Evaluation of holocellulase production by plant-degrading fungi grown on agro-industrial residues

Agaricus brasiliensis CS1, Pleurotus ostreatus H1 and Aspergillus flavus produced holocellulases when grown in solid and submerged liquid cultures containing agro-industrial residues, including sugar cane bagasse and dirty cotton residue, as substrates. These isolates proved to be efficient producer...

Full description

Saved in:
Bibliographic Details
Published in:Biodegradation (Dordrecht) Vol. 21; no. 5; pp. 815 - 824
Main Authors: de Siqueira, Félix Gonçalves, de Siqueira, Aline Gonçalves, de Siqueira, Eliane Gonçalves, Carvalho, Marly Azevedo, Peretti, Beatriz Magalhães Pinto, Jaramillo, Paula Marcela Duque, Teixeira, Ricardo Sposina Sobral, Dias, Eustáquio Souza, Félix, Carlos Roberto, Filho, Edivaldo Ximenes Ferreira
Format: Journal Article
Language:English
Published: Dordrecht Dordrecht : Springer Netherlands 01-09-2010
Springer Netherlands
Springer
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Agaricus brasiliensis CS1, Pleurotus ostreatus H1 and Aspergillus flavus produced holocellulases when grown in solid and submerged liquid cultures containing agro-industrial residues, including sugar cane bagasse and dirty cotton residue, as substrates. These isolates proved to be efficient producers of holocellulases under the conditions used in this screening. Bromatological analysis of agro-industrial residues showed differences in protein, fiber, hemicellulose, cellulose and lignin content. Maximal holocellulase activity (hemicellulase, cellulase and pectinase) was obtained using solid-state cultivation with 10% substrate concentration. In this case, remarkably high levels of xylanase and polygalacturonase activity (4,008 and 4,548 IU/l, respectively) were produced by A. flavus when grown in media containing corn residue, followed by P. ostreatus H1 with IU/l values of 1,900 and 3,965 when cultivated on 5% and 10% sugar cane bagasse, respectively. A. brasiliensis CS1 showed the highest reducing sugar yield (11.640 mg/ml) when grown on medium containing sugar cane bagasse. A. brasiliensis was also the most efficient producer of protein, except when cultivated on dirty cotton residue, which induced maximal production in A. flavus. Comparison of enzymatic hydrolysis of sugar cane bagasse and dirty cotton residue by crude extracts of A. brasiliensis CS1, P. ostreatus H1 and A. flavus showed that the best reducing sugar yield was achieved using sugar cane bagasse as a substrate.
Bibliography:http://dx.doi.org/10.1007/s10532-010-9346-z
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0923-9820
1572-9729
DOI:10.1007/s10532-010-9346-z