532-0464
1532-0480
1532-0480
DOI:10.1016/j.jbi.2017.09.002